1
|
Bora PS, Puri S, Singh PP, Sharma U. Biochemometric-guided isolation of new Isosteroidal alkaloids from Fritillaria cirrhosa D.Don (Liliaceae, syn. Fritillaria roylei Hook) as acetylcholinesterase inhibitors. Fitoterapia 2025; 180:106279. [PMID: 39481613 DOI: 10.1016/j.fitote.2024.106279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/02/2024]
Abstract
Globally, Alzheimer's disease is an urgent public health concern with the ageing population in developing nations. Recent studies have identified isosteroidal alkaloids as promising therapeutic agents for Alzheimer's treatment. Fritillaria species are well-known rich sources of steroidal and isosteroidal alkaloids. In this context, the current study focuses on the biochemometric-guided isolation of three previously undescribed and two known isosteroidal alkaloids as acetylcholinesterase (AChE) inhibitors from the bulbs of Fritillaria cirrhosa D.Don. The isolated molecules were characterized by NMR, HR-ESI-MS, FT-IR, and DP4+ analysis. Subsequently, all isolates were evaluated for AChE inhibitory activity using Ellman's method. Among the evaluated molecules, 1 (IC50: 33.0 ± 4.4 μM) and 5 (IC50: 24.7 ± 4.5 μM) showed promising AChE inhibition in vitro. Enzyme kinetic studies of isolated molecules revealed mixed inhibition kinetics with Ki varying from 1.3 to 24.4 μM. Moreover, the in silico studies showed excellent binding affinities of isolated molecules with the target protein and good drug-like ADMET properties. The present study identified new isosteroidal alkaloids as promising AChE inhibitors from F. cirrhosa bulbs via a biochemometric approach and advocated their further exploration for treating neurodegenerative disorders.
Collapse
Affiliation(s)
- Prateek Singh Bora
- C-H Activation & Phytochemistry Lab, Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shivani Puri
- C-H Activation & Phytochemistry Lab, Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Prithvi Pal Singh
- C-H Activation & Phytochemistry Lab, Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Upendra Sharma
- C-H Activation & Phytochemistry Lab, Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
2
|
Xue R, Zhang Q, Mei X, Wang B, Su L, Mao C, Guo ZJ, Gao B, Ji D, Lu T. Research on quality marker based on the processing from Aconiti lateralis radix praeparata to Heishunpian. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:1443-1456. [PMID: 38797531 DOI: 10.1002/pca.3376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 05/29/2024]
Abstract
INTRODUCTION Aconiti lateralis radix praeparata (ALRP), the sub root of Aconitum carmichaelii Debx., is a traditional Chinese medicine with good pharmacological effects. Heishunpian (HSP), prepared through the process of brine immersing, boiling, rinsing, dyeing, and steaming ALRP is one of the most widely used forms of decoction pieces in clinical practice. OBJECTIVES This study aims to investigate the mechanisms of component changes and transformations during the processing from ALRP to HSP, and to screen for their quality markers through UHPLC-QTOF-MS analysis. METHODS Samples from ALRP to HSP during processing were prepared and analyzed by UHPLC-QTOF-MS. By comparing the differences between before and after each processing step, the purpose of processing and the transformation of components during processing were studied. In addition, multiple batches of ALRP and HSP were determined, and potential quality markers were screened. RESULTS Through the analysis of ALRP and five key processing samples, 55 components were identified. Immersing in brine, rinsing, and dyeing were the main factors of component loss, and boiling caused a slight loss of components. Some components were enhanced during the steaming process. Combining the screened differences components between multiple ALRP and HSP, 10 components were considered as potential quality biomarkers. CONCLUSION This study found that the adjacent hydroxyl groups of the ester group may have a positive impact on the hydrolysis of the ester group, and 10 quality markers were preliminarily screened. It provides a reference for quality control and clinical application of ALRP and HSP.
Collapse
Affiliation(s)
- Rong Xue
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qian Zhang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xi Mei
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Bin Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lianlin Su
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chunqin Mao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhi Jun Guo
- Nanjing University of Chinese Medicine and China Resources Sanjiu Medical & Pharmaceutical Co. Ltd., Shenzhen Longhua, China
| | - Bo Gao
- Nanjing University of Chinese Medicine and China Resources Sanjiu Medical & Pharmaceutical Co. Ltd., Shenzhen Longhua, China
| | - De Ji
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tulin Lu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
3
|
Zhang Y, Han H, Li D, Fan Y, Liu M, Ren H, Liu L. Botanical characterization, phytochemistry, biosynthesis, pharmacology clinical application, and breeding techniques of the Chinese herbal medicine Fritillaria unibracteata. Front Pharmacol 2024; 15:1428037. [PMID: 39135808 PMCID: PMC11317884 DOI: 10.3389/fphar.2024.1428037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 06/17/2024] [Indexed: 08/15/2024] Open
Abstract
Fritillaria unibracteata (FRU) belongs to the genus Fritillaria of the Liliaceae family. It is one of the original plants of the Chinese medicinal material "Chuanbeimu" and also a biological resource featured in the Tibetan Plateau of China. The dried bulbs of FRU are used in traditional Chinese medicine. The chemical constituents of FRU that have been isolated and identified include alkaloids, sterols, organic acids and their esters, nucleosides and volatile oils. FRU has antitussive, expectorant, anti-asthmatic, anti-inflammatory, antibacterial, acute lung injury-reducing, antifibrosis, antitumor, and other pharmacological effects. This valuable plant has an extremely high market demand, and over the years, due to over-exploitation, FRU has now been listed as a key species that is endangered and scarcely cultivated in China as a traditional Chinese medicinal herb. However, research on FRU is rare, and its effective components, resource control, and mechanisms of action need further study. This review systematically discusses the herbal characteristics, resource distribution, chemical composition, biosynthesis, pharmacological effects, clinical application, and breeding techniques of FRU, hoping to provide a reference for further research and the use of FRU.
Collapse
Affiliation(s)
- Yamei Zhang
- School of Chemistry and Chemical Engineering, Qinghai Normal University, Xining, China
| | - Hongping Han
- School of Chemistry and Chemical Engineering, Qinghai Normal University, Xining, China
- Key Laboratory of Medicinal Plant and Animal Resources of Qinghai-Tibetan Plateau in Qinghai Province, Xining, China
- Academy of Plateau Science and Sustainability, People’s Government of Qinghai Province, Xining, China
| | - Dingai Li
- Key Laboratory of Medicinal Plant and Animal Resources of Qinghai-Tibetan Plateau in Qinghai Province, Xining, China
| | - Yanan Fan
- School of Chemistry and Chemical Engineering, Qinghai Normal University, Xining, China
| | - Meng Liu
- School of Chemistry and Chemical Engineering, Qinghai Normal University, Xining, China
| | - Huimin Ren
- School of Chemistry and Chemical Engineering, Qinghai Normal University, Xining, China
| | - Lu Liu
- School of Chemistry and Chemical Engineering, Qinghai Normal University, Xining, China
| |
Collapse
|
4
|
Wei W, Guo T, Fan W, Ji M, Fu Y, Lian C, Chen S, Ma W, Ma W, Feng S. Integrative analysis of metabolome and transcriptome provides new insights into functional components of Lilii Bulbus. CHINESE HERBAL MEDICINES 2024; 16:435-448. [PMID: 39072198 PMCID: PMC11283230 DOI: 10.1016/j.chmed.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/01/2023] [Accepted: 10/09/2023] [Indexed: 07/30/2024] Open
Abstract
Objective Lilium brownii var. viridulum (LB) and L. lancifolium (LL) are the main sources of medicinal lily (Lilii Bulbus, Baihe in Chinese) in China. However, the functional components of these two species responsible for the treatment efficacy are yet not clear. In order to explore the therapeutic material basis of Lilii Bulbus, we selected L. davidii var. willmottiae (LD) only used for food as the control group to analyze the differences between LD and the other two (LB and LL). Methods Metabolome and transcriptome were carried out to investigate the differences of active components in LD vs LB and LD vs LL. Data of metabolome and transcriptome was analysed using various analysis methods, such as principal component analysis (PCA), hierarchical cluster analysis (HCA), and so on. Differentially expressed genes (DEGs) were enriched through KEGG and GO enrichment analysis. Results The PCA and HCA of the metabolome indicated the metabolites were clearly separated and varied greatly in LL and LB contrasted with LD. There were 318 significantly differential metabolites (SDMs) in LD vs LB group and 298 SDMs in LD vs LL group. Compared with LD group, the significant up-regulation of steroidal saponins and steroidal alkaloids were detected both in LB and LL groups, especially in LB group. The HCA of transcriptome indicated that there was significant difference in LB vs LD group, while the difference between LL and LD varied slightly. Additionally, 47 540 DEGs in LD vs LB group and 18 958 DEGs in LD vs LL group were identified. Notably, CYP450s involving in the biosynthesis of steroidal saponins and steroidal alkaloids were detected, and comparing with LD, CYP724, CYP710A, and CYP734A1 in LB and CYP90B in LL were all up-regulated. Conclusion This study suggested that steroidal saponins and steroidal alkaloids maybe the representative functional components of Lilii Bulbus, which can provide new insights for Lilii Bulbus used in the research and development of classic famous formula.
Collapse
Affiliation(s)
- Wenjun Wei
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Henan Engineering Research Center of Medicinal and Edible Chinese Medicine Technology, Zhengzhou 450046, China
| | - Tao Guo
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Henan Engineering Research Center of Medicinal and Edible Chinese Medicine Technology, Zhengzhou 450046, China
| | - Wenguang Fan
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Mengshan Ji
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Henan Engineering Research Center of Medicinal and Edible Chinese Medicine Technology, Zhengzhou 450046, China
| | - Yu Fu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Henan Engineering Research Center of Medicinal and Edible Chinese Medicine Technology, Zhengzhou 450046, China
| | - Conglong Lian
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Henan Engineering Research Center of Medicinal and Edible Chinese Medicine Technology, Zhengzhou 450046, China
| | - Suiqing Chen
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Henan Engineering Research Center of Medicinal and Edible Chinese Medicine Technology, Zhengzhou 450046, China
| | - Wenjing Ma
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Wenfang Ma
- Lanzhou Shibai Agricultural Biotechnology Co., Ltd., Lanzhou 730050, China
| | - Shuying Feng
- Medical College, Henan University of Chinese Medicine, Zhengzhou 450046, China
| |
Collapse
|
5
|
Guo J, Liu S, Guo Y, Bai L, Ho CT, Bai N. Chemical characterization, multivariate analysis and comparison of biological activities of different parts of Fraxinus mandshurica. Biomed Chromatogr 2024; 38:e5861. [PMID: 38501361 DOI: 10.1002/bmc.5861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/22/2024] [Accepted: 02/22/2024] [Indexed: 03/20/2024]
Abstract
Fraxinus mandshurica (Oleaceae) is used as a traditional medicinal plant for the treatment of red eyes, menstrual disorders, excessive leucorrhea, chronic bronchitis and psoriasis. To perform chemical characterization of the secondary metabolites of F. mandshurica roots, bark, stems and leaves, 32 samples were collected from eight provinces in this study. A total of 64 chemical components were detected from four different parts of F. mandshurica by ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. Meanwhile, a total of nine secoiridoids were obtained by natural product chemical extraction, isolation and identification methods. Quantitative analysis by high-performance liquid chromatography-diode array detection-mass spectrometry showed the highest total content of secoiridoids in the bark, which is also consistent with the traditional medicinal parts. The results of methodological validation showed that the correlation coefficient (R2) values were all >0.9993, indicating a good linear range of the standard curve, while the relative standard deviations of precision, reproducibility and stability were <3%, and the spiked recoveries ranged from 98.22 to 102.27%, indicating that the experimental method was reliable and stable. In addition, fingerprinting and a heatmap were established to demonstrate the content trends of F. mandshurica more visually from different origins. Multivariate analysis, including principal component analysis and partial least squares discriminant analysis, was performed to determine the chemical characteristics of different parts of F. mandshurica, and six characteristic secoiridoids that could be used to distinguish different origins were screened. Finally, the inhibition of tyrosinase, α-glucosidase, acetylcholinesterase and pancreatic lipase activities by the nine characteristic compounds and extracts from different parts were investigated, and the results showed that they all exhibited different degrees of enzyme activity inhibition and thus have potential applications in whitening and blemish removal, hypoglycemia, anti-Alzheimer's disease and anti-obesity as a new source of natural enzyme activity inhibitors. This study establishes an identification and evaluation method applicable to phytochemistry of different origins, which is a guideline for quality control, origin evaluation and clinical application of traditional medicinal plants. This is also an unprecedented study on the identification of the chemical composition of different parts of F. mandshurica, characteristic compounds and the inhibition of enzyme activity of extracts from different parts.
Collapse
Affiliation(s)
- Jianjin Guo
- College of Chemical Engineering, Northwest University, Xi'an, Shaanxi, China
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, China
| | - Shaojing Liu
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, China
| | - Yan Guo
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, China
| | - Lu Bai
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ, USA
| | - Naisheng Bai
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, China
| |
Collapse
|
6
|
Puri S, Singh PP, Bora PS, Sharma U. Chemometric guided isolation of new triterpenoid saponins as acetylcholinesterase inhibitors from seeds of Achyranthes bidentata Blume. Fitoterapia 2024; 175:105925. [PMID: 38537885 DOI: 10.1016/j.fitote.2024.105925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/19/2024] [Accepted: 03/24/2024] [Indexed: 04/05/2024]
Abstract
Achyranthes bidentata Blume (Amaranthaceae) is an annual or perennial herb widely used as ethnomedicine in Traditional Chinese Medicine for treating fever, cold, ulcers, mensural pain, dementia, and osteoporosis. In the current study, UPLC-IM-Q-TOF-MS/MS-based chemometric approach was adopted for the tentative identification of fifty-six compounds in the extract and fractions of A.bidentata seeds. Further, the chemometric-guided isolation led to the isolation of two previously undescribed oleanane-type triterpenoid saponins, named achyranosides A-B (27 and 30), along with three known compounds (31, 44, and 23) from water fraction of A. bidentata seeds. The structures of new compounds were elucidated based on the detailed analysis of NMR, HR-ESI-MS, FT-IR spectral data, and GC-FID techniques. The isolated compounds in vitro acetylcholinesterase inhibitory activity revealed the promising activity of chikusetsusaponin IVa (23) (IC50 = 63.7 μM) with mixed type of AChE inhibition in enzyme kinetic studies. Additionally, in silico binding free energy of isolated compounds disclosed the greater stability of enzyme-ligand complex owing to underlying multiple H-bond interactions. Overall, the study demonstrates the effectiveness of a chemometric-guided approach for the phytochemical exploration and isolation of new oleanane-type triterpenoid saponins from A. bidentata seeds.
Collapse
Affiliation(s)
- Shivani Puri
- C-H Activation & Phytochemistry Lab, Chemical Technology Division CSIR-IHBT, Palampur, Himachal Pradesh 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Prithvi Pal Singh
- C-H Activation & Phytochemistry Lab, Chemical Technology Division CSIR-IHBT, Palampur, Himachal Pradesh 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Prateek Singh Bora
- C-H Activation & Phytochemistry Lab, Chemical Technology Division CSIR-IHBT, Palampur, Himachal Pradesh 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Upendra Sharma
- C-H Activation & Phytochemistry Lab, Chemical Technology Division CSIR-IHBT, Palampur, Himachal Pradesh 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|