1
|
Hu N, Xiao F, Zhang D, Hu R, Xiong R, Lv W, Yang Z, Tan W, Yu H, Ding D, Yan Q, He Z. Organophosphorus mineralizing-Streptomyces species underpins uranate immobilization and phosphorus availability in uranium tailings. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134975. [PMID: 38908177 DOI: 10.1016/j.jhazmat.2024.134975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024]
Abstract
Phosphate-solubilizing bacteria (PSB) are important but often overlooked regulators of uranium (U) cycling in soil. However, the impact of PSB on uranate fixation coupled with the decomposition of recalcitrant phosphorus (P) in mining land remains poorly understood. Here, we combined gene amplicon sequencing, metagenome and metatranscriptome sequencing analysis and strain isolation to explore the effects of PSB on the stabilization of uranate and P availability in U mining areas. We found that the content of available phosphorus (AP), carbonate-U and Fe-Mn-U oxides in tailings was significantly (P < 0.05) higher than their adjacent soils. Also, organic phosphate mineralizing (PhoD) bacteria (e.g., Streptomyces) and inorganic phosphate solubilizing (gcd) bacteria (e.g., Rhodococcus) were enriched in tailings and soils, but only organic phosphate mineralizing-bacteria substantially contributed to the AP. Notably, most genes involved in organophosphorus mineralization and uranate resistance were widely present in tailings rather than soil. Comparative genomics analyses supported that organophosphorus mineralizing-Streptomyces species could increase soil AP content and immobilize U(VI) through organophosphorus mineralization (e.g., PhoD, ugpBAEC) and U resistance related genes (e.g., petA). We further demonstrated that the isolated Streptomyces sp. PSBY1 could enhance the U(VI) immobilization mediated by the NADH-dependent ubiquinol-cytochrome c reductase (petA) through decomposing organophosphorous compounds. This study advances our understanding of the roles of PSB in regulating the fixation of uranate and P availability in U tailings.
Collapse
Affiliation(s)
- Nan Hu
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China
| | - Fangfang Xiao
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China
| | - Dandan Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Science, State Key Laboratory for Biocontrol, Sun Yat-sen University, Zhuhai 519080, China
| | - Ruiwen Hu
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Rui Xiong
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China
| | - Wenpan Lv
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China
| | - Zhaolan Yang
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China
| | - Wenfa Tan
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China
| | - Huang Yu
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China.
| | - Dexin Ding
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China
| | - Qingyun Yan
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Science, State Key Laboratory for Biocontrol, Sun Yat-sen University, Zhuhai 519080, China
| | - Zhili He
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Science, State Key Laboratory for Biocontrol, Sun Yat-sen University, Zhuhai 519080, China
| |
Collapse
|
2
|
Xie G, Feng G, Li Q, Zhang K, Tang C, Chen H, Cai C, Mao P. Efficient uranium sequestration ability and mechanism of live and inactivated strain of Streptomyces sp. HX-1 isolated from uranium wastewater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124307. [PMID: 38830528 DOI: 10.1016/j.envpol.2024.124307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/20/2024] [Accepted: 06/01/2024] [Indexed: 06/05/2024]
Abstract
Prokaryotes are effective biosorbents for the recovery of uranium and other heavy metals. However, the potential mechanism of uranium bioaccumulation by filamentous strain (actinobacteria) remains unclear. This study demonstrates the potential for and mechanism of uranium bioaccumulation by living (L-SS) and inactivated (I-SS) Streptomyces sp. HX-1 isolated from uranium mine waste streams. Uranium accumulation experiments showed that L-SS and I-SS had efficient uranium adsorption potentials, with removal rates of 92.93 and 97.42%, respectively. Kinetic and equilibrium data indicated that the bioaccumulation process was consistent with the pseudo-second-order kinetic, Langmuir, and Sips isotherm models. FTIR indicated that the main functional groups of L-SS and I-SS binding uranium were uranyl, carboxyl, and phosphate groups. Moreover, the results of XRD, XPS, SEM-EDS, and TEM-EDS analyses revealed for the first time that L-SS has biomineralization and bioreduction capacity against uranium. L-SS mineralize U(VI) into NH4UO2PO4 and [Formula: see text] through the metabolic activity of biological enzymes (phosphatases). In summary, Streptomyces sp. HX-1 is a novel and efficient uranium-fixing biosorbent for the treatment of uranium-contaminated wastewater.
Collapse
Affiliation(s)
- Gen Xie
- Research Center of Radiation Ecology and Ion Beam Biotechnology, College of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang, 830017, PR China
| | - Guangwen Feng
- Research Center of Radiation Ecology and Ion Beam Biotechnology, College of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang, 830017, PR China.
| | - Qin Li
- Research Center of Radiation Ecology and Ion Beam Biotechnology, College of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang, 830017, PR China
| | - Keyong Zhang
- Research Center of Radiation Ecology and Ion Beam Biotechnology, College of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang, 830017, PR China
| | - Chao Tang
- Research Center of Ion Beam Biotechnology and Biodiversity, Xi'an Technological University, Xi'an, Shaanxi, 710032, PR China
| | - Henglei Chen
- Research Center of Radiation Ecology and Ion Beam Biotechnology, College of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang, 830017, PR China
| | - Changlong Cai
- Research Center of Ion Beam Biotechnology and Biodiversity, Xi'an Technological University, Xi'an, Shaanxi, 710032, PR China
| | - Peihong Mao
- Research Center of Radiation Ecology and Ion Beam Biotechnology, College of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang, 830017, PR China
| |
Collapse
|
3
|
Zaw O, Noon Shean Aye N, Daduang J, Proungvitaya S, Wongwattanakul M, Ngernyuang N, Daduang S, Shinsuphan N, Phatthanakun R, Jearanaikoon N, Maraming P. DNA aptamer-functionalized PDA nanoparticles: from colloidal chemistry to biosensor applications. Front Bioeng Biotechnol 2024; 12:1427229. [PMID: 39045538 PMCID: PMC11263086 DOI: 10.3389/fbioe.2024.1427229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/12/2024] [Indexed: 07/25/2024] Open
Abstract
Polydopamine nanoparticles (PDA NPs) are widely utilized in the field of biomedical science for surface functionalization because of their unique characteristics, such as simple and low-cost preparation methods, good adhesive properties, and ability to incorporate amine and oxygen-rich chemical groups. However, challenges in the application of PDA NPs as surface coatings on electrode surfaces and in conjugation with biomolecules for electrochemical sensors still exist. In this work, we aimed to develop an electrochemical interface based on PDA NPs conjugated with a DNA aptamer for the detection of glycated albumin (GA) and to study DNA aptamers on the surfaces of PDA NPs to understand the aptamer-PDA surface interactions using molecular dynamics (MD) simulation. PDA NPs were synthesized by the oxidation of dopamine in Tris buffer at pH 10.5, conjugated with DNA aptamers specific to GA at different concentrations (0.05, 0.5, and 5 μM), and deposited on screen-printed carbon electrodes (SPCEs). The charge transfer resistance of the PDA NP-coated SPCEs decreased, indicating that the PDA NP composite is a conductive bioorganic material. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) confirmed that the PDA NPs were spherical, and dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FTIR), and Raman spectroscopy data indicated the successful conjugation of the aptamers on the PDA NPs. The as-prepared electrochemical interface was employed for the detection of GA. The detection limit was 0.17 μg/mL. For MD simulation, anti-GA aptamer through the 5'terminal end in a single-stranded DNA-aptamer structure and NH2 linker showed a stable structure with its axis perpendicular to the PDA surface. These findings provide insights into improved biosensor design and have demonstrated the potential for employing electrochemical PDA NP interfaces in point-of-care applications.
Collapse
Affiliation(s)
- Ohnmar Zaw
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Nang Noon Shean Aye
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Jureerut Daduang
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Siriporn Proungvitaya
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Molin Wongwattanakul
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
- Center for Innovation and Standard for Medical Technology and Physical Therapy, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Nipaporn Ngernyuang
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand
- Thammasat University Research Unit in Biomedical Science, Thammasat University, Pathum Thani, Thailand
| | - Sakda Daduang
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Nikorn Shinsuphan
- Medical Instrument Subsection, Maintenance Section, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | - Nichada Jearanaikoon
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima, Thailand
| | - Pornsuda Maraming
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
4
|
Loni PC, Wang W, Qiu X, Man B, Wu M, Qiu D, Wang H. Antimony precipitation and removal by antimony hyper resistant strain Achromobacter sp. 25-M. ENVIRONMENTAL RESEARCH 2024; 245:118011. [PMID: 38141916 DOI: 10.1016/j.envres.2023.118011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/13/2023] [Accepted: 12/21/2023] [Indexed: 12/25/2023]
Abstract
Microbes have been confirmed to play key role in biogeochemistry of antimony. However, the impact of indigenous bacteria (from active mines) on the behavior of dissolved antimony remained poorly understood. In current study, the hyper antimony-resistant strain, Achromobacter sp. 25-M, isolated from the world largest antimony deposit, Xikuangshan antimony deposit, was evaluated for its role in dissolved Sb(V) and Sb(III) precipitation and removal. Despite of the high resistance to Sb(III) (up to 50 mM), the facultative alkaliphile, 25-M was not capable of Sb(III) oxidation. Meanwhile 25-M can produce high amount of exopolymeric substance (EPS) with the presence of Sb, which prompted us to investigate the potential role of EPS in the precipitation and removal of Sb. To this end, 2 mM of Sb(III) and Sb(V) were added into the experimental systems with and without 25-M to discern the interaction mechanism between microbe and antimony. After 96 hrs' incubation, 88% [1.73 mM (210 mg/L)] of dissolved Sb(V) and 80% [1.57 mM (190 mg/L)] of dissolved Sb(III) were removed. X-ray diffraction and energy dispersive spectroscopy analysis confirmed the formation of valentinite (Sb2O3) in Sb(III) amended system and a solitary Sb(V) mineral mopungite [NaSb(OH)6] in Sb(V) amended group with microbes. Conversely, no precipitate was detected in abiotic systems. Morphologically valentinite was bowtie and mopungite was pseudo-cubic as indicated by scanning electronic microscopy. EPS was subjected to fourier transform infrared (FT-IR) analysis. FT-IR analysis suggested that -OH and -COO groups were responsible for the complexation and ligand exchange with Sb(III) and Sb(V), respectively. Additionally, the C-H group and N-H group could be involved in π-π interaction and chelation with Sb species. All these interactions between Sb and functional groups in EPS may subsequently favore the formation of valentinite and mopungite. Collectively, current results suggested that EPS play fundamental role in bioprecipitation of Sb, which offered a new strategy in Sb bioremediation.
Collapse
Affiliation(s)
- Prakash C Loni
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China; School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China; Department of Earth Sciences, National Cheng Kung University, Tainan, 701, Taiwan
| | - Weiqi Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China; School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China
| | - Xuan Qiu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China; School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China
| | - Baiying Man
- College of Life Science, Shangrao Normal University, Shangrao, 334001, China
| | - Mengxiaojun Wu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China; School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China; Zhejiang Economic and Information Center, Hangzhou, 310006, China
| | - Dongru Qiu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Hongmei Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China; School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China.
| |
Collapse
|
5
|
Feng G, Mao Y, Xie G, Chen H, Wang J, Mao P, Lv J. Bioremediation of uranium (Ⅵ) using a native strain Halomonas campaniensis ZFSY-04 isolated from uranium mining and milling effluent: Potential and mechanism. CHEMOSPHERE 2024; 346:140646. [PMID: 37944766 DOI: 10.1016/j.chemosphere.2023.140646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/30/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
A significant surge in the exploitation of uranium resources has resulted in considerable amounts of radioactive effluents. Thus, efficient and eco-friendly uranium removal strategies need to be explored to ensure ecological safety and resource recovery. In this study, we investigated the resistance of Halomonas campaniensis strain ZFSY-04, isolated from an evaporation pool at a uranium mine site, and its potential mechanism of uranium (Ⅵ) removal. The results showed that the strain exhibited unique uranium tolerance and its growth was not significantly inhibited under a uranium concentration of 700 mg/L. It had a maximum loading capacity of 865.40 mg/g (dry weight), achieved following incubation under uranium concentration of 100 mg/L, pH 6.0, and temperature 30 °C, for 2 h, indicating that the removal of uranium by the strain was efficient and rapid. Combined with kinetic, isothermal, thermodynamic, and microspectral analyses, the mechanism of uranium loading by strain ZFSY-04 was metabolism-dependent and diverse, including, physical and chemical adsorption on the cell surface, extracellular biomineralisation, intracellular bioaccumulation, and biomineralisation. Our results highlight the unique properties of indigenous strains, including high resistance, high efficiency, rapid uranium removal, and various uranium removal strategies, which make it suitable as a new tool for in situ bioremediation and uranium-contaminated environmental resource recovery.
Collapse
Affiliation(s)
- Guangwen Feng
- Research Center of Radiation Ecology and Ion Beam Biotechnology, College of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang, 830017, PR China
| | - Yu Mao
- Research Center of Radiation Ecology and Ion Beam Biotechnology, College of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang, 830017, PR China
| | - Gen Xie
- Research Center of Radiation Ecology and Ion Beam Biotechnology, College of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang, 830017, PR China
| | - Henglei Chen
- Research Center of Radiation Ecology and Ion Beam Biotechnology, College of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang, 830017, PR China
| | - Jun Wang
- Research Center of Radiation Ecology and Ion Beam Biotechnology, College of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang, 830017, PR China
| | - Peihong Mao
- Research Center of Radiation Ecology and Ion Beam Biotechnology, College of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang, 830017, PR China
| | - Jie Lv
- College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, 830017, PR China.
| |
Collapse
|
6
|
Jeong D, Baik MH, Jung EC, Ko MS, Um W, Ryu JH. Potential of indigenous bacteria driven U(VI) reduction under relevant deep geological repository (DGR) conditions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121674. [PMID: 37085104 DOI: 10.1016/j.envpol.2023.121674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/07/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
Understanding the biogeochemical U redox processes is crucial for controlling U mobility and toxicity under conditions relevant to deep geological repositories (DGRs). In this study, we examined the microbial reduction of aqueous hexavalent uranium U(VI) [U(VI)aq] by indigenous bacteria in U-contaminated groundwater. Three indigenous bacteria obtained from granitic groundwater at depths of 44-60 m (S1), 92-116 m (S2), and 234-244 m (S3) were used in U(VI)aq bioreduction experiments. The concentration of U(VI)aq was monitored to evaluate its removal efficiency for 24 weeks under anaerobic conditions with the addition of 20 mM sodium acetate. During the anaerobic reaction, U(VI)aq was precipitated in the form of U(IV)-silicate with a particle size >100 nm. The final U(VI)aq removal efficiencies were 37.7%, 43.1%, and 57.8% in S1, S2, and S3 sample, respectively. Incomplete U(VI)aq removal was attributed to the presence of a thermodynamically stable calcium uranyl carbonate complex in the U-contaminated groundwater. High-throughput 16S rRNA gene sequencing analysis revealed the differences in indigenous bacterial communities in response to the depth, which affected to the U(VI)aq removal efficiency. Pseudomonas peli was found to be a common bacterium related to U(VI)aq bioreduction in S1 and S2 samples, while two SRB species, Thermodesulfovibrio yellowstonii and Desulfatirhabdium butyrativorans, played key roles in the bioreduction of U(VI)aq in S3 sample. These results indicate that remediation of U(VI)aq is possible by stimulating the activity of indigenous bacteria in the DGR environment.
Collapse
Affiliation(s)
- Dawoon Jeong
- Disposal Safety Evaluation R&D Division, Korea Atomic Energy Research Institute, 111, Daedeok-daero 989 Beon-gil, Yuseong-gu, Daejeon-si, 34057, the Republic of Korea.
| | - Min Hoon Baik
- Disposal Safety Evaluation R&D Division, Korea Atomic Energy Research Institute, 111, Daedeok-daero 989 Beon-gil, Yuseong-gu, Daejeon-si, 34057, the Republic of Korea
| | - Euo Chang Jung
- Nuclear Chemistry Technology Division, Korea Atomic Energy Research Institute, 111, Daedeok-daero 989 Beon-gil, Yuseong-gu, Daejeon-si, 34057, the Republic of Korea
| | - Myoung-Soo Ko
- Department of Energy and Resources Engineering, Kangwon National University, 1, Gangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Wooyong Um
- Division of Advanced Nuclear Engineering, Pohang University of Science and Technology, 77, Cheongam-ro, Nam-Gu, Pohang-si, Gyeongsangbuk-do, 37673, Republic of Korea
| | - Ji-Hun Ryu
- Disposal Safety Evaluation R&D Division, Korea Atomic Energy Research Institute, 111, Daedeok-daero 989 Beon-gil, Yuseong-gu, Daejeon-si, 34057, the Republic of Korea.
| |
Collapse
|
7
|
Hu Z, Zhou Z, Guo J, Liu Y, Yang S, Guo Y, Wang L, Sun Z, Yang Z. Surface Engineering Design of Nano FeS@ Stenotrophomonas sp. by Ultrasonic Chemical Method for Efficient U(VI) and Th(IV) Extraction. TOXICS 2023; 11:297. [PMID: 37112524 PMCID: PMC10144925 DOI: 10.3390/toxics11040297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/14/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Nano-FeS has great potential for use in the management of radioactive contaminants. In this paper, we prepared a FeS@Stenotrophomonas sp. composite material by ultrasonic chemistry, and it showed excellent removal of uranium and thorium from the solution. Through optimization of the experimental conditions, it was found that the maximum adsorption capacities for uranium and thorium reached 481.9 and 407.5 mg/g for a composite made with a synthetic ratio of 1:1, pH 5 and 3.5, respectively, for U and Th, and sonication for 20 min. Compared with those of FeS or Stenotrophomonas alone, the removal capacity was greatly improved. The results of a mechanistic study indicated that efficient removal of the uranium and thorium was due to ion exchange, reduction, and microbial surface adsorption. FeS@Stenotrophomonas sp. could be applied to U(VI) and Th(IV) extraction for radioactive water.
Collapse
Affiliation(s)
- Zhongqiang Hu
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China
- School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang 330013, China
| | - Zhongkui Zhou
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China
- School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang 330013, China
| | - Jianping Guo
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China
- School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang 330013, China
| | - Yong Liu
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China
- School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang 330013, China
| | - Shunjing Yang
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China
- School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang 330013, China
| | - Yadan Guo
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China
- School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang 330013, China
| | - Liping Wang
- School of Environmental and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Zhanxue Sun
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China
- School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang 330013, China
| | - Zhihui Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| |
Collapse
|
8
|
Hu Z, Zhou Z, Zhou Y, Zheng L, Guo J, Liu Y, Sun Z, Yang Z, Yu X. Synergy of surface adsorption and intracellular accumulation for removal of uranium with Stenotrophomonas sp: Performance and mechanisms. ENVIRONMENTAL RESEARCH 2023; 220:115093. [PMID: 36574801 DOI: 10.1016/j.envres.2022.115093] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/10/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Uranium is well-known to have serious adverse effects on the ecological environment and human health. Bioremediation stands out among many remediation methods owing to its being economically feasible and environmentally friendly. This study reported a great promising strategy for eliminating uranium by Stenotrophomonas sp. CICC 23833 in the aquatic environment. The bacterium demonstrated excellent uranium adsorption capacity (qmax = 392.9 mg/g) because of the synergistic effect of surface adsorption and intracellular accumulation. Further analysis revealed that hydroxyl, carboxyl, phosphate groups and proteins of microorganisms were essential in uranium adsorption. Intracellular accumulation was closely related to cellular activity, and the efficiency of uranium processing by the permeabilized bacterial cells was significantly improved. In response to uranium stress, the bacterium was found to release multiple ions in conjunction with uranium adsorption, which facilitates the maintenance of bacterial life activities and the conversion of uranyl to precipitates. These above results indicated that Stenotrophomonas sp. Had great potential application value for the remediation of uranium.
Collapse
Affiliation(s)
- Zhongqiang Hu
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, Jiangxi, China; School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang 330013, Jiangxi, China
| | - Zhongkui Zhou
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, Jiangxi, China; School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang 330013, Jiangxi, China.
| | - Yaoyu Zhou
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, Jiangxi, China; School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang 330013, Jiangxi, China; College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China.
| | - Lili Zheng
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jianping Guo
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, Jiangxi, China; School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang 330013, Jiangxi, China
| | - Yong Liu
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, Jiangxi, China; School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang 330013, Jiangxi, China
| | - Zhanxue Sun
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, Jiangxi, China; School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang 330013, Jiangxi, China
| | - Zhihui Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, Hunan, China
| | - Xiaoxia Yu
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, Jiangxi, China; School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang 330013, Jiangxi, China
| |
Collapse
|
9
|
Martínez-Rodríguez P, Sánchez-Castro I, Ojeda JJ, Abad MM, Descostes M, Merroun ML. Effect of different phosphate sources on uranium biomineralization by the Microbacterium sp. Be9 strain: A multidisciplinary approach study. Front Microbiol 2023; 13:1092184. [PMID: 36699588 PMCID: PMC9868770 DOI: 10.3389/fmicb.2022.1092184] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/16/2022] [Indexed: 01/11/2023] Open
Abstract
Introduction Industrial activities related with the uranium industry are known to generate hazardous waste which must be managed adequately. Amongst the remediation activities available, eco-friendly strategies based on microbial activity have been investigated in depth in the last decades and biomineralization-based methods, mediated by microbial enzymes (e.g., phosphatase), have been proposed as a promising approach. However, the presence of different forms of phosphates in these environments plays a complicated role which must be thoroughly unraveled to optimize results when applying this remediation process. Methods In this study, we have looked at the effect of different phosphate sources on the uranium (U) biomineralization process mediated by Microbacterium sp. Be9, a bacterial strain previously isolated from U mill tailings. We applied a multidisciplinary approach (cell surface characterization, phosphatase activity, inorganic phosphate release, cell viability, microscopy, etc.). Results and Discussion It was clear that the U removal ability and related U interaction mechanisms by the strain depend on the type of phosphate substrate. In the absence of exogenous phosphate substrate, the cells interact with U through U phosphate biomineralization with a 98% removal of U within the first 48 h. However, the U solubilization process was the main U interaction mechanism of the cells in the presence of inorganic phosphate, demonstrating the phosphate solubilizing potential of the strain. These findings show the biotechnological use of this strain in the bioremediation of U as a function of phosphate substrate: U biomineralization (in a phosphate free system) and indirectly through the solubilization of orthophosphate from phosphate (P) containing waste products needed for U precipitation.
Collapse
Affiliation(s)
- Pablo Martínez-Rodríguez
- Department of Microbiology, University of Granada, Granada, Spain,*Correspondence: Pablo Martínez-Rodríguez, ✉
| | | | - Jesús J. Ojeda
- Department of Chemical Engineering, Faculty of Science and Engineering, Swansea University, Swansea, United Kingdom
| | - María M. Abad
- Centro de Instrumentación Científica (CIC), University of Granada, Granada, Spain
| | - Michael Descostes
- Environmental R&D Department, ORANO Mining, Chatillon, France,Centre de Géosciences, MINES Paris, PSL University, Fontainebleau, France
| | | |
Collapse
|
10
|
Chen S, Cheng Y, Zeng Q, Zhu T, Li F, Lan T, Yang Y, Yang J, Liao J, Liu N. Accurate determination of tetravalent uranium reduced by microorganisms via a potentiometric titration procedure. RADIOCHIM ACTA 2022. [DOI: 10.1515/ract-2022-0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Although bioreduction induced by microorganisms has been considered to play an important role in the chemical and migration behaviors of uranium in nature, the accurate determination of tetravalent uranium reduced by microorganisms is still difficult to achieve. In this work, potentiometric titration via K2Cr2O7 was used to quantitatively determine the microorganism reduced tetravalent uranium (U(IV)) for the first time. By evaluating the influence of microorganism substance content on the titration of U(IV), the appropriate determination range of U(IV) and biomass was confirmed, and U(IV) induced by bioreduction in three microorganisms was determined. With this method, U(IV) of more than 0.12 mg in microorganisms can be quantitatively measured with an accuracy of 2.2% and a precision of 1.3%, which has been established with the premise that the pretreatment biomass and quantity of U(IV) are in an appropriate range. Compared with the estimated values via the changes in hexavalent uranium (U(VI)) concentration in the bioreduction system, the results obtained by this method can more accurately reflect the quantity of U(IV) in microorganisms. This work can help us to better understand the bioreduction behavior of uranium in the environment.
Collapse
Affiliation(s)
- Shunzhang Chen
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University , Chengdu 610064 , P.R. China
| | - Yanxia Cheng
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University , Chengdu 610064 , P.R. China
| | - Qian Zeng
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University , Chengdu 610064 , P.R. China
| | - Ting Zhu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University , Chengdu 610064 , P.R. China
| | - Feize Li
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University , Chengdu 610064 , P.R. China
| | - Tu Lan
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University , Chengdu 610064 , P.R. China
| | - Yuanyou Yang
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University , Chengdu 610064 , P.R. China
| | - Jijun Yang
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University , Chengdu 610064 , P.R. China
| | - Jiali Liao
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University , Chengdu 610064 , P.R. China
| | - Ning Liu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University , Chengdu 610064 , P.R. China
| |
Collapse
|
11
|
Fan W, Feng N, Xu G, Zhang X, Zhao X, Xu G, Wu H, Qiu G, Xie J. Preparation of CeO 2@C nanomaterials by adsorption of metal ions on microbial waste. NANOTECHNOLOGY 2022; 33:315702. [PMID: 35443235 DOI: 10.1088/1361-6528/ac6885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
The use of microbial adsorption for metal ions to prepare novel carbon-supported metal nanomaterials has attracted growing research attention. However, the relationship between the adsorbed metal content and catalytic performance of the resulting nanomaterials is unclear. In this work,Pichia pastoris residueswas utilized to adsorb Ce(Ⅲ) at different metal ion concentrations, and then CeO2@C nanomaterials were prepared by pyrolysis. The effects of solution pH and adsorption behavior were investigated. The prepared nanostructures were characterized using electron microscopy and different spectroscopy methods, and their catalytic performances in the removal of salicylic acid from solution by catalytic ozonation were invested. The microbial residue had a metal uptake of 172.00 ± 2.82 mg· g-1at pH 6. In addition, the efficiency of total organic carbon (TOC) removal increased from 21.54% to 34.10% with an increase in metal content in the catalysts from 0 mg· g-1to 170.05 mg· g-1. After pyrolysis, the absorbed Ce(Ⅲ) metal transformed to CeO2metal nanoparticles embedded in a carbon matrix and had a core-shell CeO2@C structure. Therefore, this work not only reveals a relationship between metal content and catalytic performance, but also provides an approach for studying performance of materials with different metal contents loaded on various carriers.
Collapse
Affiliation(s)
- Wei Fan
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, People's Republic of China
- Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, People's Republic of China
| | - Ningning Feng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, People's Republic of China
- Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, People's Republic of China
| | - Gangting Xu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, People's Republic of China
- Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, People's Republic of China
| | - Xin Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, People's Republic of China
- Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, People's Republic of China
| | - Xiang Zhao
- Hunan Flag Bio-Tech Co., Ltd, Changsha 410083, People's Republic of China
| | - Gang Xu
- Hunan Flag Bio-Tech Co., Ltd, Changsha 410083, People's Republic of China
| | - Haiyan Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, People's Republic of China
- Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, People's Republic of China
| | - Guanzhou Qiu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, People's Republic of China
- Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, People's Republic of China
| | - Jianping Xie
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, People's Republic of China
- Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, People's Republic of China
| |
Collapse
|
12
|
Rong Q, Ling C, Lu D, Zhang C, Zhao H, Zhong K, Nong X, Qin X. Sb(III) resistance mechanism and oxidation characteristics of Klebsiella aerogenes X. CHEMOSPHERE 2022; 293:133453. [PMID: 34971630 DOI: 10.1016/j.chemosphere.2021.133453] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 12/15/2021] [Accepted: 12/25/2021] [Indexed: 06/14/2023]
Abstract
Resistant bacteria are potential natural materials for the bioremediation of soil metalloid pollution. A strain isolated from farmland soil chronically exposed to Sb was identified as K. aerogenes X with high antimonite [Sb(III)] tolerance and oxidation ability. The resistance mechanism of K. aerogenes X and its extracellular polymeric substances (EPS), antioxidant enzymes, and oxidation characteristics in Sb(III) stress were investigated in this study by stress incubation experiments and FTIR. The biotoxicity of Sb was limited by the binding of the organic compounds in EPS, and the anionic functional groups (e.g., amino, carboxyl and hydroxyl groups, etc.) present in the cell envelope were the components primarily responsible for the metalloid-binding capability of K. aerogenes X. The K. aerogenes X can oxidize Sb(III), and its metabolites induce changes in reactive oxygen species (ROS), catalase (CAT), total superoxide dismutase (SOD) and glutathione s-transferase (GSH-S) activity, indicating that the resistance mechanisms of K. aerogenes X are mediated by oxidative stress, EPS restriction and cell damage. Oxidation of Sb(III) is driven by interactions in intracellular oxidation, cell electron transport, extracellular metabolism including proteins and low molecular weight components (LMWs). LMWs (molecular weight <3 kDa) are the main driving factor of Sb(III) oxidation. In addition, Sb resistance genes arsA, arsB, arsC, arsD and acr3 and potential oxidation gene arsH were identified in K. aerogenes X. Owing to its natural origin, high tolerance and oxidation ability, K. aerogenes X could serve as a potential bioremediation material for the mitigation of Sb(III) in contaminated areas.
Collapse
Affiliation(s)
- Qun Rong
- College of Life Science and Technology GuangXi University, Nanning, PR China
| | - Caiyuan Ling
- College of Resources, Environment and Materials GuangXi University, Nanning, PR China
| | - Dingtian Lu
- College of Resources, Environment and Materials GuangXi University, Nanning, PR China
| | - Chaolan Zhang
- College of Resources, Environment and Materials GuangXi University, Nanning, PR China.
| | - Hecheng Zhao
- College of Resources, Environment and Materials GuangXi University, Nanning, PR China
| | - Kai Zhong
- College of Resources, Environment and Materials GuangXi University, Nanning, PR China
| | - Xinyu Nong
- College of Resources, Environment and Materials GuangXi University, Nanning, PR China
| | - Xingzi Qin
- College of Resources, Environment and Materials GuangXi University, Nanning, PR China
| |
Collapse
|
13
|
Performance and mechanism for U(VI) adsorption in aqueous solutions with amino-modified UiO-66. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07968-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
14
|
Biodiversity of Actinomycetes from Heavy Metal Contaminated Technosols. Microorganisms 2021; 9:microorganisms9081635. [PMID: 34442714 PMCID: PMC8401206 DOI: 10.3390/microorganisms9081635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 01/02/2023] Open
Abstract
Technosols are artificial soils generated by diverse human activities and frequently contain toxic substances resulting from industrial processes. Due to lack of nutrients and extreme physico-chemical properties, they represent environments with limited bacterial colonization. Bacterial populations of technosols are dominated usually by Actinobacteria, including streptomycetes, known as a tremendous source of biotechnologically important molecules. In this study, the biodiversity of streptomycete-like isolates from several technosols, mainly mine soils and wastes (landfills and sludge) in Slovakia, was investigated. The combination of basic morphological and biochemical characterisations, including heavy metal resistance determination, and molecular approaches based on 16S rRNA gene analysis were used for the identification of the bacterial strains. From nine isolates of Actinobacteria collected from different habitats, one was found to represent a new species within the Crossiella genus. Eight other isolates were assigned to the genus Streptomyces, of which at least one could represent a new bacterial species. Some isolates showed high resistance to Pb, Zn, Cu or Ni. The most tolerated metal was Pb. The results obtained in this study indicate that technosols are a prospective source of new actinomycete species resistant to heavy metals what underlines their bioremediation potential.
Collapse
|
15
|
Jagannathan SV, Manemann EM, Rowe SE, Callender MC, Soto W. Marine Actinomycetes, New Sources of Biotechnological Products. Mar Drugs 2021; 19:365. [PMID: 34201951 PMCID: PMC8304352 DOI: 10.3390/md19070365] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/14/2021] [Accepted: 06/21/2021] [Indexed: 02/07/2023] Open
Abstract
The Actinomycetales order is one of great genetic and functional diversity, including diversity in the production of secondary metabolites which have uses in medical, environmental rehabilitation, and industrial applications. Secondary metabolites produced by actinomycete species are an abundant source of antibiotics, antitumor agents, anthelmintics, and antifungals. These actinomycete-derived medicines are in circulation as current treatments, but actinomycetes are also being explored as potential sources of new compounds to combat multidrug resistance in pathogenic bacteria. Actinomycetes as a potential to solve environmental concerns is another area of recent investigation, particularly their utility in the bioremediation of pesticides, toxic metals, radioactive wastes, and biofouling. Other applications include biofuels, detergents, and food preservatives/additives. Exploring other unique properties of actinomycetes will allow for a deeper understanding of this interesting taxonomic group. Combined with genetic engineering, microbial experimental evolution, and other enhancement techniques, it is reasonable to assume that the use of marine actinomycetes will continue to increase. Novel products will begin to be developed for diverse applied research purposes, including zymology and enology. This paper outlines the current knowledge of actinomycete usage in applied research, focusing on marine isolates and providing direction for future research.
Collapse
Affiliation(s)
| | | | | | | | - William Soto
- Department of Biology, College of William & Mary, Williamsburg, VA 23185, USA; (S.V.J.); (E.M.M.); (S.E.R.); (M.C.C.)
| |
Collapse
|
16
|
Banala UK, Indradyumna Das NP, Toleti SR. Uranium sequestration abilities of Bacillus bacterium isolated from an alkaline mining region. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125053. [PMID: 33453672 DOI: 10.1016/j.jhazmat.2021.125053] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
The present study elaborates uranium sequestration by bacteria from alkaline wastewaters. In the investigation, a few bacterial strains were isolated from alkaline uranium mine water and were tested for uranium sequestration properties 16S rRNA analysis assigned the 10 bacterial isolates to 4 genera of Actinobacteria and Firmicutes. Among all the isolates tested, the strain Bacillus aryabhattai (TP03) has shown superior sequestration capacity at 5 and 10 mg/L U in 1 mM carbonate-bicarbonate buffer at pH 9.2. At low uranium concentrations (5 mg/L as uranyl carbonate), the strain could sequester ~70% of the uranium in 6 h with a loading capacity of 4.3 mg U/g dry bacterial biomass. Increase in carbonate-bicarbonate buffer concentrations and pH reduced the sequestration capacity. Scanning electron microscopy and energy dispersive X-ray fluorescence spectroscopy studies indicated the presence of uranium with the bacterial biomass. Fourier transform infra-red spectroscopy results confirmed the uranium sequestration by cell membrane phosphate, amide, and carboxyl functional groups. Transmission electron microscopy study showed uranium presence within the cell cytoplasm, thus supporting the hypothesis on active metabolism-dependent bioaccumulation of uranium. The kinetics study of uranium sequestration was well fitted to the pseudo-second-order model. Overall, this study infers that the isolated alkaliphilic bacteria from the mine waters have significant sequestration property for treating uranium-containing alkaline wastewaters.
Collapse
Affiliation(s)
- Uday Kumar Banala
- Radiological and Environmental Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India
| | | | - Subba Rao Toleti
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India; Water and Steam Chemistry Division, Chemistry Group, Bhabha Atomic Research Centre, Kalpakkam 603102, India.
| |
Collapse
|
17
|
Efficient removal of U(VI) from aqueous solution using the biocomposite based on sugar beet pulp and pomelo peel. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07651-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Liu L, Chen J, Liu F, Song W, Sun Y. Bioaccumulation of uranium by Candida utilis: Investigated by water chemistry and biological effects. ENVIRONMENTAL RESEARCH 2021; 194:110691. [PMID: 33400947 DOI: 10.1016/j.envres.2020.110691] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 12/25/2020] [Accepted: 12/26/2020] [Indexed: 06/12/2023]
Abstract
The bioaccumulation of hexavalent uranium (U(VI)) on Candida utilis (C. utilis) and its biological effects were investigated via batch and biologic techniques. The bioaccumulation mechanism of U(VI) and C. utilis were characterized by SEM, TEM, FT-IR and XPS. The batch results showed that C. utilis had a high adsorption capacity (41.15 mg/g wet cells at pH 5.0) and high equilibrium rate (~100% within 3.5 h). The analysis of intracellular hydrogen peroxides and malondialdehyde suggested that the growth of C. utilis was inhibited under different concentrations of U(VI) due to the abundant production of reactive oxide species. The activity of intracellular antioxidants (e.g., super oxide dismutase and glutathione) was significantly enhanced under U(VI) stress, indicating the anti-toxic effect of C. utilis cells under low U(VI) stress. These results indicated that C. utilis is an ideal biosorbent for removing radionuclides in environmental remediation.
Collapse
Affiliation(s)
- Lei Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China; School of Environment and Chemical Engineering, Anhui Vocational and Technical College, Hefei, 230011, PR China
| | - Jinwu Chen
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
| | - Fang Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
| | - Wencheng Song
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions and School for Radiological and Interdisciplinary Sciences, Soochow University, 215123, Suzhou, PR China.
| | - Yubing Sun
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China.
| |
Collapse
|
19
|
Enhancement of U(VI) biosorption by Trichoderma harzianum mutant obtained by a cold atmospheric plasma jet. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07615-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Xie J, Fan W, Cui H, Feng N, Wang G, Wang H, Liu X, Qiu G, Wu H. A novel highly dispersed tetra-metal nano heterogeneous ozone catalyst derived from microbial adsorption and in situ pyrolysis. NANOTECHNOLOGY 2021; 32:065701. [PMID: 33210616 DOI: 10.1088/1361-6528/abb1ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In recent years, the pyrolysis of microbial biomasses that adsorb various metal ions has enabled the preparation of carbon-based polymetallic nanomaterials with excellent electrocatalytic and electrical energy storage properties. However, the preparation of ozone catalysts by this technique and the corresponding catalytic oxidation mechanism are still unclear. In this study, an Escherichia coli strain (BL21) was used for tetra-metal (Cu, Fe, Mn and Al) absorption and the obtained microbial biomass was pyrolyzed under the protection of a nitrogen flow at 700 °C and activated at 900 °C to prepare a microbial-char-based tetra-metal ozone catalyst (MCOC). This was used to degrade phenol and coking wastewater and exhibited a strong catalytic capability for coking wastewater, whose chemical oxygen demand removal efficiency of 70.86% is 16.7% higher than that of pure ozone and 14.67%, 7.21% and 3.58% higher than that of three commercial catalysts, respectively. It also improved the efficiency of ozonation for phenol by 33%. The MCOC was characterized by x-ray diffraction, x-ray photoelectron spectroscopy, scanning electron microscopy-energy-dispersive spectroscopy, transmission electron microscopy and other methods. The results demonstrated that the spherical metal nanoparticles had sizes ranging from 3 nm to 7 nm and that crystals of Fe2O3 and Fe3P were observed. The study showed that the MCOC promoted the production of more hydroxyl radicals and superoxides from ozone, which attack organics. The oxygen vacancies of the catalyst were also investigated. It was proved that the Lewis acid sites on the surface of metal oxides are the active centers of ozone decomposition. Therefore, this work provides a new method for the synthesis of multi-metal nanocomposites and expands the application of biosynthetic nanomaterials.
Collapse
Affiliation(s)
- Jianping Xie
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, People's Republic of China
- Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, People's Republic of China
| | - Wei Fan
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, People's Republic of China
- Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, People's Republic of China
| | - Hao Cui
- State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, Kunming Institute of Precious Metals, Kunming 650106, People's Republic of China
| | - Ningning Feng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, People's Republic of China
- Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, People's Republic of China
| | - Guozhen Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, People's Republic of China
- Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, People's Republic of China
| | - Hui Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, People's Republic of China
- Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, People's Republic of China
| | - Xinxing Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, People's Republic of China
- Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, People's Republic of China
| | - Guanzhou Qiu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, People's Republic of China
- Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, People's Republic of China
| | - Haiyan Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, People's Republic of China
- Key Laboratory of Biometallurgy, Ministry of Education, Changsha 410083, People's Republic of China
| |
Collapse
|
21
|
Bioleaching Studies of Uranium in a Rock Sample from Sinai Using Some Native Streptomyces and Aspergillus Species. Curr Microbiol 2021; 78:590-603. [PMID: 33392668 DOI: 10.1007/s00284-020-02301-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 11/20/2020] [Indexed: 10/22/2022]
Abstract
Sinai's important geographical and strategic position is attracting researchers to explore opportunities to maximize exploitation of its treasures, especially in the area of sustainable development. One of the fields of exploitation is extracting valuable metals from low-grade ores using green technologies. In this study, we examined the possibility of microbial leaching of uranium (U) from a rock sample collected from Wadi Naseib, Sinai, Egypt. Twenty previously isolated and tentatively identified native microorganisms, 10 Streptomyces and 10 Aspergillus, were used to make U-bioleaching using cells (direct) and cell metabolites (indirect). The tested isolates showed variable U-bioleaching efficiencies and the highest results was attained via the indirect method (57.2 ± 9.2% and 83.6 ± 2.3%) using two isolates that were identified genotypically as Streptomyces sp. EGY1 and Aspergillus niveus EGY2 respectively. TEM images showed that cells of A. niveus EGY2 made biomineralization, biosorption and bioaccumulation of U. The present study revealed that neither high acid production nor high phosphatase activities guarantees a high U-bioleaching efficiency. Many factors affecting the process were also studied using A. niveus EGY2. The highest U-bioleaching efficiency (87.8 ± 8.7%) was attained using pH 9, 160 rpm of both culturing and bioleaching steps, rock particle size of above 700 µm and 1% pulp density. U was recovered from leach liquor after optimization experiments using NaOH and its concentration was 64.35%. Our study revealed that Aspergillus niveus EGY2 could be promising in future scaling-up studies and pilot trials using the tested rock sample.
Collapse
|
22
|
Wei H, Dong F, Chen M, Zhang W, He M, Liu M. Removal of uranium by biogenetic jarosite coupled with photoinduced reduction in the presence of oxalic acid: a low-cost remediation technology. J Radioanal Nucl Chem 2020. [DOI: 10.1007/s10967-020-07125-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
23
|
Kong L, Ruan Y, Zheng Q, Su M, Diao Z, Chen D, Hou L, Chang X, Shih K. Uranium extraction using hydroxyapatite recovered from phosphorus containing wastewater. JOURNAL OF HAZARDOUS MATERIALS 2020; 382:120784. [PMID: 31446349 DOI: 10.1016/j.jhazmat.2019.120784] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 06/10/2023]
Abstract
A considerable amount of uranium (U(VI))-containing industrial wastewater is generated from both uranium mining and processing, and nuclear electrical power generation. Discharge of U(VI) containing wastewater causes severe damage to the environment and leads to a loss of resources. Uranium sorption on hydroxyapatite (HAP) has been studied extensively to address the abovementioned issues. In the present study, BC-HAP was recovered through phosphate sorption from wastewater, which was first reused as a potential sorbent for extracting uranium from aqueous solutions comparing to commercially available nano-HAP. The sorption behavior of uranium and its transformation on the recovered BC-HAP were investigated by conducting batch experiments as well as Fourier-transform infrared, scanning electron microscopy, and x-ray diffraction analyses. BC-HAP had superior sorption ability for uranium extraction. Autunite precipitant at nano-scale is observed after uranium sorption. Partial desorption of uranium was observed in the presence of Na2CO3 and NaHCO3. Surface complexation and phosphate dissolution precipitation contributed to the favorable uranium sorption. Thus, recovered BC-HAP can be widely used as a promising and cost-effective adsorbent to extract uranium from aqueous solution.
Collapse
Affiliation(s)
- Lingjun Kong
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Rural Non-point Source Pollution Comprehensive Management Technology Center of Guangdong Province, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, PR China
| | - Yang Ruan
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Rural Non-point Source Pollution Comprehensive Management Technology Center of Guangdong Province, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Qingying Zheng
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Rural Non-point Source Pollution Comprehensive Management Technology Center of Guangdong Province, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Minhua Su
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Rural Non-point Source Pollution Comprehensive Management Technology Center of Guangdong Province, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Zenghui Diao
- School of Environmental Science and Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Diyun Chen
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Rural Non-point Source Pollution Comprehensive Management Technology Center of Guangdong Province, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Li'an Hou
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Rural Non-point Source Pollution Comprehensive Management Technology Center of Guangdong Province, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Xiangyang Chang
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Rural Non-point Source Pollution Comprehensive Management Technology Center of Guangdong Province, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Kaimin Shih
- Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, PR China.
| |
Collapse
|
24
|
Song J, Han B, Song H, Yang J, Zhang L, Ning P, Lin Z. Nonreductive biomineralization of uranium by Bacillus subtilis ATCC-6633 under aerobic conditions. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2019; 208-209:106027. [PMID: 31442938 DOI: 10.1016/j.jenvrad.2019.106027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/01/2019] [Accepted: 08/10/2019] [Indexed: 06/10/2023]
Abstract
Nonreductive biomineralization of uranium is a promising methodology for the removal of uranium contamination as it provides stable products and wide applications. However, the efficiency of mineralization has become a major obstacle for the removal of uranium contamination by this technology, and the mineralizing process still remains largely obscure. To solve this problem in a practical way, we report a fast nonreductive biomineralization process of uranium by Bacillus subtilis ATCC-6633, a widespread bacterium with environmentally-friendly applications. In this system, we demonstrated that the size and crystallization degree of the obtained nonreduced biomineralized products is significantly superior to the results reported in the literature under comparable conditions. Meanwhile, combined with SEM, TEM, and FT-IR, a mineralization process of uranium transfer from the outer surface of the Bacillus subtilis ATCC-6633 to the internal has been clearly observed, which was accompanied by the evolution of amorphous U(VI) to crystalline uramphite. This work uncovers whole-process insights into the nonreductive biomineralization of uranium by Bacillus subtilis ATCC-6633, paving a new way for the rapid and sustained removal of uranium contamination.
Collapse
Affiliation(s)
- Jianing Song
- School of Environment and Energy, The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), South China University of Technology, Guangzhou, 510006, China; Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, South China University of Technology, Guangzhou, 510006, China
| | - Bin Han
- School of Environment and Energy, The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), South China University of Technology, Guangzhou, 510006, China; Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, South China University of Technology, Guangzhou, 510006, China
| | - Han Song
- School of Environment and Energy, The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), South China University of Technology, Guangzhou, 510006, China; Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, South China University of Technology, Guangzhou, 510006, China
| | - Jinrong Yang
- School of Environment and Energy, The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), South China University of Technology, Guangzhou, 510006, China; Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, South China University of Technology, Guangzhou, 510006, China
| | - Lijuan Zhang
- School of Environment and Energy, The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), South China University of Technology, Guangzhou, 510006, China; Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, South China University of Technology, Guangzhou, 510006, China.
| | - Ping Ning
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Zhang Lin
- School of Environment and Energy, The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), South China University of Technology, Guangzhou, 510006, China; Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
25
|
Liu L, Liu J, Liu X, Dai C, Zhang Z, Song W, Chu Y. Kinetic and equilibrium of U(VI) biosorption onto the resistant bacterium Bacillus amyloliquefaciens. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2019; 203:117-124. [PMID: 30897483 DOI: 10.1016/j.jenvrad.2019.03.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/01/2019] [Accepted: 03/06/2019] [Indexed: 06/09/2023]
Abstract
This study evaluated U(VI) biosorption properties by the resistant bacterium, Bacillus amyloliquefaciens, which was isolated from the soils with residual radionuclides. The effect of biosorption factors (uptake time, pH, ionic concentration, biosorbent dosage and temperature) on U(VI) removal was determined by batch experiments. The uptake processes were characterized by using SEM, FTIR, and XPS. The experimental data of U(VI) biosorption were fitted by the pseudo-second-order. The maximum uptake capacity was 179.5 mg/g at pH 6.0 by Langmuir model. The thermodynamic results: ΔGо, ΔHо and ΔSо for uptake processes were calculated as -6.359 kJ/mol, 14.20 kJ/mol and 67.19 J/mol/K, respectively. The results showed that the biosorption of Bacillus amyloliquefaciens will be an ideal method to remove radionuclides.
Collapse
Affiliation(s)
- Lei Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China; University of Science and Technology of China, Hefei, 230026, PR China; School of Environment and Chemical Engineering, Anhui Vocational and Technical College, Hefei, 230011, PR China
| | - Jing Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
| | - Xiaoting Liu
- School of Environment and Chemical Engineering, Anhui Vocational and Technical College, Hefei, 230011, PR China
| | - Chengwei Dai
- School of Environment and Chemical Engineering, Anhui Vocational and Technical College, Hefei, 230011, PR China
| | - Zexin Zhang
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
| | - Wencheng Song
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China.
| | - Yannan Chu
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China.
| |
Collapse
|
26
|
The immobilization mechanism of U(VI) induced by Bacillus thuringiensis 016 and the effects of coexisting ions. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.01.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
27
|
Sedlakova-Kadukova J, Kopcakova A, Gresakova L, Godany A, Pristas P. Bioaccumulation and biosorption of zinc by a novel Streptomyces K11 strain isolated from highly alkaline aluminium brown mud disposal site. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 167:204-211. [PMID: 30340085 DOI: 10.1016/j.ecoenv.2018.09.123] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/26/2018] [Accepted: 09/27/2018] [Indexed: 06/08/2023]
Abstract
Zinc biosorption and bioaccumulation by a novel extremely Zn tolerant Streptomyces K11 strain isolated from highly alkaline environment were examined. Temperature, similarly as biosorbent preparation, has negligible effect on the biosorption capacity but very strong effect on the process kinetics. Initial adsorption rate increased almost 10 times with the temperature increase from 10 to 50 °C and it was 30 times higher when non-dried biomass was used. The biosorption study revealed that the process was mainly chemically controlled, however at lower temperature intra-particle diffusion played significant role in the zinc biosorption. The experimental data fitted the Langmuir isotherm model with the maximum biosorption capacity 0.75 mmol g-1. The results of bioaccumulation onto a living biomass of Streptomyces K11 indicated very high bioaccumulation capacity of 4.4 mmol g-1. Zinc extracellular uptake (43%) slightly exceeded the intracellular accumulation (36%). High zinc bioaccumulation capacity was obviously related to extremely high zinc tolerance of Streptomyces K11.
Collapse
Affiliation(s)
- J Sedlakova-Kadukova
- Department of Microbiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Safarik University, Srobarova 2, 04154 Kosice, Slovakia.
| | - A Kopcakova
- Institute of Animal Physiology, Slovak Academy of Sciences, Soltesovej 4-6, 04001 Kosice, Slovakia
| | - L Gresakova
- Institute of Animal Physiology, Slovak Academy of Sciences, Soltesovej 4-6, 04001 Kosice, Slovakia
| | - A Godany
- Faculty of Natural Sciences, University of SS Cyril and Methodius in Trnava, J. Herdu Square 2, 917 01 Trnava, Slovakia
| | - P Pristas
- Department of Microbiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Safarik University, Srobarova 2, 04154 Kosice, Slovakia; Institute of Animal Physiology, Slovak Academy of Sciences, Soltesovej 4-6, 04001 Kosice, Slovakia
| |
Collapse
|
28
|
Kong L, Zhang H, Ji W, Shih K, Su M, Diao Z, Xu R, Hou L, Song G, Chen D. Recovery of phosphorus rich krill shell biowaste for uranium immobilization: A study of sorption behavior, surface reaction, and phase transformation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:630-636. [PMID: 30223240 DOI: 10.1016/j.envpol.2018.08.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/22/2018] [Accepted: 08/07/2018] [Indexed: 06/08/2023]
Abstract
Increased generation of shrimp shell from exploitation of krill results in emerging biowaste pollution, in addition, uranium pollution has drawn public concern due to the rapid development of nuclear power, uranium mining, and nuclear fuel processing. In this study, krill shells were recovered and used as a potential natural biosorbent for uranium immobilization, thereby enabling both uranium decontamination and krill shell reutilization. Interaction of uranium with krill shell surface and their transformation were investigated by using batch sorption experiments, scanning electron microscopy, and transmission electron microscopy. Krill shell had high uranium sorption ability. Uranium was transformed into a nano-scale precipitate. The mapping of phosphorus and uranium was related to the nano-scale precipitate, indicating that sorption of uranium was dependent on phosphorus. Surface chemisorption between phosphate in krill shell and uranium as well as the formation of the nano-scale precipitate were interpreted as the mechanism of uranium immobilization. Thus, natural krill shell waste has potential for extensive use as a promising and cost-effective sorbent for uranium immobilization and krill shell reutilization.
Collapse
Affiliation(s)
- Lingjun Kong
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China; Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Huimin Zhang
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Wei Ji
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Zhanjiang, China.
| | - Kaimin Shih
- Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Minhua Su
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Zenghui Diao
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Ruimei Xu
- The Analysis Test Instrument Center, Sun Yat-sen University, Guangzhou, 510275, China
| | - Li'an Hou
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Gang Song
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Diyun Chen
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
29
|
Zhang Z, Liu H, Song W, Ma W, Hu W, Chen T, Liu L. Accumulation of U(VI) on the Pantoea sp. TW18 isolated from radionuclide-contaminated soils. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2018; 192:219-226. [PMID: 29982006 DOI: 10.1016/j.jenvrad.2018.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/24/2018] [Accepted: 07/01/2018] [Indexed: 06/08/2023]
Abstract
Pantoea sp. TW18 isolated from radionuclide-contaminated soils was used for the bioremediation of radionuclides pollution. Accumulation mechanism of U(VI) on Pantoea sp. TW18 was investigated by batch experiments and characterization techniques. The batch experiments revealed that Pantoea sp. TW18 rapidly reached accumulation equilibrium at approximately 4 h with a high accumulation capacity (79.87 mg g-1 at pH 4.1 and T = 310 K) for U(VI). The accumulation data of U(VI) onto Pantoea sp. TW18 can be satisfactorily fitted by pseudo-second-order model. The accumulation of U(VI) on Pantoea sp. TW18 was affected by pH levels, not independent of ionic strength. Analysis of the FT-IR and XPS spectra demonstrated that accumulated U(VI) ions were primarily bound to nitrogen- and oxygen-containing functional groups (i.e., carboxyl, amide and phosphoryl groups) on the Pantoea sp. TW18 surface. This study showed that Pantoea sp. TW18 can be considered as a promising sorbent for remediation of radionuclides in environmental cleanup.
Collapse
Affiliation(s)
- Zexin Zhang
- School of Resources and Environmental Engineering, Hefei University of Technology, 230009, Hefei, PR China
| | - Haibo Liu
- School of Resources and Environmental Engineering, Hefei University of Technology, 230009, Hefei, PR China.
| | - Wencheng Song
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 230031, Hefei, PR China.
| | - Wenjie Ma
- School of Resources and Environmental Engineering, Hefei University of Technology, 230009, Hefei, PR China
| | - Wei Hu
- School of Resources and Environmental Engineering, Hefei University of Technology, 230009, Hefei, PR China
| | - Tianhu Chen
- School of Resources and Environmental Engineering, Hefei University of Technology, 230009, Hefei, PR China
| | - Lei Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 230031, Hefei, PR China
| |
Collapse
|
30
|
Liu L, Zhang Z, Song W, Chu Y. Removal of radionuclide U(VI) from aqueous solution by the resistant fungus Absidia corymbifera. J Radioanal Nucl Chem 2018. [DOI: 10.1007/s10967-018-6209-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
Kolhe N, Zinjarde S, Acharya C. Responses exhibited by various microbial groups relevant to uranium exposure. Biotechnol Adv 2018; 36:1828-1846. [PMID: 30017503 DOI: 10.1016/j.biotechadv.2018.07.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 07/08/2018] [Accepted: 07/09/2018] [Indexed: 11/28/2022]
Abstract
There is a strong interest in knowing how various microbial systems respond to the presence of uranium (U), largely in the context of bioremediation. There is no known biological role for uranium so far. Uranium is naturally present in rocks and minerals. The insoluble nature of the U(IV) minerals keeps uranium firmly bound in the earth's crust minimizing its bioavailability. However, anthropogenic nuclear reaction processes over the last few decades have resulted in introduction of uranium into the environment in soluble and toxic forms. Microbes adsorb, accumulate, reduce, oxidize, possibly respire, mineralize and precipitate uranium. This review focuses on the microbial responses to uranium exposure which allows the alteration of the forms and concentrations of uranium within the cell and in the local environment. Detailed information on the three major bioprocesses namely, biosorption, bioprecipitation and bioreduction exhibited by the microbes belonging to various groups and subgroups of bacteria, fungi and algae is provided in this review elucidating their intrinsic and engineered abilities for uranium removal. The survey also highlights the instances of the field trials undertaken for in situ uranium bioremediation. Advances in genomics and proteomics approaches providing the information on the regulatory and physiologically important determinants in the microbes in response to uranium challenge have been catalogued here. Recent developments in metagenomics and metaproteomics indicating the ecologically relevant traits required for the adaptation and survival of environmental microbes residing in uranium contaminated sites are also included. A comprehensive understanding of the microbial responses to uranium can facilitate the development of in situ U bioremediation strategies.
Collapse
Affiliation(s)
- Nilesh Kolhe
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune 411007, India; Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Smita Zinjarde
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune 411007, India; Department of Microbiology, Savitribai Phule Pune University, Pune 411007, India.
| | - Celin Acharya
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Trombay, Mumbai 400094, India.
| |
Collapse
|
32
|
Chen H, Chen QS, Huang B, Wang SW, Wang LY. High-potential use of l-Cysh modified bentonite for efficient removal of U(VI) from aqueous solution. J Radioanal Nucl Chem 2018. [DOI: 10.1007/s10967-018-5744-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
33
|
Yang X, Gao Y, Jiang M, He D, Liao S, Hou D, Yan X, Long W, Wu Y, Tan N. Preparation, characterization, uranium (VI) biosorption models, and conditions optimization by response surface methodology (RSM) for amidoxime-functionalized marine fungus materials. RADIOCHIM ACTA 2017. [DOI: 10.1515/ract-2016-2678] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Amidoxime-functionalized marine fungus Fusarium sp. #ZZF51 (ZGDA) was synthesized and studied to adsorb uranium (VI) from the aqueous solution. Different instrumental techniques such as FTIR, SEM, and TGA were employed for the characterization of the manufactured materials, and theirs ability of removal uranium (VI) was optimized using RSM. The experimental results showed the maximum adsorption capacity for the synthesized materials was 230.78 mg g−1 at the following optimization conditions: S–L ratio 150 mg L−1, pH 5.13, uranium (VI) initial concentration 40 mg L−1, and equilibrium time 122.40 min. More than 85% of the absorbed uranium (VI) could be desorbed by 0.5 or 1.0 mol L−1 HCl, and the modified mycelium could be reused at least five times. The thermodynamic experimental data of adsorption uranium (VI) could fit better with Langumir and Freundlich isotherms models, and the pseudo-second-order model was better to interpret the kinetics process. The modified fungus materials exhibited the better sorption capacity for uranium (VI) in comparison with raw biomass should be attributed to the strong chelation of amidoxime to uranium (VI) ions.
Collapse
Affiliation(s)
- Xuechun Yang
- School of Chemistry and Chemical Engineering , University of South China , Hengyang 421001, P.R. China
| | - Yang Gao
- School of Chemistry and Chemical Engineering , University of South China , Hengyang 421001, P.R. China
| | - Min Jiang
- School of Chemistry and Chemical Engineering , University of South China , Hengyang 421001, P.R. China
| | - Dianxiong He
- School of Chemistry and Chemical Engineering , University of South China , Hengyang 421001, P.R. China
| | - Sen Liao
- School of Chemistry and Chemical Engineering , University of South China , Hengyang 421001, P.R. China
| | - Dan Hou
- School of Chemistry and Chemical Engineering , University of South China , Hengyang 421001, P.R. China
| | - Xueming Yan
- School of Chemistry and Chemical Engineering , University of South China , Hengyang 421001, P.R. China
| | - Wei Long
- School of Chemistry and Chemical Engineering , University of South China , Hengyang 421001, P.R. China
| | - Yaxin Wu
- School of Chemistry and Chemical Engineering , University of South China , Hengyang 421001, P.R. China
| | - Ni Tan
- School of Chemistry and Chemical Engineering , University of South China , No. 28, Changsheng Road (West), Zhengxiang District , Hengyang 421001, Hunan Province, P.R. China
| |
Collapse
|
34
|
Tan L, Dong H, Liu X, He J, Xu H, Xie J. Mechanism of palladium(ii) biosorption by Providencia vermicola. RSC Adv 2017. [DOI: 10.1039/c6ra27589c] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Palladium uptake process, multi-scale visualization and functional groups of Providencia vermicola biomass in palladium biosorption were analyzed for the first time.
Collapse
Affiliation(s)
- Ling Tan
- School of Minerals Processing and Bioengineering
- Central South University
- Changsha 410083
- China
| | - Haigang Dong
- State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals
- Kunming Institute of Precious Metals
- Kunming 650106
- China
| | - Xinxing Liu
- School of Minerals Processing and Bioengineering
- Central South University
- Changsha 410083
- China
| | - Jia He
- School of Minerals Processing and Bioengineering
- Central South University
- Changsha 410083
- China
| | - Hang Xu
- School of Minerals Processing and Bioengineering
- Central South University
- Changsha 410083
- China
| | - Jianping Xie
- School of Minerals Processing and Bioengineering
- Central South University
- Changsha 410083
- China
| |
Collapse
|