1
|
Chai C, Jin B, Xie T, Cui Y, Cui X, Shan C, Yu S, Wen H. A Cooperative Strategy of Hippocampus Lipidomics and Anti-Inflammatory Analysis to Evaluate the Antidepressant Effect of Zhi-Zi-Chi Decoction on CUMS Mice. Biomed Chromatogr 2025; 39:e70058. [PMID: 40123576 DOI: 10.1002/bmc.70058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/09/2025] [Accepted: 03/04/2025] [Indexed: 03/25/2025]
Abstract
In this study, Balb/c mice were subjected to chronic unpredictable mild stress (CUMS) and treated with Zhi-zi-chi Decoction (ZZCD). Using a hippocampal lipidomics approach that combined ultra performance liquid chromatography (UPLC)-Q-Exactive Orbitrap MS with multivariate statistical techniques and targeted metabolic pathway analysis, we identified potential lipid metabolites and pathways associated with depression. Meanwhile, anti-inflammatory analyses were conducted in the hippocampus of mice. The chromatograms revealed that most lipids of the same class eluted within the same time period. In the scatter plot, the control and CUMS groups were obviously separated, whereas the ZZCD-treated or fluoxetine-treated groups were positioned between them. In positive and negative ion modes, a comprehensive screening identified 130 differential lipid metabolites, which were classified into 5 groups and 17 types. ZZCD was hypothesized to have a certain call-back efficiency for some differential lipid metabolites. The study identified three target metabolic pathways with certain influence values: glycerophosphate metabolism, linoleic acid metabolism, and α-linolenic acid metabolism. Although ZZCD's inhibitory effect on IL-6 was not significant, it demonstrated good therapeutic effects in reducing central system inflammation associated with IL-1β and TNF-α. The research suggested that the pathogenesis of depression might be closely related to lipid metabolism. ZZCD exhibited antidepressant effects by regulating endogenous lipid metabolism in CUMS mice.
Collapse
Affiliation(s)
- Chuan Chai
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Bo Jin
- China Mobile Group Jiangsu Co., Ltd., Nanjing, Jiangsu, China
| | - Tong Xie
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yuhan Cui
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xiaobing Cui
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Chenxiao Shan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Sheng Yu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Hongmei Wen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
You Q, Lin Y, Gong JH, Gui WY, Yan QH, Zou JD, Liu EH, Li CY. Integrating lipidomics, 16S rRNA sequencing, and network pharmacology to explore the mechanism of Qikui granule in treating diabetic kidney disease mice. J Chromatogr B Analyt Technol Biomed Life Sci 2025; 1250:124378. [PMID: 39579742 DOI: 10.1016/j.jchromb.2024.124378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/01/2024] [Accepted: 11/09/2024] [Indexed: 11/25/2024]
Abstract
Qikui granule (QKG), a hospital preparation of traditional Chinese medicine, has been widely used for diabetic kidney disease (DKD) in clinical practice. However, its holistic therapeutic effects and the underlying therapeutic mechanisms remain unclear. In the present study, the integrated analysis of network pharmacology, 16S rRNA sequencing, and non-targeted lipidomics was performed to explore the anti-DKD effects of QKG and the underlying mechanisms in db/db mouse DKD model. The results of the network pharmacology analysis identified the PI3K-AKT, EGFR, MAPK, JAK-STAT, FoxO, and AGE-RAGE signaling pathways as the potential molecular mechanisms responsible for the efficacy of QKG. Importantly, these signaling pathways were found to be closely related to lipid metabolism and gut microbiota. The therapeutic effectiveness of QKG against DKD was manifested by reducing body weight, alleviating oxidative stress, improving kidney function indicators, promoting the recovery of renal histopathological damage, and regulating the lipid metabolic profile of serum and kidney in db/db mice. A total of 26 lipid metabolites were identified as potential pharmacological biomarkers (PPBs) of QKG for the treatment of DKD, which were mainly involved in glycerophospholipid metabolism. Meanwhile, QKG could alleviate DKD-induced gut microbiota dysbiosis primarily by enriching Candidatus_Arthromitus, which showed a negative correlation with all 26 lipid PPBs as well as 5 biochemical parameters, including 2 oxidative stress factors and 3 kidney function indices. In conclusion, our findings suggest that QKG may upregulate the gut level of Candidatus_Arthromitus to suppress the abnormal activation of PI3K-AKT related signaling pathway, thereby reducing the levels of PC and LPC in the glycerophospholipid metabolism, to finally ameliorate the progression of DKD in db/db mice.
Collapse
Affiliation(s)
- Qing You
- Department of Clinical Pharmacology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155 Hanzhong Road, Nanjing 210029, China
| | - Yang Lin
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Jia-Hui Gong
- Department of Clinical Pharmacology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155 Hanzhong Road, Nanjing 210029, China
| | - Wan-Yu Gui
- Department of Clinical Pharmacology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155 Hanzhong Road, Nanjing 210029, China
| | - Qian-Hua Yan
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jian-Dong Zou
- Department of Clinical Pharmacology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155 Hanzhong Road, Nanjing 210029, China.
| | - E-Hu Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Chang-Yin Li
- Department of Clinical Pharmacology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155 Hanzhong Road, Nanjing 210029, China.
| |
Collapse
|
3
|
Tao S, Yu L, Li J, Wu J, Yang D, Huang X, Xue T. Elevated remnant cholesterol and the risk of prevalent major depressive disorder: a nationwide population-based study. Front Psychiatry 2024; 15:1495467. [PMID: 39611132 PMCID: PMC11602507 DOI: 10.3389/fpsyt.2024.1495467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 10/21/2024] [Indexed: 11/30/2024] Open
Abstract
Background Remnant cholesterol (RC) has received increasing attention due to its association with a variety of diseases. However, comprehensive population-based studies elucidating the relationship between RC and major depressive disorder (MDD) are limited. The current study aimed to determine the association between RC and MDD in US adults. Methods Cross-sectional data of US adults with complete RC and depression information were obtained from the National Health and Nutrition Examination Survey (NHANES) 2005-2018. MDD was evaluated using the Patient Health Questionnaire (PHQ-9). Multivariate logistic regression, sensitivity analysis, and spline smoothing plot method were conducted to explore the relationship between RC and depression. The cut-off point was calculated using recursive partitioning analysis when segmenting effects emerged. The area under the receiver operating characteristic (ROC) curve (AUC), calibration curve, Hosmer-Lemeshow test, the decision curve analysis (DCA), and clinical impact curve (CIC) were employed to evaluate the performance of RC in identifying MDD. Subgroup analyses and interaction tests were performed to explore whether the association was stable in different populations. Results A total of 9,173 participants were enrolled and participants in the higher RC quartile tended to have a higher PHQ-9 score and prevalence of MDD. In the fully adjusted model, a positive association between RC and PHQ-9 score and MDD was both observed (β=0.54, 95% CI 0.26~0.82; OR=1.43, 95% CI 1.15~1.78). Participants in the highest RC quartile had a 0.42-unit higher PHQ-9 score (β=0.42, 95% CI 0.15~0.69) and a significantly 32% higher risk of MDD than those in the lowest RC quartile (OR=1.32, 95% CI 1.05~1.66). Spline smoothing plot analysis further confirmed the positive and non-linear association between RC and PHQ-9 and MDD. ROC analysis (AUC=0.762), the Hosmer-Lemeshow test (χ2 = 6.258, P=0.618), and calibration curve all indicated a high performance and goodness-of-fit of the multivariate model. DCA and CIC analysis similarly demonstrated a positive overall net benefit and clinical impact for the model. Subgroup analyses and interaction tests suggested that the relationship between RC and depression remained stable across subgroups and was unaffected by other factors other than diabetes, hypertension, or hyperlipidemia. Conclusion An elevated RC is associated with a higher risk of prevalent MDD among US adults, especially in those with diabetes, hypertension, or hyperlipidemia. The present results suggested that the management of RC levels and comorbidities may contribute to alleviating the occurrence of MDD.
Collapse
Affiliation(s)
- Shiyi Tao
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Lintong Yu
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Jun Li
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ji Wu
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Deshuang Yang
- Department of Integrative Cardiology, China-Japan Friendship Hospital, Beijing, China
| | - Xuanchun Huang
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tiantian Xue
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Gao Y, Sun YY, Bai D, Wu XX. Mechanism of the components compatibility of Scutellariae Radix and Coptidis Rhizoma on mice with hyperlipidemia by regulating the Cyp4a family. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118263. [PMID: 38677575 DOI: 10.1016/j.jep.2024.118263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/24/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Scutellaria baicalensis Georgi (Scutellariae Radix, SR) and Coptis chinensis Franch (Coptidis Rhizoma, CR) is a classic herbal pair used in many Traditional Chinese Medicine formulations in the treatment of hyperlipidemia (HLP). As effective ingredients of the drug pair, the effects and mechanisms of berberine and baicalin in the treatment of HLP in the form of components compatibility are still unclear. AIM OF THE STUDY To explore the mechanism of the components compatibility of SR and CR in the treatment of HLP. MATERIALS AND METHODS The HLP model was established by a high-fat diet. Serum biochemical indexes were detected. Transcriptomics and metabolomics were detected. RT-PCR and Western Blot were used to analyze the effect of RA on the expression of the Cyp4a family during the treatment of HLP. RESULTS Berberine-baicalin (RA) has a good effect in the treatment of HLP. RA can significantly reduce the body weight and liver weight of HLP, reduce the levels of total cholesterol (TC), triglyceride (TG), low-density lipoprotein (LDL-C), and increase the level of high-density lipoprotein (HDL-C). Through transcriptomic analysis, RA significantly reversed the gene expression of Cyp4a10, Cyp4a12 b, Cyp4a31, and Cyp4a32 in cytochrome P450 family 4 subfamily a (Cyp4a) which related to fatty acid degradation in the liver of HLP mice. The results of fatty acid detection showed that RA could significantly regulate heptanoic acid, EPA, adrenic acid, DH-γ-linolenic acid, and DPA in the cecum of HLP mice. The Cyp4a family genes regulated by RA are closely related to a variety of fatty acids regulated by RA. RT-PCR confirmed that RA could regulate Cyp4a mRNA expression in HLP mice. WB also showed that RA can regulate the protein expression level of Cyp4a. CONCLUSION The components compatibility of SR and CR can effectively improve the blood lipid level of HLP mice, its mechanism may be related to regulating Cyp4a gene expression and affecting fatty acid degradation, regulating the level of fatty acid metabolism in the body.
Collapse
Affiliation(s)
- Yuan Gao
- The Institute of Basic Theory of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Yang-Yang Sun
- The Institute of Basic Theory of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Dong Bai
- The Institute of Basic Theory of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Xiao-Xia Wu
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
5
|
Xu W, Tian S, Mao G, Li Y, Qian H, Tao W. Sini San ameliorates lipid metabolism in hyperprolactinemia rat with liver-depression. Curr Res Food Sci 2024; 9:100853. [PMID: 39328388 PMCID: PMC11424950 DOI: 10.1016/j.crfs.2024.100853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/05/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
Sini San (SNS) is used to treat liver depression and is applied in both food and herbal medicine. Hyperprolactinemia (HPRL) is a common endocrine disorder, and patients with HPRL are usually associated with depressive symptoms. However, whether SNS is effective in treating HPRL combined with liver depression and its underlying mechanisms are unknown. We applied network pharmacology and molecular docking to predict the mechanism of SNS for the treatment of liver-depressed HPRL. Therapeutic effects were validated in animal models and cells. Metabolomics was also used to evaluate the effect of SNS on liver-depressed HPRL. Network pharmacology and molecular docking analysis showed that AKT1, TNF and IL6 were the key targets, and SNS improved depressive behaviors, regulated sex hormone levels, and improved ovarian morphology. Combined network pharmacology and metabolomics analyses showed that SNS could act by regulating lipid metabolism. In addition, SNS significantly reduced the release of prolactin (PRL) in rat pituitary tumor MMQ cells. Overall, SNS can significantly treat HPRL liver depression at both animal and cellular levels, and effectively alleviate the related symptoms by regulating lipid metabolism. AKT1, TNF and IL6 may be key targets.
Collapse
Affiliation(s)
- Weidong Xu
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, China
- Department of Traditional Chinese Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Shasha Tian
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, China
| | - Guanqun Mao
- Department of Traditional Chinese Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Yu Li
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, China
| | - Hua Qian
- Department of Traditional Chinese Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Wenhua Tao
- Department of Traditional Chinese Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| |
Collapse
|
6
|
Zhou M, Liu X, Wu Y, Xiang Q, Yu R. Liver Lipidomics Analysis Revealed the Protective mechanism of Zuogui Jiangtang Qinggan Formula in type 2 diabetes mellitus with non-alcoholic fatty liver disease. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118160. [PMID: 38588985 DOI: 10.1016/j.jep.2024.118160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/23/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hepatic steatosis, a hallmark of non-alcoholic fatty liver disease (NAFLD), represents a significant global health issue. Liver lipidomics has garnered increased focus recently, highlighting Traditional Chinese Medicine's (TCM) role in mitigating such conditions through lipid metabolism regulation. The Zuogui Jiangtang Qinggan Formula (ZGJTQGF), a longstanding TCM regimen for treating Type 2 Diabetes Mellitus (T2DM) with NAFLD, lacks a definitive mechanism for its lipid metabolism regulatory effects. AIM OF THE STUDY This research aims to elucidate ZGJTQGF's mechanism on lipid metabolism in T2DM with NAFLD. MATERIALS AND METHODS The study, utilized db/db mice to establish T2DM with NAFLD models. Evaluations included Hematoxylin-Eosin (HE) and Oil Red O stainedstaining of liver tissues, alongside biochemical lipid parameter analysis. Liver lipidomics and Western blotting further substantiated the findings, systematically uncovering the mechanism of action mechanism. RESULTS ZGJTQGF notably reduced body weight, and Fasting Blood Glucose (FBG), enhancing glucose tolerance in db/db mice. HE, and Oil Red O staining, complemented by biochemical and liver lipidomics analyses, confirmed ZGJTQGF's efficacy in ameliorating liver steatosis and lipid metabolism anomalies. Lipidomics identified 1571 significantly altered lipid species in the model group, primarily through the upregulation of triglycerides (TG) and diglycerides (DG), and the downregulation of phosphatidylcholine (PC) and phosphatidylethanolamine (PE). Post-ZGJTQGF treatment, 496 lipid species were modulated, with increased PC and PE levels and decreased TG and DG, showcasing significant lipid metabolism improvement in T2DM with NAFLD. Moreover, ZGJTQGF's influence on lipid synthesis-related proteins was observed, underscoring its anti-steatotic impact through liver lipidomic alterations and offering novel insights into hepatic steatosis pathogenesis. CONCLUSIONS Liver lipidomics analysis combined with protein verification further demonstrated that ZGJTQGF could ameliorate the lipid disturbance of TG, DG, PC, PE in T2DM with NAFLD, as well as improve fatty acid and cholesterol synthesis and metabolism through De novo lipogenesis pathway.
Collapse
Affiliation(s)
- Min Zhou
- Hunan University of Traditional Chinese Medicine, 300 Xueshi Road, Changsha, Hunan 410208, China; Hunan Provincial Key Laboratory of Translational Research in TCM Prescriptions and Zheng, Hunan University of Traditional Chinese Medicine, 300 Xueshi Road, Changsha, Hunan, 410208, China
| | - Xiu Liu
- Hunan University of Traditional Chinese Medicine, 300 Xueshi Road, Changsha, Hunan 410208, China
| | - Yongjun Wu
- Hunan University of Traditional Chinese Medicine, 300 Xueshi Road, Changsha, Hunan 410208, China
| | - Qin Xiang
- Hunan University of Traditional Chinese Medicine, 300 Xueshi Road, Changsha, Hunan 410208, China; Hunan Provincial Key Laboratory of Translational Research in TCM Prescriptions and Zheng, Hunan University of Traditional Chinese Medicine, 300 Xueshi Road, Changsha, Hunan, 410208, China.
| | - Rong Yu
- Hunan University of Traditional Chinese Medicine, 300 Xueshi Road, Changsha, Hunan 410208, China; Hunan Provincial Key Laboratory of Translational Research in TCM Prescriptions and Zheng, Hunan University of Traditional Chinese Medicine, 300 Xueshi Road, Changsha, Hunan, 410208, China.
| |
Collapse
|
7
|
Wang X, Zhou J, Jiang T, Xu J. Deciphering the therapeutic potential of SheXiangXinTongNing: Interplay between gut microbiota and brain metabolomics in a CUMS mice model, with a focus on tryptophan metabolism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155584. [PMID: 38704913 DOI: 10.1016/j.phymed.2024.155584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/04/2024] [Accepted: 04/01/2024] [Indexed: 05/07/2024]
Abstract
Depression, a prevalent and multifaceted mental disorder, has emerged as a significant public health concern due to its escalating prevalence and heightened risk of severe suicidality. Given its profound impact, the imperative for preventing and intervening in depression is paramount. Substantial evidence underscores intricate connections between depression and cardiovascular health. SheXiangXinTongNing (XTN), a recognized traditional Chinese medicine for treating Coronary Heart Disease (CHD), prompted our exploration into its antidepressant effects and underlying mechanisms. In this investigation, we assessed XTN's antidepressant potential using the chronic unpredictable mild stress (CUMS) mice model and behavioral tests. Employing network pharmacology, we delved into the intricate mechanisms at play. We characterized the microbial composition and function in CUMS mice, both with and without XTN treatment, utilizing 16S rRNA sequencing and metabolomics analysis. The joint analysis of these results via Cytoscape identified pivotal metabolic pathways. In the realm of network pharmacology, XTN administration exhibited antidepressant effects by modulating pathways such as IL-17, neuroactive ligand-receptor interaction, PI3K-Akt, cAMP, calcium, and dopamine synapse signaling pathways. Our findings revealed that XTN significantly mitigated depression-like symptoms and cognitive deficits in CUMS mice by inhibiting neuroinflammation and pyroptosis. Furthermore, 16S rRNA sequencing unveiled that XTN increased the alpha-diversity and beta-diversity of the gut microbiome in CUMS mice. Metabolomics analysis identified brain metabolites crucial for distinguishing between the CUMS and CUMS+XTN groups, with a focus on pathways like Tryptophan metabolism and Linoleic acid metabolism. Notably, specific bacterial families, including Alloprevotella, Helicobacter, Allobaculum, and Clostridia, exhibited robust co-occurring relationships with brain tryptophan metabolomics, hinting at the potential mediating role of gut microbiome alterations and metabolites in the efficacy of XTN treatment. In conclusion, our study unveils modifications in microbial compositions and metabolic functions may be pivotal in understanding the response to XTN treatment, offering novel insights into the mechanisms underpinning the efficacy of antidepressants.
Collapse
Affiliation(s)
- Xiaohong Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, Yangzhou 225009, China
| | - Jiawei Zhou
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, Yangzhou 225009, China
| | - Tianlin Jiang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225009, China; Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jun Xu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
8
|
Jiang Y, Huang Y, Hu Y, Yang Y, You F, Hu Q, Li X, Zhao Z. Banxia Xiexin Decoction delays colitis-to-cancer transition by inhibiting E-cadherin/β-catenin pathway via Fusobacterium nucleatum FadA. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:117932. [PMID: 38382652 DOI: 10.1016/j.jep.2024.117932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/07/2024] [Accepted: 02/17/2024] [Indexed: 02/23/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Colitis is an important risk factor for the occurrence of colorectal cancer (CRC), and the colonization of Fusobacterium nucleatum (Fn) in the intestines accelerates this transformation process. Banxia Xiexin Decoction (BXD), originating from Shanghanlun, is a classic prescription for treating gastrointestinal diseases. Current researches indicate that BXD can effectively delay the colitis-to-cancer transition, but it is still unclear whether it can inhibit Fn colonization to achieve this delaying effect. AIM OF STUDY This study explored the effect and mechanism of BXD in inhibiting Fn intestinal colonization to delay colitis-to-cancer transition. MATERIALS AND METHODS We constructed a mouse model of colitis-to-cancer transition by regularly gavaging Fn combined with azoxymethane (AOM)/dextran sodium sulfate (DSS), and administered BXD by gavage. We monitored the body weight of mice, measured the length and weight of their colons, and calculated the disease activity index (DAI) score. The growth status of colon tumors was observed by hematoxylin and eosin (H&E) staining, and the changes in gut microbiota in each group of mice were detected by 16S rDNA analysis. Immunohistochemistry was used to detect the expression of E-cadherin and β-catenin in colon tissues, and immunofluorescence was used to observe the infiltration of M2 macrophages in colon tissues. In cell experiments, we established a co-culture model of Fn and colon cancer cells and intervened with BXD-containing serum. Malignant behaviors such as cell proliferation, invasion, and migration were detected, as well as changes in their cell cycle. We examined the protein levels of E-cadherin, β-catenin, Axin2, and Cyclin D1 in each group were detected by Western blot. We used US1 strain (fadA-) as a control and observed the effects of BXD-containing serum on Fn attachment and invasion of colon cancer cells through attachment and invasion experiments. RESULTS BXD can inhibit the colitis-to-cancer transition in mice infected with Fn, reduce crypt structure damage, improve gut microbiota dysbiosis, upregulate E-cadherin and decrease β-catenin expression, and reduce infiltration of M2 macrophages, thus inhibiting the process of colitis-to-cancer transition. Cell experiments revealed that BXD-containing serum can inhibit the proliferation, migration, and invasion of colon cancer cells infected with Fn and regulate their cell cycle. More importantly, we found that BXD-containing serum can inhibit the binding of Fn's FadA adhesin to E-cadherin, reduce Fn's attachment and invasion of colon cancer cells, thereby downregulating the E-cadherin/β-catenin signaling pathway. CONCLUSIONS These findings show that BXD can inhibit Fn colonization by interfering with the binding of FadA to E-cadherin, reducing the activation of the E-cadherin/β-catenin signaling pathway, and ultimately delaying colitis-to-cancer transition.
Collapse
Affiliation(s)
- Yifang Jiang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, PR China
| | - Yuqing Huang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, PR China
| | - Yane Hu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, PR China
| | - Yi Yang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, PR China
| | - Fengming You
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, PR China; Cancer Institute, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan Province, PR China
| | - Qiongying Hu
- Department of Laboratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China, Chengdu, 610072, Sichuan Province, PR China.
| | - Xueke Li
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, PR China.
| | - Ziyi Zhao
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, PR China.
| |
Collapse
|
9
|
Tan M, Wang J, Chen Z, Xie X. Exploring global research trends in Chinese medicine for atherosclerosis: a bibliometric study 2012-2023. Front Cardiovasc Med 2024; 11:1400130. [PMID: 38952541 PMCID: PMC11216286 DOI: 10.3389/fcvm.2024.1400130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/15/2024] [Indexed: 07/03/2024] Open
Abstract
Background While Traditional Chinese Medicine (TCM) boasts an extensive historical lineage and abundant clinical expertise in addressing atherosclerosis, this field is yet to be penetrated adequately by bibliometric studies. This study is envisaged to evaluate the contemporary scenario of TCM in conjunction with atherosclerosis over the preceding decade while also identifying forthcoming research trends and emerging topics via the lens of bibliometric analysis. Methods Literature pertaining to TCM and atherosclerosis, circulated between January 1, 2012 and November 14, 2023, was garnered for the purpose of this research. The examination embraced annual publications, primary countries/regions, engaged institutions and authors, scholarly journals, references, and keywords, utilizing analytical tools like Bibliometrix, CiteSpace, ScimagoGraphica, and VOSviewer present in the R package. Result This field boasts a total of 1,623 scholarly articles, the majority of which have been contributed by China in this field, with significant contributions stemming from the China Academy of Traditional Chinese Medicine and the Beijing University of Traditional Chinese Medicine. Moreover, this field has received financial support from both the National Natural Science Foundation of China and the National Key Basic Research Development Program. Wang Yong tops the list in terms of publication count, while Xu Hao's articles take the lead for the total number of citations, positioning them at the core of the authors' collaborative network. The Journal of Ethnopharmacology leads with the most publications and boasts the greatest total number of citations. Principal research foci within the intersection of Chinese Medicine and Atherosclerosis encompass disease characteristics and pathogenic mechanisms, theoretical underpinnings and syndrome-specific treatments in Chinese medicine, potentialities of herbal interventions, and modulation exerted by Chinese medicines on gut microbiota. Conclusion This analysis offers a sweeping survey of the contemporary condition, principal foci, and progressive trends in worldwide research related to Traditional Chinese Medicine (TCM) and atherosclerosis. It further delves into an in-depth dissection of prominent countries, research institutions, and scholars that have made noteworthy strides in this discipline. Additionally, the report analyzes the most cited articles, research developments, and hotspots in the field, providing a reference for future research directions for clinical researchers and practitioners.
Collapse
Affiliation(s)
- Moye Tan
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Jiuyuan Wang
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Zhengxin Chen
- College of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuejiao Xie
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
10
|
Gao Y, Nie K, Wang H, Dong H, Tang Y. Research progress on antidepressant effects and mechanisms of berberine. Front Pharmacol 2024; 15:1331440. [PMID: 38318145 PMCID: PMC10839030 DOI: 10.3389/fphar.2024.1331440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/11/2024] [Indexed: 02/07/2024] Open
Abstract
Depression, a global health problem with growing prevalence, brings serious impacts on the daily life of patients. However, the antidepressants currently used in clinical are not perfectly effective, which greatly reduces the compliance of patients. Berberine is a natural quaternary alkaloid which has been shown to have a variety of pharmacological effects, such as hypoglycemic, lipid-regulation, anti-cancer, antibacterial, anti-oxidation, anti-inflammatory, and antidepressant. This review summarizes the evidence of pharmacological applications of berberine in treating depression and elucidates the mechanisms of berberine regulating neurotransmitter levels, promoting the regeneration of hippocampal neurons, improving hypothalamic-pituitary-adrenal axis dysfunction, anti-oxidative stress, and suppressing inflammatory status in order to provide a reference for further research and clinical application of berberine.
Collapse
Affiliation(s)
- Yang Gao
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kexin Nie
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hongzhan Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yueheng Tang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
11
|
Liu M, Ma W, He Y, Sun Z, Yang J. Recent Progress in Mass Spectrometry-Based Metabolomics in Major Depressive Disorder Research. Molecules 2023; 28:7430. [PMID: 37959849 PMCID: PMC10647556 DOI: 10.3390/molecules28217430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/24/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
Major depressive disorder (MDD) is a serious mental illness with a heavy social burden, but its underlying molecular mechanisms remain unclear. Mass spectrometry (MS)-based metabolomics is providing new insights into the heterogeneous pathophysiology, diagnosis, treatment, and prognosis of MDD by revealing multi-parametric biomarker signatures at the metabolite level. In this comprehensive review, recent developments of MS-based metabolomics in MDD research are summarized from the perspective of analytical platforms (liquid chromatography-MS, gas chromatography-MS, supercritical fluid chromatography-MS, etc.), strategies (untargeted, targeted, and pseudotargeted metabolomics), key metabolite changes (monoamine neurotransmitters, amino acids, lipids, etc.), and antidepressant treatments (both western and traditional Chinese medicines). Depression sub-phenotypes, comorbid depression, and multi-omics approaches are also highlighted to stimulate further advances in MS-based metabolomics in the field of MDD research.
Collapse
Affiliation(s)
- Mingxia Liu
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China; (M.L.)
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Wen Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yi He
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China; (M.L.)
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Zuoli Sun
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China; (M.L.)
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Jian Yang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders, National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China; (M.L.)
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| |
Collapse
|
12
|
Liu Y, Wu H, Wang T, Shi X, He H, Huang H, Yang Y, Dai M. Paeonol reduces microbial metabolite α-hydroxyisobutyric acid to alleviate the ROS/TXNIP/NLRP3 pathway-mediated endothelial inflammation in atherosclerosis mice. Chin J Nat Med 2023; 21:759-774. [PMID: 37879794 DOI: 10.1016/s1875-5364(23)60506-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Indexed: 10/27/2023]
Abstract
Gut microbiota dysbiosis is an avenue for the promotion of atherosclerosis (AS) and this effect is mediated partly via the circulating microbial metabolites. More microbial metabolites related to AS vascular inflammation, and the mechanisms involved need to be clarified urgently. Paeonol (Pae) is an active compound isolated from Paeonia suffruticoas Andr. with anti-AS inflammation effect. However, considering the low oral bioavailability of Pae, it is worth exploring the mechanism by which Pae reduces the harmful metabolites of the gut microbiota to alleviate AS. In this study, ApoE-/- mice were fed a high-fat diet (HFD) to establish an AS model. AS mice were administrated with Pae (200 or 400 mg·kg-1) by oral gavage and fecal microbiota transplantation (FMT) was conducted. 16S rDNA sequencing was performed to investigate the composition of the gut microbiota, while metabolomics analysis was used to identify the metabolites in serum and cecal contents. The results indicated that Pae significantly improved AS by regulating gut microbiota composition and microbiota metabolic profile in AS mice. We also identified α-hydroxyisobutyric acid (HIBA) as a harmful microbial metabolite reduced by Pae. HIBA supplementation in drinking water promoted AS inflammation in AS mice. Furthermore, vascular endothelial cells (VECs) were cultured and stimulated by HIBA. We verified that HIBA stimulation increased intracellular ROS levels, thereby inducing VEC inflammation via the TXNIP/NLRP3 pathway. In sum, Pae reduces the production of the microbial metabolite HIBA, thus alleviating the ROS/TXNIP/NLRP3 pathway-mediated endothelial inflammation in AS. Our study innovatively confirms the mechanism by which Pae reduces the harmful metabolites of gut microbiota to alleviate AS and proposes HIBA as a potential biomarker for AS clinical judgment.
Collapse
Affiliation(s)
- Yarong Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei 230012, China
| | - Hongfei Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei 230012, China
| | - Tian Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Xiaoyan Shi
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Hai He
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Hanwen Huang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yulong Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Min Dai
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei 230012, China.
| |
Collapse
|