1
|
Liu X, Wang W, Nie Q, Liu X, Sun L, Ma Q, Zhang J, Wei Y. The Role and Mechanisms of Ubiquitin-Proteasome System-Mediated Ferroptosis in Neurological Disorders. Neurosci Bull 2025:10.1007/s12264-024-01343-7. [PMID: 39775589 DOI: 10.1007/s12264-024-01343-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/29/2024] [Indexed: 01/11/2025] Open
Abstract
Ferroptosis is a form of cell death elicited by an imbalance in intracellular iron concentrations, leading to enhanced lipid peroxidation. In neurological disorders, both oxidative stress and mitochondrial damage can contribute to ferroptosis, resulting in nerve cell dysfunction and death. The ubiquitin-proteasome system (UPS) refers to a cellular pathway in which specific proteins are tagged with ubiquitin for recognition and degradation by the proteasome. In neurological conditions, the UPS plays a significant role in regulating ferroptosis. In this review, we outline how the UPS regulates iron metabolism, ferroptosis, and their interplay in neurological diseases. In addition, we discuss the future application of small-molecule inhibitors and identify potential drug targets. Further investigation into the mechanisms of UPS-mediated ferroptosis will provide novel insights and strategies for therapeutic interventions and clinical applications in neurological diseases.
Collapse
Affiliation(s)
- Xin Liu
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
- Biomedical Sciences College & Shandong Medicinal Biotechnology Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Wei Wang
- Cancer Biology Institute, Baotou Medical College, Baotou, 014010, China
| | - Qiucheng Nie
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
- School of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Xinjing Liu
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
- School of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Lili Sun
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
- School of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Qiang Ma
- Cancer Biology Institute, Baotou Medical College, Baotou, 014010, China
| | - Jie Zhang
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China.
- Biomedical Sciences College & Shandong Medicinal Biotechnology Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China.
| | - Yiju Wei
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China.
- School of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China.
| |
Collapse
|
2
|
Wang H, Wu S, Jiang X, Li W, Li Q, Sun H, Wang Y. Acteoside alleviates salsolinol-induced Parkinson's disease by inhibiting ferroptosis via activating Nrf2/SLC7A11/GPX4 pathway. Exp Neurol 2024; 385:115084. [PMID: 39631720 DOI: 10.1016/j.expneurol.2024.115084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
Salsolinol (SAL), i.e.1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroiso-quinoline, is a dopamine metabolite and endogenous neurotoxin that is toxic to dopaminergic neurons, and is involved in the genesis of Parkinson's disease (PD). However, the machinery underlying SAL induces neurotoxicity in PD are still being elucidated. In the present study, we first used RNA sequencing (RNAseq) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis to detect differentially expressed genes in SAL-treated SH-SY5Y cells. We found that ferroptosis-related pathway was enriched by SAL, which was validated by in vitro and in vivo SAL models. SAL inducing ferroptosis through downregulating SLC7A11/GPX4 in SH-SY5Y cells, which neurotoxic effect was reversed by ferroptosis inhibitors deferoxamine (DFO) and ferrostatin-1 (Fer-1). Acteoside, a phenylethanoid glycoside of plant origin with neuroprotective effect, attenuates SAL-induced neurotoxicity by inhibiting ferroptosis in in vitro and in vivo PD models through upregulating SLC7A11/GPX4. Mechanistically, acteoside activates Nrf2. Nrf2 inhibitor ML385 abolished acteoside-mediated increased SLC7A11/GPX4 and neuroprotection against SAL in SH-SY5Y cells. Meanwhile, the PI3K inhibitor LY294002 suppressed the acteoside-induced Nrf2 expression and ensued decreased expression of SLC7A11/GPX4 in SAL-treated SH-SY5Y cells. Taken together, these results demonstrate that salsolinol-induced PD through inducing ferroptosis via downregulating SLC7A11/GPX4. Acteoside attenuates SAL-induced PD through inhibiting ferroptosis via activating PI3K/Akt-dependant Nrf2. The present study revealed a novel molecular mechanisms underlining SAL-induced neurotoxicity via induction of ferroptosis in PD, and uncovered a new pharmacological effect against PD through inhibiting ferroptosis. This study highlights SAL-induced ferroptosis -dependent neurotoxicity as a potential therapeutic target in PD.
Collapse
Affiliation(s)
- Hongquan Wang
- Department of Geriatrics, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing 100049, China.
| | - Shuang Wu
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan 430000, China
| | - Xiaodong Jiang
- Department of anatomy, College of Basic Medicine, Chifeng University Health Science Center, Chifeng 024005, China
| | - Wenjing Li
- Department of Neurology, The Affiliated Hospital of Chifeng University, Chifeng 024005, China
| | - Qiang Li
- Department of Neurology, The Affiliated Hospital of Chifeng University, Chifeng 024005, China
| | - Huiyan Sun
- Chifeng University Health Science Center, Chifeng 024000, China.
| | - Yumin Wang
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing 100049, China.
| |
Collapse
|
3
|
Hou D, Hu Y, Yun T, Li H, Yang G, Yu D. The deubiquitinase OTUD3 stabilizes IRP2 expression to reduce hippocampal neuron ferroptosis via the p53/PTGS2 pathway to ameliorate cerebral ischemia-reperfusion injury. Eur J Med Res 2024; 29:498. [PMID: 39415292 PMCID: PMC11484114 DOI: 10.1186/s40001-024-02095-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 10/01/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND Ischemic stroke (IS) is known for its high morbidity, disability and mortality rates, and studies designed to explore its pathophysiological mechanisms and identify novel therapeutic strategies are urgently needed. We aimed to probe the effects of the deubiquitinase OTUD3-IRP2-p53/PTGS2 pathway on cerebral ischemia‒reperfusion (I/R) injury and hippocampal neuron ferroptosis. METHODS A cerebral I/R mouse model was established. Furthermore, lentiviral vectors that overexpressed OTUD3 and knocked down IRP2 were constructed, and a series of assays were performed to probe the OTUD3/IRP2/p53/PTGS2 mechanism. An oxygen‒glucose deprivation and reoxygenation (OGD/R) model of mouse hippocampal neurons was constructed. Then, OTUD3 and IRP2 were knocked down and overexpressed, and p53 was overexpressed to explore the mechanism of the OTUD3/IRP2/p53/PTGS2 pathway. RESULTS OTUD3 and IRP2 were expressed at low levels in cerebral I/R models. OTUD3 promoted IRP2 expression to protect damaged hippocampal neurons. Moreover, IRP2 affected ferroptosis in hippocampal neurons. In addition, IRP2 inhibited p53. After IRP2 and p53 were overexpressed, IRP2 regulated the p53/PTGS2 pathway and affected ferroptosis in hippocampal neurons. In vivo, after overexpressing OTUD3 and knocking down IRP2, we found that overexpression of OTUD3 promoted IRP2 expression to reduce ferroptosis in hippocampal neurons and improve cerebral I/R injury via the inhibition of the p53/PTGS2 pathway. CONCLUSIONS The deubiquitinase OTUD3 stabilized IRP2 expression to reduce hippocampal neuron ferroptosis via the p53/PTGS2 pathway to subsequently ameliorate cerebral I/R injury.
Collapse
Affiliation(s)
- Dan Hou
- Department of Neurology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, Hainan, China
| | - Yujie Hu
- Department of Neurology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, Hainan, China
| | - Tian Yun
- Department of Neurology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, Hainan, China
| | - Hongxin Li
- School of Statistics Major, Beijing Forestry University, Beijing, 100091, China
| | - Guoshuai Yang
- Department of Neurology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, Hainan, China.
| | - Dan Yu
- Department of Neurology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, 570208, Hainan, China.
| |
Collapse
|
4
|
Ru Q, Li Y, Chen L, Wu Y, Min J, Wang F. Iron homeostasis and ferroptosis in human diseases: mechanisms and therapeutic prospects. Signal Transduct Target Ther 2024; 9:271. [PMID: 39396974 PMCID: PMC11486532 DOI: 10.1038/s41392-024-01969-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/08/2024] [Accepted: 09/02/2024] [Indexed: 10/15/2024] Open
Abstract
Iron, an essential mineral in the body, is involved in numerous physiological processes, making the maintenance of iron homeostasis crucial for overall health. Both iron overload and deficiency can cause various disorders and human diseases. Ferroptosis, a form of cell death dependent on iron, is characterized by the extensive peroxidation of lipids. Unlike other kinds of classical unprogrammed cell death, ferroptosis is primarily linked to disruptions in iron metabolism, lipid peroxidation, and antioxidant system imbalance. Ferroptosis is regulated through transcription, translation, and post-translational modifications, which affect cellular sensitivity to ferroptosis. Over the past decade or so, numerous diseases have been linked to ferroptosis as part of their etiology, including cancers, metabolic disorders, autoimmune diseases, central nervous system diseases, cardiovascular diseases, and musculoskeletal diseases. Ferroptosis-related proteins have become attractive targets for many major human diseases that are currently incurable, and some ferroptosis regulators have shown therapeutic effects in clinical trials although further validation of their clinical potential is needed. Therefore, in-depth analysis of ferroptosis and its potential molecular mechanisms in human diseases may offer additional strategies for clinical prevention and treatment. In this review, we discuss the physiological significance of iron homeostasis in the body, the potential contribution of ferroptosis to the etiology and development of human diseases, along with the evidence supporting targeting ferroptosis as a therapeutic approach. Importantly, we evaluate recent potential therapeutic targets and promising interventions, providing guidance for future targeted treatment therapies against human diseases.
Collapse
Affiliation(s)
- Qin Ru
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lin Chen
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yuxiang Wu
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China.
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
5
|
Li QM, Han HH, Zang DD, Zha XQ, Zhou A, Zhang FY, Luo JP. Rapid Discovery of Aβ 42 Fibril Disintegrators from Ganoderma lucidum via Ligand Fishing and Their Neuroprotective Effects on Alzheimer's Disease. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4127-4141. [PMID: 38362879 DOI: 10.1021/acs.jafc.3c08664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
An amyloid-β (Aβ) fibril is a vital pathogenic factor of Alzheimer's disease (AD). Aβ fibril disintegrators possess great potential to be developed into novel anti-AD agents. Here, a ligand fishing method was employed to rapidly discover Aβ42 fibril disintegrators from Ganoderma lucidum using Aβ42 fibril-immobilized magnetic beads, which led to the isolation of six Aβ42 fibril disintegrators including ganodermanontriol, ganoderic acid DM, ganoderiol F, ganoderol B, ganodermenonol, and ergosterol. Neuroprotective evaluation in vitro exhibited that these Aβ42 fibril disintegrators could significantly mitigate Aβ42-induced neurotoxicity. Among these six disintegrators, ergosterol and ganoderic acid DM with stronger protecting activity were further selected to evaluate their neuroprotective effect on AD in vivo. Results showed that ergosterol and ganoderic acid DM could significantly alleviate Aβ42-induced cognitive dysfunction and hippocampus neuron loss in vivo. Moreover, ergosterol and ganoderic acid DM could significantly inhibit Aβ42-induced neuron apoptosis and Nrf2-mediated neuron oxidative stress in vitro and in vivo.
Collapse
Affiliation(s)
- Qiang-Ming Li
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Hui-Hui Han
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Dan-Dan Zang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, People's Republic of China
| | - Xue-Qiang Zha
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - An Zhou
- Scientific Research & Experiment Center, Anhui University of Chinese Medicine, Hefei 230038, People's Republic of China
- Functional Activity and Resource Utilization on Edible and Medicinal Fungi Joint Laboratory of Anhui Province, Lu'an 237300, People's Republic of China
| | - Feng-Yun Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, People's Republic of China
| | - Jian-Ping Luo
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, People's Republic of China
| |
Collapse
|
6
|
Wang J, Zhao J, Zhao K, Wu S, Chen X, Hu W. The Role of Calcium and Iron Homeostasis in Parkinson's Disease. Brain Sci 2024; 14:88. [PMID: 38248303 PMCID: PMC10813814 DOI: 10.3390/brainsci14010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
Calcium and iron are essential elements that regulate many important processes of eukaryotic cells. Failure to maintain homeostasis of calcium and iron causes cell dysfunction or even death. PD (Parkinson's disease) is the second most common neurological disorder in humans, for which there are currently no viable treatment options or effective strategies to cure and delay progression. Pathological hallmarks of PD, such as dopaminergic neuronal death and intracellular α-synuclein deposition, are closely involved in perturbations of iron and calcium homeostasis and accumulation. Here, we summarize the mechanisms by which Ca2+ signaling influences or promotes PD progression and the main mechanisms involved in ferroptosis in Parkinson's disease. Understanding the mechanisms by which calcium and iron imbalances contribute to the progression of this disease is critical to developing effective treatments to combat this devastating neurological disorder.
Collapse
Affiliation(s)
- Ji Wang
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming 650500, China;
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China; (J.Z.); (K.Z.); (S.W.)
| | - Jindong Zhao
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China; (J.Z.); (K.Z.); (S.W.)
| | - Kunying Zhao
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China; (J.Z.); (K.Z.); (S.W.)
| | - Shangpeng Wu
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China; (J.Z.); (K.Z.); (S.W.)
| | - Xinglong Chen
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming 650500, China;
| | - Weiyan Hu
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China; (J.Z.); (K.Z.); (S.W.)
| |
Collapse
|