1
|
Dai J, Xu T, Li L, Fang M, Lin J, Cao J, Bai X, Li C, Wei X, Gu J, Liu Y, Gao X, Xia X, Guo J, Chen Y, Mao L, Si L. Atezolizumab plus bevacizumab in patients with unresectable or metastatic mucosal melanoma: 3-year survival update and multi-omics analysis. Clin Transl Med 2025; 15:e70169. [PMID: 39757723 DOI: 10.1002/ctm2.70169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/15/2024] [Accepted: 12/20/2024] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND Atezolizumab plus bevacizumab has shown promising efficacy in advanced mucosal melanoma in the multi-centre phase II study. This report updates 3-year survival outcomes and multi-omics analysis to identify potential response biomarkers. METHODS Forty-three intention-to-treat (ITT) patients received intravenous administration of atezolizumab and bevacizumab every 3 weeks. Available samples underwent whole exome sequencing, transcriptome sequencing and targeted bisulphite sequencing to assess correlations with clinical outcomes. RESULTS With a median follow-up of 40.3 months, the median overall survival (mOS) was 23.7 months (95% confidence interval [CI], 15.1-34), and the 3-year OS rate was 28.7% (95% CI, 17.6%-46.8%). Patients with upper site melanoma exhibited longer progression-free survival (PFS), higher tumour neoantigen burden (TNB) and greater copy number variations (CNVs) burden compared to those with lower site melanoma. NRAS mutations were associated with enhanced angiogenesis, with five of six patients achieving partial response. Inflammatory cell infiltration, angiogenic status and activation of the SMAD2 and p38 MAPK pathways may be prognostic indicators. CONCLUSIONS This 3-year updated analysis confirms the sustained efficacy of atezolizumab in combination of bevacizumab in patients with advanced mucosal melanoma. Inflammatory cell infiltration and angiogenic status were associated with therapeutic response. Furthermore, mucosal melanoma of upper site and NRAS mutation appear to be good predictors of response to immune checkpoint inhibitor and anti-angiogenic combination treatment. Targeting SMAD2 and p38 MAPK pathways may further improve the outcome of mucosal melanoma. KEY POINTS 3-year follow-up study confirmed the therapeutic efficacy of atezolizumab combined with bevacizumab Tumors in the upper site and NRAS mutations are more sensitive to treatment Inflammatory cell infiltration, angiogenic status, and activation of the SMAD2 and p38 MAPK pathways may be prognostic indicators.
Collapse
Affiliation(s)
- Jie Dai
- Department of Urology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Tianxiao Xu
- Department of Urology, Second Hospital of Tianjin Medical University, Tianjin, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Institute, Beijing, China
| | | | - Meiyu Fang
- Department of Rare Cancer & Head and Neck Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences, Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, China
| | - Jing Lin
- Department of Medical Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fujian, China
| | - Jun Cao
- Department of Rare Cancer & Head and Neck Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences, Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, China
| | - Xue Bai
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Institute, Beijing, China
| | - Caili Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Institute, Beijing, China
| | - Xiaoting Wei
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Institute, Beijing, China
| | - Junjie Gu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Institute, Beijing, China
| | | | - Xuan Gao
- Geneplus-Beijing, Beijing, China
| | | | - Jun Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Institute, Beijing, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Genitourinary Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Yu Chen
- Department of Medical Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fujian, China
| | - Lili Mao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Institute, Beijing, China
| | - Lu Si
- Department of Urology, Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
2
|
Zhang S, Zhao Y, Dong Z, Jin M, Lu Y, Xu M, Pan H, Zhou G, Xiao M. HIF-1α mediates hypertension and vascular remodeling in sleep apnea via hippo-YAP pathway activation. Mol Med 2024; 30:281. [PMID: 39732653 DOI: 10.1186/s10020-024-00987-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 11/03/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND Sleep apnea syndrome (SAS) is associated with hypertension and vascular remodeling. Hypoxia-inducible factor-1α (HIF-1α) and the Hippo-YAP pathway are implicated in these processes, but their specific roles remain unclear. This study investigated the HIF-1α/Hippo-YAP pathway in SAS-related hypertension. METHODS We established a rat model of SAS-induced hypertension via chronic intermittent hypoxia (CIH). Rats were treated with siRNA targeting HIF-1α. Blood pressure, inflammation, oxidative stress, vascular remodeling, and VSMC function were assessed. In vitro experiments with A7r5 cells and human aortic smooth muscle cells (HAoSMCs) explored the effects of HIF-1α silencing and YAP1 overexpression. RESULTS Compared with the control group, the CIH group presented significant increases in both HIF-1α and YAP1 expression, which correlated with increased blood pressure and vascular changes. HIF-1α silencing reduced hypertension, oxidative stress, inflammation, and the severity of vascular remodeling. Specifically, siRNA treatment for HIF-1α normalized blood pressure, decreased the levels of oxidative damage markers (increased SOD and decreased MDA), and reversed the changes in the levels of inflammatory markers (decreased high-sensitivity C-reactive protein (hs-CRP), interleukin-6 (IL-6) and soluble E-selectin (sE-s)). Structural analyses revealed reduced vascular smooth muscle cell proliferation and collagen deposition, along with normalization of cellular markers, such as α-SMA and TGF-β1. Furthermore, the Hippo-YAP pathway appeared to mediate these effects, as evidenced by altered YAP1 expression and activity upon HIF-1α modulation. CONCLUSIONS Our findings demonstrate the significance of the HIF-1α/Hippo-YAP pathway in CIH-induced hypertension and vascular remodeling. HIF-1α contributes to these pathophysiological processes by promoting oxidative stress, inflammation, and aberrant VSMC behavior. Targeting this pathway could offer new therapeutic strategies for CIH-related cardiovascular complications in SAS patients.
Collapse
Affiliation(s)
- Shoude Zhang
- Department of Otorhinolaryngology/Head and Neck, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No.3 East Qingchun Road, Hangzhou, 310020, Zhejiang, China
| | - Yuan Zhao
- Department of Otorhinolaryngology/Head and Neck, Aral Hospital, Xinjiang Corps, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Aral, 843399, Xinjiang, China
| | - Zhanwei Dong
- Department of Otorhinolaryngology/Head and Neck, Aral Hospital, Xinjiang Corps, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Aral, 843399, Xinjiang, China
| | - Mao Jin
- Department of Otorhinolaryngology/Head and Neck, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No.3 East Qingchun Road, Hangzhou, 310020, Zhejiang, China.
| | - Ying Lu
- Department of Otorhinolaryngology/Head and Neck, The First People's Hospital of Lin'an District, Hangzhou, 311300, Zhejiang, China
| | - Mina Xu
- Department of Nursing, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310020, Zhejiang, China
| | - Hong Pan
- Department of Otorhinolaryngology/Head and Neck, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No.3 East Qingchun Road, Hangzhou, 310020, Zhejiang, China
| | - Guojin Zhou
- Department of Otorhinolaryngology/Head and Neck, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No.3 East Qingchun Road, Hangzhou, 310020, Zhejiang, China
| | - Mang Xiao
- Department of Otorhinolaryngology/Head and Neck, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No.3 East Qingchun Road, Hangzhou, 310020, Zhejiang, China
| |
Collapse
|
3
|
Zhu H, Gao G, Wu Y, Wang Y, Chen Y, Niu C. Activated TREM1-mediated MAPK signaling in endothelial cells caused by highly expressed STAT1 is associated with intracranial aneurysms occurrence and rupture. Mol Cell Biochem 2024:10.1007/s11010-024-05173-z. [PMID: 39661286 DOI: 10.1007/s11010-024-05173-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/20/2024] [Indexed: 12/12/2024]
Abstract
Intracranial aneurysm (IA) poses significant health risks, yet the specific mRNA profiles and regulatory mechanisms distinguishing unruptured IA (UIA) from ruptured IA (RIA) remain unclear. This study aimed to elucidate these differences through comprehensive mRNA analysis. We employed RNA sequencing to compare mRNA expression patterns among control individuals, UIA patients, and RIA patients. Differential expression analysis identified triggering receptor expressed on myeloid cells 1 (TREM1) as a potential biomarker for IA occurrence and rupture, which was validated in an expanded cohort. In vitro experiments revealed that TREM1 overexpression in human umbilical vein endothelial cells (HUVECs) inhibited proliferation, angiogenesis, and migration while promoting apoptosis and inflammation. Bioinformatic predictions and subsequent chromatin immunoprecipitation assays confirmed signal transducer and activator of transcription 1 (STAT1) as a transcriptional regulator of TREM1. STAT1 overexpression in HUVECs activated the MAPK signaling pathway and mimicked the effects of TREM1 overexpression, which were reversible by TREM1 inhibition. Conversely, P38 MAPK inhibition produced opposite effects, which were negated by STAT1 overexpression. This study identifies TREM1 as a potential biomarker for IA occurrence and rupture, likely regulated by STAT1, offering new avenues for non-invasive IA intervention strategies.
Collapse
Affiliation(s)
- Hao Zhu
- Cheeloo College of Medicine, Shandong University, No.44 Wenhua West Road, Lixia District, Jinan, 250012, China
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No.1 Swan Lake Road, Hefei, 230001, China
| | - Ge Gao
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No.1 Swan Lake Road, Hefei, 230001, China
| | - Yingang Wu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No.1 Swan Lake Road, Hefei, 230001, China
| | - Yang Wang
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No.1 Swan Lake Road, Hefei, 230001, China
| | - Yu Chen
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No.1 Swan Lake Road, Hefei, 230001, China
| | - Chaoshi Niu
- Cheeloo College of Medicine, Shandong University, No.44 Wenhua West Road, Lixia District, Jinan, 250012, China.
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No.1 Swan Lake Road, Hefei, 230001, China.
| |
Collapse
|
4
|
Miao M, Li M, Sheng Y, Tong P, Zhang Y, Shou D. Epimedium-Curculigo herb pair enhances bone repair with infected bone defects and regulates osteoblasts through LncRNA MALAT1/miR-34a-5p/SMAD2 axis. J Cell Mol Med 2024; 28:e18527. [PMID: 38984969 PMCID: PMC11234645 DOI: 10.1111/jcmm.18527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/27/2024] [Accepted: 06/04/2024] [Indexed: 07/11/2024] Open
Abstract
Infected bone defects (IBDs) are the common condition in the clinical practice of orthopaedics. Although surgery and anti-infective medicine are the firstly chosen treatments, in many cases, patients experience a prolonged bone union process after anti-infective treatment. Epimedium-Curculigo herb pair (ECP) has been proved to be effective for bone repair. However, the mechanisms of ECP in IBDs are insufficiency. In this study, Effect of ECP in IBDs was verified by micro-CT and histological examination. Qualitative and quantitative analysis of the main components in ECP containing medicated serum (ECP-CS) were performed. The network pharmacological approaches were then applied to predict potential pathways for ECP associated with bone repair. In addition, the mechanism of ECP regulating LncRNA MALAT1/miRNA-34a-5p/SMAD2 signalling axis was evaluated by molecular biology experiments. In vivo experiments indicated that ECP could significantly promote bone repair. The results of the chemical components analysis and the pathway identification revealed that TGF-β signalling pathway was related to ECP. The results of in vitro experiments indicated that ECP-CS could reverse the damage caused by LPS through inhibiting the expressions of LncRNA MALAT1 and SMAD2, and improving the expressions of miR-34a-5p, ALP, RUNX2 and Collagen type І in osteoblasts significantly. This research showed that ECP could regulate the TGF-β/SMADs signalling pathway to promote bone repair. Meanwhile, ECP could alleviate LPS-induced bone loss by modulating the signalling axis of LncRNA MALAT1/miRNA-34a-5p/ SMAD2 in IBDs.
Collapse
Affiliation(s)
- Maomao Miao
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Mengying Li
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Yunjie Sheng
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Peijian Tong
- Institute of Orthopeadics and TraumatologyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)HangzhouChina
| | - Yang Zhang
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
- Institute of Orthopeadics and TraumatologyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)HangzhouChina
| | - Dan Shou
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| |
Collapse
|
5
|
Feng Z, Zhang S, Han Q, Chu T, Wang H, Yu L, Zhang W, Liu J, Liang W, Xue J, Wu X, Zhang C, Wang Y. Liensinine sensitizes colorectal cancer cells to oxaliplatin by targeting HIF-1α to inhibit autophagy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155647. [PMID: 38703660 DOI: 10.1016/j.phymed.2024.155647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/01/2024] [Accepted: 04/15/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND Oxaliplatin is the most common chemotherapeutic agent for patients with colorectal cancer. However, its anti-cancer efficacy is restricted by drug resistance occurring through several mechanisms, including autophagy. Liensinine exerts a considerable anti-tumor effect and can regulate autophagy. Inhibition of autophagy is a strategy to reverse resistance to oxaliplatin. The aim of this study was to check if liensinine can enhance the therapeutic efficacy of oxaliplatin in colorectal cancer and if so, elucidate its mechanism. METHODS Two colorectal cancer cell lines, HCT116 and LoVo, and one normal intestinal epithelial cell, NCM-460 were used for in vitro experiments. Cell Counting Kit-8 (CCK-8), colony formation, and flow cytometry assays were used to evaluate the cytotoxicity of liensinine and oxaliplatin. Network pharmacology analysis and Human XL Oncology Array were used to screen targets of liensinine. Transfections and autophagy regulators were used to confirm these targets. The relationship between the target and clinical effect of oxaliplatin was analyzed. Patient-derived xenograft (PDX) models were used to validate the effects of liensinine and oxaliplatin. RESULTS CCK-8 and colony formation assays both showed that the combination treatment of liensinine and oxaliplatin exerted synergistic effects. Results of the network pharmacology analysis and Human XL Oncology Array suggested that liensinine can inhibit autophagy by targeting HIF-1α/eNOS. HIF-1α was identified as the key factor modulated by liensinine in autophagy and induces resistance to oxaliplatin. HIF-1α levels in tumor cells and prognosis for FOLFOX were negatively correlated in clinical data. The results from three PDX models with different HIF-1α levels showed their association with intrinsic and acquired resistance to oxaliplatin in these models, which could be reversed by liensinine. CONCLUSIONS Research on the relationship between HIF-1α levels and the clinical effect of oxaliplatin is lacking, and whether liensinine regulates HIF-1α is unknown. Our findings suggest that liensinine overcomes the resistance of colorectal cancer cells to oxaliplatin by suppressing HIF-1α levels to inhibit autophagy. Our findings can contribute to improving prognosis following colorectal cancer therapy.
Collapse
Affiliation(s)
- Zhiqiang Feng
- Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China; Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, PR China
| | - Shuai Zhang
- Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China; Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, PR China
| | - Qiurong Han
- Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China; Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, PR China
| | - Tianhao Chu
- Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China; Laboratory of Oncologic Molecular Medicine, Tianjin Union Medical Center, Tianjin, PR China
| | - Huaqing Wang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, PR China
| | - Li Yu
- Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | | | - Jun Liu
- Department of Radiology, The Fourth Central Hospital Affiliated to Nankai University, Tianjin, PR China
| | - Weizheng Liang
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Hebei, PR China
| | - Jun Xue
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Hebei, PR China
| | - Xueliang Wu
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Hebei, PR China
| | - Chunze Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, PR China; Tianjin Institute of Coloproctology, Tianjin, PR China.
| | - Yijia Wang
- Laboratory of Oncologic Molecular Medicine, Tianjin Union Medical Center, Tianjin, PR China.
| |
Collapse
|
6
|
Zheng X, Lei Y, Cheng XW. Resolvin D1 as a novel target in the management of hypertension. J Hypertens 2024; 42:393-395. [PMID: 38289998 DOI: 10.1097/hjh.0000000000003641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Affiliation(s)
- Xintong Zheng
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital
| | - Yanna Lei
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital
| | - Xian Wu Cheng
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, Jilin, PR China
| |
Collapse
|
7
|
Liu H, Sun M, Wu N, Liu B, Liu Q, Fan X. TGF-β/Smads signaling pathway, Hippo-YAP/TAZ signaling pathway, and VEGF: Their mechanisms and roles in vascular remodeling related diseases. Immun Inflamm Dis 2023; 11:e1060. [PMID: 38018603 PMCID: PMC10629241 DOI: 10.1002/iid3.1060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 10/03/2023] [Accepted: 10/11/2023] [Indexed: 11/30/2023] Open
Abstract
Vascular remodeling is a basic pathological process in various diseases characterized by abnormal changes in the morphology, structure, and function of vascular cells, such as migration, proliferation, hypertrophy, and apoptosis. Various growth factors and pathways are involved in the process of vascular remodeling. The transforming growth factor-β (TGF-β) signaling pathway, which is mainly mediated by TGF-β1, is an important factor in vascular wall enhancement during vascular development and regulates the vascular response to injury by promoting the accumulation of intimal tissue. Vascular endothelial growth factor (VEGF) has an important effect on initiating the formation of blood vessels. The Hippo-YAP/TAZ signaling pathway also plays an important role in angiogenesis. In addition, studies have shown that there is a certain interaction between the TGF-β/Smads signaling pathway, Hippo-YAP/TAZ signaling pathway, and VEGF. Many studies have shown that in the development of atherosclerosis, hypertension, aneurysm, vertebrobasilar dolichoectasia, pulmonary hypertension, restenosis after percutaneous transluminal angioplasty, and other diseases, various inflammatory reactions lead to changes in vascular structure and vascular microenvironment, which leads to vascular remodeling. The occurrence of vascular remodeling changes the morphology of blood vessels and thus changes the hemodynamics, which is the cause of further development of the disease process. Vascular remodeling can cause vascular smooth muscle cell dysfunction and vascular homeostasis regulation. This review aims to explore the mechanisms of the TGF-β/Smads signaling pathway, Hippo-YAP/TAZ signaling pathway, and vascular endothelial growth factor in vascular remodeling and related diseases. This paper is expected to provide new ideas for research on the occurrence and development of related diseases and provide a new direction for research on the treatment of related diseases.
Collapse
Affiliation(s)
- Hui Liu
- Department of NeurologyBinzhou Medical University HospitalBinzhouChina
| | - Mingyue Sun
- Department of NeurologyBinzhou Medical University HospitalBinzhouChina
| | - Nan Wu
- Department of NeurologyBinzhou Medical University HospitalBinzhouChina
| | - Bin Liu
- Institute for Metabolic & Neuropsychiatric DisordersBinzhou Medical University HospitalBinzhouChina
| | - Qingxin Liu
- Department of NeurologyBinzhou Medical University HospitalBinzhouChina
| | - Xueli Fan
- Department of NeurologyBinzhou Medical University HospitalBinzhouChina
| |
Collapse
|
8
|
Zhang W, Chen H, Xu Z, Zhang X, Tan X, He N, Shen J, Dong J. Liensinine pretreatment reduces inflammation, oxidative stress, apoptosis, and autophagy to alleviate sepsis acute kidney injury. Int Immunopharmacol 2023; 122:110563. [PMID: 37392573 DOI: 10.1016/j.intimp.2023.110563] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/03/2023]
Abstract
Liensinine is mainly derived from alkaloids extracted and isolated from lotus seeds (Nelumbo nucifera Gaertn). It possesses anti-inflammatory, and antioxidant, according to contemporary pharmacological investigations. However, the effects and therapeutic mechanisms of liensinine on acute kidney injury (AKI) models of sepsis are unclear. To gain insight into these mechanisms, we established a sepsis kidney injury model by LPS injection of mice treated with liensinine, and stimulation of HK-2 with LPS in vitro and treated with liensinine and inhibitors of p38 MAPK, JNK MAPK. We first found that liensinine significantly reduced kidney injury in sepsis mice, while suppressing excessive inflammatory responses, restoring renal oxidative stress-related biomarkers, reducing increased apoptosis in TUNEL-positive cells and excessive autophagy, and that this process was accompanied by an increase in JNK/ p38-ATF 2 axis. In vitro experiments further demonstrated that lensinine reduced the expression of KIM-1, NGAL, inhibited pro- and anti-inflammatory secretion disorders, regulated the activation of the JNK/p38-ATF 2 axis, and reduced the accumulation of ROS, as well as the reduction of apoptotic cells detected by flow cytometry, and that this process played the same role as that of p38 MAPK, JNK MAPK inhibitors. We speculate that liensinine and p38 MAPK, JNK MAPK inhibitors may act on the same targets and could be involved in the mechanism of alleviating sepsis kidney injury in part through modulation of the JNK/p38-ATF 2 axis. Our study demonstrates that lensinine is a potential drug and thus provides a potential avenue for the treatment of AKI.
Collapse
Affiliation(s)
- Wei Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Huizhen Chen
- Institute of Neuroscience, The First People's Hospital of Lianyungang, Lianyungang 222000, China
| | - Zhaoyun Xu
- Blood Transfusion Department, Ganyu District People's Hospital of Lianyungang City, Lianyungang 222100, China
| | - Xiao Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xuelian Tan
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Nana He
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jinyang Shen
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Jingquan Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|