1
|
Gang G, Gao R, Zhao H, Xu Y, Xing Y, Jin X, Hong L, Yan S, Shi B. Effects of water extracts of Artemisia annua L. on rumen immune and antioxidative indexes, fermentation parameters and microbials diversity in lambs. Front Microbiol 2024; 15:1485882. [PMID: 39493850 PMCID: PMC11528157 DOI: 10.3389/fmicb.2024.1485882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024] Open
Abstract
The present study investigated the effects of water extracts of Artemisia annua L. (WEAA) on rumen immune and antioxidative indexes, fermentation parameters and microbial diversity in lambs. A total of 32 3-month-old Dorper × Han female lambs having comparable body weights (24±0.09 kg) were selected and were randomly assigned to four treatments, with eight repetitions for each treatment. The basal diet, consisting of 45% concentrate and 55% forage, was solely provided to the control group. For the other treatment groups, the basal diet was supplemented with WEAA at dosages of 500, 1000, and 1500 mg/kg diet, respectively. Rumen tissue samples were collected for the analysis of immune and antioxidative parameters, as well as related gene expression. Rumen fluid samples were collected to assess rumen fermentation parameters on days 30 and 60 and to evaluate the microbiota on day 60. Results showed that WEAA supplementation linearly or quadratically increased the content of sIgA, IL-4, IL-2 and the gene expression level of MyD88, IκB-α, IL-4, COX-2, iNOS in rumen tissue (p < 0.05), as well as the bacteria negatively associated with IL-6 (g_ [Eubacterium] _cellulosolvens_group). Furthermore, the addition of WEAA linearly or quadratically increased rumen T-SOD, GSH-Px (p < 0.05) and the gene expression level of Nrf2, SOD2, GSH-Px, HO-1 (p < 0.05), and decreased the rumen concentration of malondialdehyde (MDA) and gene expression level of Keap1 (p < 0.05), as well as the bacteria positively associated with T-AOC, T-SOD and GSH-Px (g_Lachnospiraceae_NK3A20_group, g_Saccharofermentans, g__Marvinbryantia, g_unclassified_f_Eggerthellaceae). The supplementation of WEAA caused the concentration of microprotein (MCP), total volatile fatty acids (TVFA), propionate to increase either linearly or quadratically, while reducing the concentration of NH3-N and the acetate/propionate ratio (A:P) in rumen fluid (p < 0.05). The addition of WEAA linearly or quadratically increased the abundance of Actinobacteriota, Cyanobacteria and Lachnospiraceae_NK3A20_group (p < 0.10), and g__Lachnospiraceae_NK3A20_group, g_Saccharofermentans, g_Marvinbryantia, g_Bifidobacterium were significantly abundant as specific microflora in the 1000 mg/kg WEAA supplementation group. In conclusion, dietary inclusion of 1000 mg/kg WEAA improved the rumen immune function, antioxidant status, rumen fermentation, and composition of rumen microbes in lambs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Binlin Shi
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
2
|
Morris JN, Esseili MA. Screening Commercial Tea for Rapid Inactivation of Infectious SARS-CoV-2 in Saliva. FOOD AND ENVIRONMENTAL VIROLOGY 2024; 16:159-170. [PMID: 38294673 DOI: 10.1007/s12560-023-09581-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/30/2023] [Indexed: 02/01/2024]
Abstract
SARS-CoV-2 infects the oral mucosa and is shed in salivary fluids. Traditionally, tea has been used by various cultures to treat respiratory ailments. The objective of this study was to identify commercially available teas that can rapidly inactivate infectious SARS-CoV-2 in saliva. Initially, tea (n = 24) was prepared as 40 mg/mL infusions and incubated with SARS-CoV-2 resuspended in water, for 5 min at 37 °C. Then, five teas that showed >3 log reduction in virus infectivity were further investigated at 40 and 10 mg/mL infusions for 60 and 10 s contact time with SARS-CoV-2 resuspended in saliva. Tea polyphenols were measured using the Folin-Ciocalteu assay. SARS-CoV-2 infectivity was quantified on Vero-E6 cell line using TCID50 assay. At 10 mg/mL infusion, black tea showed the highest reduction (3 log, i.e., 99.9%) of infectious SARS-CoV-2 within 10 s. Green, mint medley, eucalyptus-mint, and raspberry zinger teas showed similar inactivation of SARS-CoV-2 (1.5-2 log, i.e., 96-99% reduction). At 40 mg/mL infusions, all five teas showed >3 log reduction in virus infectivity within 10 s. Tea polyphenol but not pH was significantly correlated to virus reduction. Time-of-addition assay revealed that the five teas displayed preventive effects (0.5-1 log, i.e., 68-90% reduction) against SARS-CoV-2 infection of Vero-E6 cells as well as during post-virus infection (1.2-1.9 log, i.e., 94-98%). However, the highest inhibitory effect was observed when the teas were added at the time of virus infection (2-3 log, i.e., 99-99.9%). Our results provide insights into a rapid at-home intervention (tea drinking or gargling) to reduce infectious SARS-CoV-2 load in the oral cavity which might also mitigate infection of the oral mucosa.
Collapse
Affiliation(s)
- Julianna N Morris
- Center for Food Safety, Department of Food Science and Technology, University of Georgia, Griffin Campus, 1109 Experiment Street, Griffin, GA, 30223, USA
| | - Malak A Esseili
- Center for Food Safety, Department of Food Science and Technology, University of Georgia, Griffin Campus, 1109 Experiment Street, Griffin, GA, 30223, USA.
| |
Collapse
|
3
|
Bekdash R, Yoshida K, Nair MS, Qiu L, Ahdout J, Tsai HY, Uryu K, Soni RK, Huang Y, Ho DD, Yazawa M. Developing inhibitory peptides against SARS-CoV-2 envelope protein. PLoS Biol 2024; 22:e3002522. [PMID: 38483887 PMCID: PMC10939250 DOI: 10.1371/journal.pbio.3002522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/25/2024] [Indexed: 03/17/2024] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has affected approximately 800 million people since the start of the Coronavirus Disease 2019 (COVID-19) pandemic. Because of the high rate of mutagenesis in SARS-CoV-2, it is difficult to develop a sustainable approach for prevention and treatment. The Envelope (E) protein is highly conserved among human coronaviruses. Previous studies reported that SARS-CoV-1 E deficiency reduced viral propagation, suggesting that E inhibition might be an effective therapeutic strategy for SARS-CoV-2. Here, we report inhibitory peptides against SARS-CoV-2 E protein named iPep-SARS2-E. Leveraging E-induced alterations in proton homeostasis and NFAT/AP-1 pathway in mammalian cells, we developed screening platforms to design and optimize the peptides that bind and inhibit E protein. Using Vero-E6 cells, human-induced pluripotent stem cell-derived branching lung organoid and mouse models with SARS-CoV-2, we found that iPep-SARS2-E significantly inhibits virus egress and reduces viral cytotoxicity and propagation in vitro and in vivo. Furthermore, the peptide can be customizable for E protein of other human coronaviruses such as Middle East Respiratory Syndrome Coronavirus (MERS-CoV). The results indicate that E protein can be a potential therapeutic target for human coronaviruses.
Collapse
Affiliation(s)
- Ramsey Bekdash
- Department of Rehabilitation and Regenerative Medicine, Columbia University, New York, New York, United States of America
- Columbia Stem Cell Initiative, Columbia University, New York, New York, United States of America
- Department of Pharmacology, Columbia University, New York, New York, United States of America
| | - Kazushige Yoshida
- Department of Rehabilitation and Regenerative Medicine, Columbia University, New York, New York, United States of America
- Columbia Stem Cell Initiative, Columbia University, New York, New York, United States of America
| | - Manoj S. Nair
- Aaron Diamond AIDS Research Center, Columbia University, New York, New York, United States of America
| | - Lauren Qiu
- Department of Rehabilitation and Regenerative Medicine, Columbia University, New York, New York, United States of America
- Columbia Stem Cell Initiative, Columbia University, New York, New York, United States of America
- Department of Biological Science, Columbia University, New York, New York, United States of America
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Johnathan Ahdout
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Hsiang-Yi Tsai
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Kunihiro Uryu
- EMSCOPIC, New York, New York, United States of America
| | - Rajesh K. Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Columbia University, New York, New York, United States of America
| | - Yaoxing Huang
- Aaron Diamond AIDS Research Center, Columbia University, New York, New York, United States of America
| | - David D. Ho
- Aaron Diamond AIDS Research Center, Columbia University, New York, New York, United States of America
- Department of Microbiology and Immunology, Columbia University, New York, New York, United States of America
- Division of Infectious Diseases, Department of Medicine, Columbia University, New York, New York, United States of America
| | - Masayuki Yazawa
- Department of Rehabilitation and Regenerative Medicine, Columbia University, New York, New York, United States of America
- Columbia Stem Cell Initiative, Columbia University, New York, New York, United States of America
- Department of Pharmacology, Columbia University, New York, New York, United States of America
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| |
Collapse
|
4
|
Wasilewicz A, Bojkova D, Beniddir MA, Cinatl J, Rabenau HF, Grienke U, Rollinger JM, Kirchweger B. Molecular networking unveils anti-SARS-CoV-2 constituents from traditionally used remedies. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117206. [PMID: 37783406 DOI: 10.1016/j.jep.2023.117206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 10/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Plants and fungi have a long tradition in ethnopharmacology for the treatment of infectious diseases including viruses. Many of these natural products have also been used to combat SARS-CoV-2 infections or symptoms of the post- and long-COVID form, owing to the scarcity of clinically approved therapeutics. AIM OF THE STUDY The ongoing threat posed by SARS-CoV-2, along with the rapidly evolving new variants, requires the development of new antiviral compounds. The aim of this study was to identify anti-SARS-CoV-2 herbal and fungal extracts used in traditional medicine against acute respiratory infection, inflammation, and related symptoms. Additionally, we sought to characterize their bioactive constituents. MATERIALS AND METHODS The antiviral activity and cell cytotoxicity of 179 herbal and fungal extracts were evaluated using two SARS-CoV-2 infection assays in Caco-2 cells. 19 plant extracts with and without anti-SARS-CoV-2 activity underwent detailed dereplication using molecular networking. RESULTS Extracts from Angelica sinensis (Oliv.) Diels roots, Annona squamosa L. seeds, Azadirachta indica A. Juss. fruits, Buddleja officinalis Maxim. flowers, Burkea africana Hook. bark and Clinopodium menthifolium (Host) Stace aerial parts showed a potent anti SARS-CoV-2 activity (IC50 < 5 μg/ml) with only moderate cytotoxicity (CC50 > 60 μg/ml, Caco-2). By performing the dereplication with a bioactivity-featured molecular network (MN) on the extract library level, rather than on the level of individual extracts, we could pinpoint compounds characteristic for active extracts. Thus, a straight-forward identification of potential anti-SARS-CoV-2 natural compounds was achieved prior to any fractionation or isolation efforts. CONCLUSIONS A sophisticated hyphenation of empirical knowledge with MS-based bioinformatics and automated compound annotation was applied to decipher the chemical space of the investigated extracts. The correlation with experimentally assessed anti-SARS-CoV-2 activities helped in predicting compound classes and structural elements relevant for the antiviral activities. Consequently, this accelerated the identification of constituents from the investigated mixtures with inhibitory effects against SARS-CoV-2.
Collapse
Affiliation(s)
- Andreas Wasilewicz
- Department of Pharmaceutical Sciences, Division of Pharmacognosy, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria; Vienna Doctoral School of Pharmaceutical, and Sport Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria.
| | - Denisa Bojkova
- Institute of Medical Virology, University Hospital Frankfurt, Paul-Ehrlich-Straβe 40, 60596, Frankfurt am Main, Germany.
| | - Mehdi A Beniddir
- Équipe Chimie des Substances Naturelles, BioCIS, CNRS, Université Paris-Saclay, 17 Avenue des Sciences, 91400, Orsay, France.
| | - Jindrich Cinatl
- Institute of Medical Virology, University Hospital Frankfurt, Paul-Ehrlich-Straβe 40, 60596, Frankfurt am Main, Germany.
| | - Holger F Rabenau
- Institute of Medical Virology, University Hospital Frankfurt, Paul-Ehrlich-Straβe 40, 60596, Frankfurt am Main, Germany.
| | - Ulrike Grienke
- Department of Pharmaceutical Sciences, Division of Pharmacognosy, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria.
| | - Judith M Rollinger
- Department of Pharmaceutical Sciences, Division of Pharmacognosy, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria.
| | - Benjamin Kirchweger
- Department of Pharmaceutical Sciences, Division of Pharmacognosy, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria.
| |
Collapse
|
5
|
Zhao Y, Zhu L, Yang L, Chen M, Sun P, Ma Y, Zhang D, Zhao Y, Jia H. In vitro and in vivo anti-eczema effect of Artemisia annua aqueous extract and its component profiling. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117065. [PMID: 37604330 DOI: 10.1016/j.jep.2023.117065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/07/2023] [Accepted: 08/17/2023] [Indexed: 08/23/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Artemisia annua L. belongs to the Asteraceae family and has a long history of clinical application in China. It has been widely used for centuries to treat fever, malaria, jaundice and some skin diseases (such as scabies and sores). Modern pharmacological studies have shown that it has anti-inflammatory, immunomodulatory, antimalarial and antibacterial effects. AIM OF STUDY This study aimed to investigate the anti-eczema effect of A. annua aqueous extract (AAE), profile its potential bioactive components and try to explore its possible underlying mechanisms. MATERIALS AND METHODS The MTT assay was employed to assess the cytotoxicity of AAE. The anti-eczema effect of AAE was evaluated using both an in vitro 3D epidermal inflammation model and an in vivo guinea pig itching model. The bioactive components of AAE were characterized by ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry coupled with the UNIFI platform. RESULTS In this study, we found that AAE is safe for primary human skin keratinocytes at concentrations ranging from 31.3 μg/mL to 250 μg/mL. Further investigations indicate that AAE can increase the itching threshold, inhibit the expression of the inflammatory cytokine TSLP, and promote the expression of FLG mRNA. Additionally, the utilization of UPLC-QTOF/MS and UNIFI platform enabled us to identify 61 potential bioactive components of AAE, with sesquiterpenes and phenolic acids being the most abundant components. CONCLUSIONS In this study, the anti-inflammatory and anti-itch effects of the A. annua extract were revealed, along with sesquiterpenes and phenolic acids were identified as potential bioactive components according to literature. The AAE extract holds potential for utilization in the treatment of eczema.
Collapse
Affiliation(s)
- Yifan Zhao
- Artemisinin Research Center & Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Le Zhu
- Shanghai Jahwa United Co., Ltd., Shanghai, 200082, China
| | - Lan Yang
- Artemisinin Research Center & Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Mo Chen
- Shanghai Jahwa United Co., Ltd., Shanghai, 200082, China
| | - Peng Sun
- Artemisinin Research Center & Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yue Ma
- Artemisinin Research Center & Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Dong Zhang
- Artemisinin Research Center & Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Ya Zhao
- Shanghai Jahwa United Co., Ltd., Shanghai, 200082, China.
| | - Haidong Jia
- Shanghai Jahwa United Co., Ltd., Shanghai, 200082, China
| |
Collapse
|
6
|
Baggieri M, Gioacchini S, Borgonovo G, Catinella G, Marchi A, Picone P, Vasto S, Fioravanti R, Bucci P, Kojouri M, Giuseppetti R, D'Ugo E, Ubaldi F, Dallavalle S, Nuzzo D, Pinto A, Magurano F. Antiviral, virucidal and antioxidant properties of Artemisia annua against SARS-CoV-2. Biomed Pharmacother 2023; 168:115682. [PMID: 37832410 DOI: 10.1016/j.biopha.2023.115682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/06/2023] [Accepted: 10/08/2023] [Indexed: 10/15/2023] Open
Abstract
Natural products are a rich source of bioactive molecules that have potential pharmacotherapeutic applications. In this study, we focused on Artemisia annua (A. annua) and its enriched extracts which were biologically evaluated in vitro as virucidal, antiviral, and antioxidant agents, with a potential application against the COVID-19 infection. The crude extract showed virucidal, antiviral and antioxidant effects in concentrations that did not affect cell viability. Scopoletin, arteannuin B and artemisinic acid (single fractions isolated from A. annua) exerted a considerable virucidal and antiviral effect in vitro starting from a concentration of 50 µg/mL. Data from Surface Plasmon Resonance (SPR) showed that the inhibition of the viral infection was due to the interaction of these compounds with the 3CLpro and Spike proteins of SARS-CoV-2, suggesting that the main interaction of compounds may interfere with the viral pathways during the insertion and the replication process. The present study suggests that natural extract of A. annua and its components could have a key role as antioxidants and antiviral agents and support the fight against SARS-CoV-2 variants and other possible emerging Coronaviruses.
Collapse
Affiliation(s)
- Melissa Baggieri
- Istituto Superiore di Sanità, Dipartimento di Malattie Infettive, Viale Regina Elena 299, 00161 Roma, Italy
| | - Silvia Gioacchini
- Istituto Superiore di Sanità, Dipartimento di Malattie Infettive, Viale Regina Elena 299, 00161 Roma, Italy
| | - Gigliola Borgonovo
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, DeFENS, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| | - Giorgia Catinella
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, DeFENS, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| | - Antonella Marchi
- Istituto Superiore di Sanità, Dipartimento di Malattie Infettive, Viale Regina Elena 299, 00161 Roma, Italy
| | - Pasquale Picone
- Istituto per la Ricerca e l'Innovazione Biomedica, Consiglio Nazionale delle Ricerche, Via U. La Malfa 153, 0146 Palermo, Italy
| | - Sonya Vasto
- Istituto per la Ricerca e l'Innovazione Biomedica, Consiglio Nazionale delle Ricerche, Via U. La Malfa 153, 0146 Palermo, Italy; Dipartimento di Scienze Biologiche, Chimiche, Farmaceutiche e Tecnologiche, STEBICEF, Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Raoul Fioravanti
- Istituto Superiore di Sanità, Dipartimento di Malattie Infettive, Viale Regina Elena 299, 00161 Roma, Italy
| | - Paola Bucci
- Istituto Superiore di Sanità, Dipartimento di Malattie Infettive, Viale Regina Elena 299, 00161 Roma, Italy
| | - Maedeh Kojouri
- Istituto Superiore di Sanità, Dipartimento di Malattie Infettive, Viale Regina Elena 299, 00161 Roma, Italy
| | - Roberto Giuseppetti
- Istituto Superiore di Sanità, Dipartimento di Malattie Infettive, Viale Regina Elena 299, 00161 Roma, Italy
| | - Emilio D'Ugo
- Istituto Superiore di Sanità, Dipartimento di Malattie Infettive, Viale Regina Elena 299, 00161 Roma, Italy
| | | | - Sabrina Dallavalle
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, DeFENS, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| | - Domenico Nuzzo
- Istituto per la Ricerca e l'Innovazione Biomedica, Consiglio Nazionale delle Ricerche, Via U. La Malfa 153, 0146 Palermo, Italy
| | - Andrea Pinto
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, DeFENS, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| | - Fabio Magurano
- Istituto Superiore di Sanità, Dipartimento di Malattie Infettive, Viale Regina Elena 299, 00161 Roma, Italy.
| |
Collapse
|
7
|
Azmi WA, Rizki AFM, Djuardi Y, Artika IM, Siregar JE. Molecular insights into artemisinin resistance in Plasmodium falciparum: An updated review. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023:105460. [PMID: 37269964 DOI: 10.1016/j.meegid.2023.105460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/05/2023]
Abstract
Malaria still poses a major burden on human health around the world, especially in endemic areas. Plasmodium resistance to several antimalarial drugs has been one of the major hindrances in control of malaria. Thus, the World Health Organization recommended artemisinin-based combination therapy (ACT) as a front-line treatment for malaria. The emergence of parasites resistant to artemisinin, along with resistant to ACT partner drugs, has led to ACT treatment failure. The artemisinin resistance is mostly related to the mutations in the propeller domain of the kelch13 (k13) gene that encodes protein Kelch13 (K13). The K13 protein has an important role in parasite reaction to oxidative stress. The most widely spread mutation in K13, with the highest degree of resistance, is a C580Y mutation. Other mutations, which are already identified as markers of artemisinin resistance, are R539T, I543T, and Y493H. The objective of this review is to provide current molecular insights into artemisinin resistance in Plasmodium falciparum. The trending use of artemisinin beyond its antimalarial effect is described. Immediate challenges and future research directions are discussed. Better understanding of the molecular mechanisms underlying artemisinin resistance will accelerate implementation of scientific findings to solve problems with malarial infection.
Collapse
Affiliation(s)
- Wihda Aisarul Azmi
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Cibinong, Bogor 16911, Indonesia; Master's Programme in Biomedical Sciences, Faculty of Medicine Universitas Indonesia, Jakarta 10430, Indonesia
| | - Andita Fitri Mutiara Rizki
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Cibinong, Bogor 16911, Indonesia; Master's Programme in Biomedical Sciences, Faculty of Medicine Universitas Indonesia, Jakarta 10430, Indonesia
| | - Yenny Djuardi
- Department of Parasitology, Faculty of Medicine Universitas Indonesia, Jakarta 10430, Indonesia
| | - I Made Artika
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Cibinong, Bogor 16911, Indonesia; Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Bogor 16680, Indonesia
| | - Josephine Elizabeth Siregar
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency, Cibinong, Bogor 16911, Indonesia.
| |
Collapse
|