1
|
Politowski I, Regnery P, Hennig MP, Siebers N, Ottermanns R, Schäffer A. Fate of weathered multi-walled carbon nanotubes in an aquatic sediment system. CHEMOSPHERE 2021; 277:130319. [PMID: 34384182 DOI: 10.1016/j.chemosphere.2021.130319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/08/2021] [Accepted: 03/13/2021] [Indexed: 06/13/2023]
Abstract
The widespread application of carbon nanotubes (CNT) in various consumer products leads to their inevitable release into aquatic systems. But only little is known about their distribution among aquatic compartments. In this study, we investigated the partitioning of radiolabeled, weathered multi-walled CNT (14C-wMWCNT) in an aquatic sediment system over a period of 180 days (d). The applied nanomaterial concentration in water phase was 100 μg L-1. Over time, the wMWCNT disappeared exponentially from the water phase and simultaneously accumulated in the sediment phase. After 2 h incubation just 77%, after seven days 30% and after 180 d only 0.03% of applied radioactivity (AR) remained in the water phase. The respective values for the disappearance times DT50 and DT90 were 3.2 d and 10.7 d. Further, minor mineralization of 14C-wMWCNT to 14CO2 was observed with values below 0.06% of AR. In addition, a study was carried out to estimate the deposition of wMWCNT in the water phase with and without sediment in the test system for 28 d. We found no influence of a sediment phase on the sedimentation behavior of wMWCNT in the water phase: After 6.5 d and 7.3 d 50% of the applied wMWCNT subsided in the presence and absence of sediment, respectively. The slow removal of wMWCNT from the water body by deposition into sediment implies that in addition to sediment-dwelling organisms, pelagic organisms are also at risk of exposure to nanomaterials and prone for their take-up.
Collapse
Affiliation(s)
- Irina Politowski
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| | - Philipp Regnery
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Michael Patrick Hennig
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Nina Siebers
- Forschungszentrum Jülich GmbH, Agrosphere (IBG-3) Institute of Bio- and Geosciences, Wilhelm- Johnen-Straße, 52425, Jülich, Germany; Forschungszentrum Jülich GmbH, Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C), Wilhelm-Johnen-Straße, 52425, Jülich, Germany
| | - Richard Ottermanns
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Andreas Schäffer
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| |
Collapse
|
2
|
Politowski I, Wittmers F, Hennig MP, Siebers N, Goffart B, Roß-Nickoll M, Ottermanns R, Schäffer A. A trophic transfer study: accumulation of multi-walled carbon nanotubes associated to green algae in water flea Daphnia magna. NANOIMPACT 2021; 22:100303. [PMID: 35559960 DOI: 10.1016/j.impact.2021.100303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/15/2021] [Accepted: 02/11/2021] [Indexed: 06/15/2023]
Abstract
Carbon nanotubes (CNT) are promising nanomaterials in modern nanotechnology and their use in many different applications leads to an inevitable release into the aquatic environment. In this study, we quantified trophic transfer of weathered multi-walled carbon nanotubes (wMWCNT) from green algae to primary consumer Daphnia magna in a concentration of 100 μg L-1 using radioactive labeling of the carbon backbone (14C-wMWCNT). Trophic transfer of wMWCNT was compared to the uptake by daphnids exposed to nanomaterials in the water phase without algae. Due to the rather long observed CNT sedimentation times (DT) from the water phase (DT50: 3.9 days (d), DT90: 12.8 d) wMWCNT interact with aquatic organisms and associated to the green algae Chlamydomonas reinhardtii and Raphidocelis subcapitata. After the exposition of algae, the nanotubes accumulated to a maximum of 1.6 ± 0.4 μg 14C-wMWCNT mg-1 dry weight-1 (dw-1) and 0.7 ± 0.3 μg 14C-wMWCNT mg-1 dw-1 after 24 h and 48 h, respectively. To study trophic transfer, R. subcapitata was loaded with 14C-wMWCNT and subsequently fed to D. magna. A maximum body burden of 0.07 ± 0.01 μg 14C-wMWCNT mg-1 dw-1 and 7.1 ± 1.5 μg 14C-wMWCNT mg-1 dw-1 for D. magna after trophic transfer and waterborne exposure was measured, respectively, indicating no CNT accumulation after short-term exposure via trophic transfer. Additionally, the animals eliminated nanomaterials from their guts, while feeding algae facilitated their excretion. Further, accumulation of 14C-wMWCNT in a growing population of D. magna revealed a maximum uptake of 0.7 ± 0.2 μg mg-1 dw-1. Therefore, the calculated bioaccumulation factor (BAF) after 28 d of 6700 ± 2900 L kg-1 is above the limit that indicates a chemical is bioaccumulative in the European Union Regulation REACH. Although wMWCNT did not bioaccumulate in neonate D. magna after trophic transfer, wMWCNT enriched in a 28 d growing D. magna population regardless of daily feeding, which increases the risk of CNT accumulation along the aquatic food chain.
Collapse
Affiliation(s)
- Irina Politowski
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| | - Fabian Wittmers
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Michael Patrick Hennig
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Nina Siebers
- Forschungszentrum Jülich GmbH, Agrosphere (IBG-3) Institute of Bio- and Geosciences, Wilhelm-Johnen-Straße, 52425 Jülich, Germany; Forschungszentrum Jülich GmbH, Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C), Wilhelm-Johnen-Straße, 52425 Jülich, Germany
| | - Birgitta Goffart
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Martina Roß-Nickoll
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Richard Ottermanns
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Andreas Schäffer
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| |
Collapse
|
3
|
Antistatic Structural Color and Photoluminescent Membranes from Co-assembling Cellulose Nanocrystals and Carbon Nanomaterials for Anti-counterfeiting. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-020-2414-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
4
|
Ion I, Ivan GR, Senin RM, Doncea SM, Capra L, Modrogan C, Oprea O, Stinga G, Orbulet O, Ion AC. Adsorption of triclocarban (TCC) onto fullerene C60 in simulated environmental aqueous conditions. SEP SCI TECHNOL 2019. [DOI: 10.1080/01496395.2019.1577450] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Ion Ion
- Department of Analytical Chemistry and Environmental Engineering, Faculty of Applied Chemistry and Material Science, “Politehnica” University of Bucharest, Bucharest, Romania
| | - Georgeta Ramona Ivan
- Department of Analytical Chemistry and Environmental Engineering, Faculty of Applied Chemistry and Material Science, “Politehnica” University of Bucharest, Bucharest, Romania
- Department of Analysis, Tests, and Testings, National Research & Development Institute for Chemistry and Petrochemistry ICECHIM, Bucharest, Romania
| | - Raluca Madalina Senin
- Department of Analysis, Tests, and Testings, National Research & Development Institute for Chemistry and Petrochemistry ICECHIM, Bucharest, Romania
| | - Sanda Maria Doncea
- Department of Analysis, Tests, and Testings, National Research & Development Institute for Chemistry and Petrochemistry ICECHIM, Bucharest, Romania
| | - Luiza Capra
- Department of Analysis, Tests, and Testings, National Research & Development Institute for Chemistry and Petrochemistry ICECHIM, Bucharest, Romania
| | - Cristina Modrogan
- Department of Analytical Chemistry and Environmental Engineering, Faculty of Applied Chemistry and Material Science, “Politehnica” University of Bucharest, Bucharest, Romania
| | - Ovidiu Oprea
- Department of Analytical Chemistry and Environmental Engineering, Faculty of Applied Chemistry and Material Science, “Politehnica” University of Bucharest, Bucharest, Romania
| | - Gabriela Stinga
- Department of Chemical Thermodynamics, “Ilie Murgulescu” Institute of Physical Chemistry of Romanian Academy, Bucharest, Romania
| | - Oanemari Orbulet
- Department of Analytical Chemistry and Environmental Engineering, Faculty of Applied Chemistry and Material Science, “Politehnica” University of Bucharest, Bucharest, Romania
| | - Alina Catrinel Ion
- Department of Analytical Chemistry and Environmental Engineering, Faculty of Applied Chemistry and Material Science, “Politehnica” University of Bucharest, Bucharest, Romania
| |
Collapse
|
5
|
Chen Z, Jin J, Song X, Zhang G, Zhang S. Redox Conversion of Arsenite and Nitrate in the UV/Quinone Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:10011-10018. [PMID: 30063337 DOI: 10.1021/acs.est.8b03538] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Whether superoxide radical anion (O2•-) was a key reactive species in the oxidation of arsenite (As(III)) in photochemical processes has long been a controversial issue. With hydroquinone (BQH2) and 1,4-benzoquinone (BQ) as redox mediators, the photochemical oxidation of As(III) and reduction of nitrate (NO3-) was carefully investigated. O2•-, singlet oxygen (1O2), H2O2, and semiquinone radical (BQH•) were all possible reactive species in the irradiated system. However, since the formation of As(IV) is a necessary step in the oxidation of As(III), taking the standard reduction potentials into account, the reactions between the above species and As(III) were thermodynamically unfavorable. On the basis of radical scavenging experiments, hydroxyl radical (•OH) was proved as the key species that led to the oxidation of As(III) in the UV/BQH2 system. It should be noted that the •OH radicals were generated from the photolysis of H2O2, which came from the disproportionation of O2•- and the reaction of O2•- with BQH2. Both the photoejected eaq- from 1(BQH2)* and the direct electron transfer with 3(BQH2)* contributed to the reduction of NO3- in the UV/BQH2 process. No synergistic effect was observed in the redox conversion of As(III) and NO3-, further demonstrating that the role of BQH• was negligible in the studied systems. The results here are helpful for a better understanding of the photochemical behaviors of quinones in the aquatic environment.
Collapse
Affiliation(s)
- Zhihao Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , 163 Xianlin Avenue , Nanjing , 210023 , China
| | - Jiyuan Jin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , 163 Xianlin Avenue , Nanjing , 210023 , China
| | - Xiaojie Song
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , 163 Xianlin Avenue , Nanjing , 210023 , China
| | - Guoyang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , 163 Xianlin Avenue , Nanjing , 210023 , China
| | - Shujuan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , 163 Xianlin Avenue , Nanjing , 210023 , China
| |
Collapse
|
6
|
Zhang G, Wu B, Zhang S. Effects of acetylacetone on the photoconversion of pharmaceuticals in natural and pure waters. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 225:691-699. [PMID: 28400150 DOI: 10.1016/j.envpol.2017.01.089] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 01/07/2017] [Accepted: 01/09/2017] [Indexed: 06/07/2023]
Abstract
Acetylacetone (AcAc) has proven to be a potent photo-activator in the degradation of color compounds. The effects of AcAc on the photochemical conversion of five colorless pharmaceuticals were for the first time investigated in both pure and natural waters with the UV/H2O2 process as a reference. In most cases, AcAc played a similar role to H2O2. For example, AcAc accelerated the photodecomposition of carbamazepine, oxytetracycline, and tetracycline in pure water. Meanwhile, the toxicity of tetracyclines and carbamazepine were reduced to a similar extent to that in the UV/H2O2 process. However, AcAc worked in a way different from that of H2O2. Based on the degradation kinetics, solvent kinetic isotope effect, and the inhibiting effect of O2, the underlying mechanisms for the degradation of pharmaceuticals in the UV/AcAc process were believed mainly to be direct energy transfer from excited AcAc to pharmaceuticals rather than reactive oxygen species-mediated reactions. In natural waters, dissolved organic matter (DOM) played a crucial role in the photoconversion of pharmaceuticals. The role of H2O2 became negligible due to the scavenging effects of DOM and inorganic ions. Interestingly, in natural waters, AcAc first accelerated the photodecomposition of pharmaceuticals and then led to a dramatic reduction with the depletion of dissolved oxygen. Considering the natural occurrence of diketones, the results here point out a possible pathway in the fate and transport of pharmaceuticals in aquatic ecosystems.
Collapse
Affiliation(s)
- Guoyang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Bingdang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Shujuan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
7
|
Yin Y, Yang X, Zhou X, Wang W, Yu S, Liu J, Jiang G. Water chemistry controlled aggregation and photo-transformation of silver nanoparticles in environmental waters. J Environ Sci (China) 2015; 34:116-125. [PMID: 26257354 DOI: 10.1016/j.jes.2015.04.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 04/28/2015] [Accepted: 04/29/2015] [Indexed: 06/04/2023]
Abstract
The inevitable release of engineered silver nanoparticles (AgNPs) into aquatic environments has drawn great concerns about its environmental toxicity and safety. Although aggregation and transformation play crucial roles in the transport and toxicity of AgNPs, how the water chemistry of environmental waters influences the aggregation and transformation of engineered AgNPs is still not well understood. In this study, the aggregation of polyvinylpyrrolidone (PVP) coated AgNPs was investigated in eight typical environmental water samples (with different ionic strengths, hardness, and dissolved organic matter (DOM) concentrations) by using UV-visible spectroscopy and dynamic light scattering. Raman spectroscopy was applied to probe the interaction of DOM with the surface of AgNPs. Further, the photo-transformation and morphology changes of AgNPs in environmental waters were studied by UV-visible spectroscopy, inductively coupled plasma mass spectrometry, and transmission electron microscopy. The results suggested that both electrolytes (especially Ca(2+) and Mg(2+)) and DOM in the surface waters are key parameters for AgNP aggregation, and sunlight could accelerate the morphology change, aggregation, and further sedimentation of AgNPs. This water chemistry controlled aggregation and photo-transformation should have significant environmental impacts on the transport and toxicity of AgNPs in the aquatic environments.
Collapse
Affiliation(s)
- Yongguang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Xiaoya Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of the Environment, Jiangsu University, Zhenjiang 212013, China
| | - Xiaoxia Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Weidong Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Sujuan Yu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jingfu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|