1
|
Zeng H, Yan J, Zhang F, Deng X, Zhang S. Response of sediment with Ca/Al composites capping to cyanobacterial bloom decline: Blocking the formation and the release of sediment iron-bound phosphorus (Fe-P). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177044. [PMID: 39427896 DOI: 10.1016/j.scitotenv.2024.177044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/08/2024] [Accepted: 10/16/2024] [Indexed: 10/22/2024]
Abstract
The immobilization of phosphorus (P) in sediments plays a pivotal role in managing lake eutrophication over the long term. Therefore, key factors that may cause uncertainties in P fixation are of increasing interest to researchers. Calcium‑aluminum composites (CA) can passivate sediment P well; however, the effect of cyanobacterial bloom decline on their sediment P remediation remains unclear. In this study, CA addition significantly reduced P equilibrium concentration as well as augmented P adsorption capacity of sediment characterized as cyanobacterial dominance zone (CDZ). The results of the simulated experiments on cyanobacterial bloom decline indicated that the algae decomposition led to a rapid decrease in dissolved oxygen (DO) level, and to release amounts of P, thus increasing the P concentration in the overlying water. The released algal P into the sediment primarily encouraged the formation of iron-bound phosphorus (Fe-P), followed by calcium-bound phosphorus (Ca-P). The subsequent anaerobic incubation led to a notable release of the newly formed Fe-P, strengthening the anaerobic P release from sediments. Conversely, CA-capping accelerated the adsorption of algal P by sediments, and promoted the formation of Ca-P in sediment from cyanobacterial P, hindering the generation of reactive Fe-P. Moreover, during subsequent anaerobic incubation, the P forms in sediments capped with CA remained stable, showing no obvious P release. These findings suggested that CA capping induced the formation of stable P from algal P and disrupted the positive feedback effect between P contamination in sediments and cyanobacterial blooms, which would provide valuable insights for the remediation of sediments in CDZ.
Collapse
Affiliation(s)
- Huilang Zeng
- College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Jin Yan
- College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Fengrui Zhang
- College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xuwei Deng
- State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Shenghua Zhang
- College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, China.
| |
Collapse
|
2
|
Li Y, Tu Y, Sun T, Duan Y, Kou J, Li W, Gao J. Source apportionment of organic carbon and nitrogen in sediments from river and lake in the highly urbanized Changjiang Delta. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135590. [PMID: 39178786 DOI: 10.1016/j.jhazmat.2024.135590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/03/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
While the impact of human activities on organic matter pollution is recognized, how these impacts vary seasonally in the Changjiang Delta needs further investigation. This study addresses this gap by investigating seasonal variations in organic matter sources and ecological responses to human activities in Changjiang Delta sediments. Total organic carbon (TOC), total nitrogen (TN), and carbon (δ13C) and nitrogen (δ15N) isotopic compositions of surface sediments collected from the Taipu River and Dalian Lake wetland were analyzed. Both water bodies exhibited similar seasonal trends for TOC and TN, with the Taipu River containing an average of 0.46% and 0.03% higher concentrations of TOC and TN, respectively, compared to Dalian Lake. Additionally, the organic index (OI) and organic nitrogen (ON) index were elevated in both water bodies during the wet season. Sediments from Dalian Lake remained uncontaminated to moderately contaminated, while those from the Taipu River were generally classified as moderately to heavily contaminated. Stable isotope analysis identified terrestrial C3 plants (averaging 25.5%), C4 plants (averaging 16.0%), and municipal wastewater (averaging 16.0%) as the main contributors to organic matter in the sediments. These findings suggest that terrestrial plant material and municipal wastewater are key targets for managing organic matter contamination in the Changjiang Delta. Implementing strategic land-use planning and targeted interventions to minimize these inputs can significantly improve water quality and ecosystem health.
Collapse
Affiliation(s)
- Yalong Li
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yaojen Tu
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China; Yangtze River Delta Urban Wetland Ecosystem National Field Observation and Research Station, Shanghai Normal University, Shanghai 200234, China.
| | - Tingting Sun
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yanping Duan
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China; Yangtze River Delta Urban Wetland Ecosystem National Field Observation and Research Station, Shanghai Normal University, Shanghai 200234, China
| | - Jiayi Kou
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Weikun Li
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jiaxin Gao
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
3
|
Xu X, Chen H, Du L, Deng C, Ma R, Li B, Li J, Liu S, Karthikeyan R, Chen Q, Sun W. Distribution and drivers of co-hosts of antibiotic and metal(loid) resistance genes in the fresh-brackish-saline groundwater. CHEMOSPHERE 2024; 365:143332. [PMID: 39271075 DOI: 10.1016/j.chemosphere.2024.143332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Groundwater is an essential source of drinking water and agricultural irrigation water, and its protection has become a global goal for public health. However, knowledge about heavy metal(loid) resistance genes (MRGs) in groundwater and the potential co-selection of antibiotic resistance genes (ARGs) have seldom been developed. Here, during the wet and dry seasons, we collected 66 groundwater samples (total dissolved solids = 93.9-9530 mg/L) adjacent to Baiyangdian Lake in Northern China, which presented the few metal(loid) and antibiotic contamination. We identified 160 MRGs whose composition exhibited significant seasonal variation, and dissolved metal(loid)s (particularly Ba) played a determinative role in promoting the MRGs proliferation though with relatively low concentrations, suggesting the relatively vulnerable groundwater ecosystems. Moreover, 27.4% of MRG-carrying metagenome-assembled genomes (MAGs) simultaneously carried ARGs, with the most frequently detected MRG types of Cu, Hg, and As, and ARG types of multidrug and bacitracin. Physicochemical variables, variables related to total dissolved solids, metal(loid)s, and antibiotics synthetically shaped the variation of MRG-ARG hosts in groundwater. We found that the increase of MRG-ARG hosts was critically responsible for the spread of MRGs and ARGs in groundwater. Our findings revealed the widespread co-occurrence of MRGs and ARGs in few-contaminated groundwater and highlighted the crucial roles of salinity in their propagation and transmission.
Collapse
Affiliation(s)
- Xuming Xu
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China; College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing, 100871, China
| | - Huan Chen
- Department of Environmental Engineering and Earth Sciences, Clemson University, South Carolina, 29634, USA
| | - Lei Du
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing, 100871, China
| | - Chunfang Deng
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Ruoqi Ma
- General Institute of Water Resources & Hydropower Planning and Design, Ministry of Water Resources, Beijing, 100120, China
| | - Bin Li
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing, 100871, China
| | - Jiarui Li
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing, 100871, China
| | - Shufeng Liu
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing, 100871, China
| | | | - Qian Chen
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing, 100871, China.
| | - Weiling Sun
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing, 100871, China
| |
Collapse
|
4
|
Ye L, Xiao Y, Qin J, Tang J, Yin Y, Zhang W. The influence of redox potential on phosphorus release from sediments in different water bodies. MARINE POLLUTION BULLETIN 2024; 207:116909. [PMID: 39243469 DOI: 10.1016/j.marpolbul.2024.116909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
Anthropogenic activities have significantly enriched P in sediments of many water bodies, with redox potential (Eh) being a key factor in controlling P adsorption or release.This study evaluates the impact of Eh on P release from sediments in the Weiyuan River, Honghu Lake, and Bao'enqiao Reservoir using reactor experiments. P speciation was further analyzed through SEDEX method. Results show that within an Eh range of -300 mV to +230 mV, more P is released from sediments into the water column. The P fractions CDB-P and Fe(II)-P exhibit the most significant changes, especially in reservoir sediments where ΔCDB-P (85.5 mg/kg) and ΔFe(II)-P (80.6 mg/kg) are the highest among the three water bodies, followed by lake sediments. Additionally, after redox oscillation, the EPC0 of lake and reservoir sediments increased to 16.2 and 18.8 times their initial values, respectively, significantly raising the risk of eutrophication.
Collapse
Affiliation(s)
- Lijihong Ye
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China; Xihe Qingyang Mining Co., Ltd., Longnan 742199, China
| | - Yao Xiao
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Jie Qin
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Jinyong Tang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Yuepeng Yin
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Wen Zhang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China.
| |
Collapse
|
5
|
Jeong YH, Choi YH, Kwak DH. Effects of dissolved oxygen changes in the benthic environment on phosphorus flux at the sediment-water interface in a coastal brackish lake. MARINE ENVIRONMENTAL RESEARCH 2024; 196:106439. [PMID: 38479292 DOI: 10.1016/j.marenvres.2024.106439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/15/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024]
Abstract
In semi-enclosed coastal brackish lakes, changes in dissolved oxygen in the bottom layer due to salinity stratification can affect the flux of phosphorus (P) at the sediment-water interface, resulting in short- and long-term water quality fluctuations in the water column. In this study, the physicochemical properties of the water layers and sediments at five sites in Saemangeum Lake were analyzed in spring and autumn for four years, and phosphorus release experiments from sediments were conducted for 20 days under oxic and anoxic conditions during the same period. Sediment total phosphorus (T-P) decreased in autumn compared to spring due to mineralization of organic bound phosphorus, which was the most dominant P fraction. This may be related to the increase in the ratio of PO4-P to T-P in bottom waters in autumn, when hypoxia was frequently observed. The difference in P fluxes between oxic and anoxic conditions indicated that during autumn, as compared to spring, the release of phosphorus could have a more immediate impact on the water column during the formation of hypoxia/anoxia. The main factors influencing changes in P fluxes from sediments were identified through redundancy analysis. Additionally, based on the results of multiple regression analysis, sediment TOC, sediment non-apatite phosphorus, porewater pH, and porewater PO4-P were determined to be the most significant factors affecting P fluxes from sediments, depending on the season or redox conditions. Recently, the increased influx of seawater into Saemangeum Lake has been shown to contribute to water quality improvements in the water column due to a strong dilution effect. However, the sediment environment has shifted towards a more reduced state, leading to increased P release under anoxic conditions. Therefore, for future water quality management within the lake, it is necessary to consistently address the recurring hypoxia and continuously monitor phosphorus dynamics.
Collapse
Affiliation(s)
- Yong-Hoon Jeong
- Dept. of Bio-Convergence Science, Jeonbuk National University, 9 Cheomdan-ro, Jeongeub, 56212, Republic of Korea
| | - Yong-Ho Choi
- Dept. of Bio-Convergence Science, Jeonbuk National University, 9 Cheomdan-ro, Jeongeub, 56212, Republic of Korea
| | - Dong-Heui Kwak
- Dept. of Bio-Convergence Science, Jeonbuk National University, 9 Cheomdan-ro, Jeongeub, 56212, Republic of Korea; Dept. of Bio-Active Material Science, Jeonbuk National University, 567 Baekjedae-ro, Duckjin-gu, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
6
|
Wang Y, Ren D, Li Y, Hao Z, Liu J. Spatiotemporal dynamics of dissolved organic matter and disinfection by-products formation potential of Shengzhong Lake in southwest China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:21568-21577. [PMID: 38393559 DOI: 10.1007/s11356-024-32548-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/15/2024] [Indexed: 02/25/2024]
Abstract
The quality and quantity of dissolved organic matter (DOM) in lakes as well as its environmental effects associated with the unintended disinfection by-products (DBPs) have received continuous attention. This work investigated the spatiotemporal dynamics of DOM in Shengzhong Lake in southwest China and the formed DBPs during the chlorine disinfection process. The results showed that lake water in summer had significantly higher dissolved oxygen and dissolved organic carbon than that in winter. In contrast, DOM in winter demonstrated an obviously higher aromaticity and molecular weight than that in summer. Four fluorescence components, i.e., terrestrial humic-like substances (C1), protein-like substances (C2), and microbial humic-like substances (C3 and C4), were identified, and their relative abundance followed in the order of C3 > C4 > C2 > C1 in winter and C4 > C3 > C1 > C2 in summer. The formation potential of trihalomethanes and haloacetic acids in winter was higher and lower than that in summer, which was mainly ascribed to the content of aromatic and hydrophobic substances. Compared to the significant seasonal dynamic, the spatial variation of DOM and the formed DBPs was not obvious. This work sheds light on the spatial-temporal distribution of DOM and the potentially formed DBPs in Shengzhong Lake, and will be helpful for understanding the biogeochemical cycle of carbon and assessing the drinking water safety.
Collapse
Affiliation(s)
- Yunwen Wang
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637009, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Dong Ren
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637009, China
- Nanchong Key Laboratory of Eco-Environmental Protection and Pollution Prevention in Jialing River Basin, Nanchong, 637000, China
| | - Yunxiang Li
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637009, China
| | - Zhineng Hao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Jingfu Liu
- Institute of Environment and Health, Jianghan University, Wuhan, 430056, China
| |
Collapse
|
7
|
Cao Y, Zhu J, Gao Z, Li S, Zhu Q, Wang H, Huang Q. Spatial dynamics and risk assessment of phosphorus in the river sediment continuum (Qinhuai River basin, China). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:2198-2213. [PMID: 38055174 DOI: 10.1007/s11356-023-31241-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/21/2023] [Indexed: 12/07/2023]
Abstract
This study investigated the concentration and fractionation of phosphorus (P) using sequential P extraction and their influencing factors by introducing the PLS-SEM model (partial least squares structural equation model) along this continuum from the Qinhuai River. The results showed that the average concentrations of inorganic P (IP) occurred in the following order: urban sediment (1499.1 mg/kg) > suburban sediment (846.1-911.9 mg/kg) > rural sediment (661.1 mg/kg) > natural sediment (179.9 mg/kg), and makes up to 53.9-87.1% of total P (TP). The same as the pattern of IP, OP nearly increased dramatically with increasing the urbanization gradient. This spatial heterogenicity of P along a river was attributed mainly to land use patterns and environmental factors (relative contribution affecting the P fractions: sediment nutrients > metals > grain size). In addition, the highest values of TP (2876.5 mg/kg), BAP (biologically active P, avg, 675.7 mg/kg), and PPI (P pollution index, ≥ 2.0) were found in urban sediments among four regions, indicating a higher environmental risk of P release, which may increase the risk of eutrophication in overlying water bodies. Collectively, this work improves the understanding of the spatial dynamics of P in the natural-rural-urban river sediment continuum, highlights the need to control P pollution in urban sediments, and provides a scientific basis for the future usage and disposal of P in sediments.
Collapse
Affiliation(s)
- Yanyan Cao
- Key Laboratory of Integrated Regulation and Resource Development On Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Jianzhong Zhu
- Key Laboratory of Integrated Regulation and Resource Development On Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Zhimin Gao
- Key Laboratory of Integrated Regulation and Resource Development On Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Sanjun Li
- Key Laboratory of Integrated Regulation and Resource Development On Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Qiuzi Zhu
- Key Laboratory of Integrated Regulation and Resource Development On Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Hailong Wang
- Key Laboratory of Integrated Regulation and Resource Development On Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Qi Huang
- College of Life Science, Taizhou University, Taizhou, 318000, Zhejiang, China
| |
Collapse
|
8
|
Yan J, Wu L, Zhang F, Cao Y, Benoit G, Zhang S. Effects of switching redox conditions on sediment phosphorus immobilization by calcium/aluminum composite capping: Performance, ecological safety and mechanisms. CHEMOSPHERE 2023; 343:140294. [PMID: 37758078 DOI: 10.1016/j.chemosphere.2023.140294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/05/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023]
Abstract
There many materials were used in lake restoration to immobilize phosphorus (P) and reduce the effect of eutrophication. Among them, calcium/aluminum composite (CAC) showed a good capacity of P adsorption. However, a comprehensive of its performance, ecological safety, and the mechanism of P passivation in the aluminum-bound P (Al -P) dominated sediments under varying redox conditions remains incomplete. In the current study, both unwashed CAC (UCAC) and washed CAC (WCAC) showed good P adsorption properties, and the greatest maximum capacity for P adsorption (Qmax) reached 206.8 mg/g at pH 8.5 for UCAC. The SRP and TP in the overlying water of the uncapped sediments showed a decrease-increase-decrease trend in a sequence of transition from aerobic to anaerobic to re-aerobic stages. In contrast, the SRP and TP of the two CACs-capped sediments were maintained low. Phosphorus forms in the uncapped sediment also underwent significant changes during continuous variation of dissolved oxygen (DO) levels. In particular, the decrease in iron-bound P (Fe-P) and Al-P was significantly promoted in the anaerobic phase, and the released P was reabsorbed to form mainly Fe-P in the re-aerobic phase. The CACs-capping promoted the transformation of Fe-P to residual P (Res-P), forming a thick static layer in the surface sediment, thus significantly inhibiting sediment P release. Moreover, the CACs-capping did not induce the Al3+ leaching and significant changes of the microbial community in sediments, and their performances of P immobilization could keep stable to resist the redox variation, which promised to be a good choice for P passivation in eutrophic lake sediments dominated by Al/Fe-P. These findings also confirmed that the risk of P release from Al/Fe-P (mainly Al-P)-dominated sediments was strongly influenced by continuously changing redox conditions, and was probably enhanced by the formation of Fe-P from the resorption of the released P.
Collapse
Affiliation(s)
- Jin Yan
- School of Resource and Environmental Science, South-Central Minzu University, Wuhan, 430074, China
| | - Laiyan Wu
- School of Resource and Environmental Science, South-Central Minzu University, Wuhan, 430074, China; Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, Wuhan, 430074, China
| | - Fengrui Zhang
- School of Resource and Environmental Science, South-Central Minzu University, Wuhan, 430074, China
| | - Yanmin Cao
- School of Resource and Environmental Science, South-Central Minzu University, Wuhan, 430074, China; Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, Wuhan, 430074, China
| | - Gaboury Benoit
- Yale School of the Environment, New Haven, 06511, United States
| | - Shenghua Zhang
- School of Resource and Environmental Science, South-Central Minzu University, Wuhan, 430074, China; Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, Wuhan, 430074, China.
| |
Collapse
|
9
|
Zhao B, Hu Y, Yu H, Chen S, Xing T, Guo S, Zhang H. A method for researching the eutrophication and N/P loads of plateau lakes: Lugu Lake as a case. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162747. [PMID: 36906015 DOI: 10.1016/j.scitotenv.2023.162747] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/09/2023] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
Lugu Lake is one of the best plateau lakes in China in terms of water quality, but in recent years the eutrophication of Lugu Lake has accelerated due to high nitrogen and phosphorus loads. This study aimed to determine the eutrophication state of Lugu Lake. Specifically, the spatio-temporal variations of nitrogen and phosphorus pollution during the wet and dry seasons were investigated in Lianghai and Caohai, and the primary environmental effect factors were defined. Adopting the endogenous static release experiments and the exogenous improved export coefficient model, a novel approach (a combination of internal and external sources) was developed for the estimation of nitrogen and phosphorus pollution loads in Lugu Lake. It was indicated that the order of nitrogen and phosphorus pollution in Lugu Lake was Caohai > Lianghai and dry season > wet season. Dissolved oxygen (DO) and chemical oxygen demand (CODMn) were the main environmental factors causing nitrogen and phosphorus pollution. Endogenous nitrogen and phosphorus release rates in Lugu Lake were 668.7 and 42.0 t/a, respectively, and exogenous nitrogen and phosphorus input rates were 372.7 and 30.8 t/a, respectively. The contributions of pollution sources, in descending order, were sediment > land-use categories > residents and livestock breeding > plant decay, of which sediment nitrogen and phosphorus loads accounted for 64.3 % and 57.4 %, respectively. Regulating the endogenous release of sediment and obstructing the exogenous input from shrubland and woodland are emphasized for the management of nitrogen and phosphorus contamination in Lugu Lake. Thus, this study can serve as a theoretical foundation and technical guide for eutrophication control in plateau lakes.
Collapse
Affiliation(s)
- Bing Zhao
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Yuansi Hu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China.
| | - Haoran Yu
- Municipal Environmental Construction Co., Ltd of Crec, Shanghai 200333, China
| | - Sikai Chen
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Tao Xing
- Sichuan Academy of Environmental Science, Chengdu 610000, China
| | - Shanshan Guo
- China 19th Metallurgical Corporation, Chengdu 610031, China
| | - Han Zhang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China.
| |
Collapse
|
10
|
Zhang F, Yan J, Fang J, Yan Y, Zhang S, Benoit G. Sediment phosphorus immobilization with the addition of calcium/aluminum and lanthanum/calcium/aluminum composite materials under wide ranges of pH and redox conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160997. [PMID: 36535477 DOI: 10.1016/j.scitotenv.2022.160997] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Aquatic environment factors often influence and regulate the direction of phosphorus (P) flow at the sediment-water interface (SWI). High pH and low DO, common in eutrophic lakes, would induce large releases of P from sediment, and thus cause the negative effect on the efficiency of some P-passivators. Hence, the development of P passivators that could function over a wide range of pH condition and redox state in the overlaying water with reduced undesirable side effects is critical for the eutrophic lake remediation. In the present study, a calcium (Ca)/aluminum (Al) composite (CA) and a lanthanum (La)/Ca/Al composite (LCA) were prepared for P immobilization in lake sediments, using calcium and lanthanum coprecipitated with aluminum. CA and LCA were shown to have good P sorption performance at pH 4-11, particularly at pH 8-11. Furthermore, CA and LCA have an ability to correct the pH of water that deviates from neutral. The maximum P adsorption (Qmax) of sediment amended by 4 % CA and 4 % LCA increased by 83 % and 103 %, and their equilibrium P concentration (EPC0) decreased by 76 % and 88 %, respectively. Under various pH and DO conditions, the P concentration in overlying water was significantly decreased by CA and LCA amendment, and their addition could effectively counteract the P release from sediments induced by high pH and low DO. The mechanisms of P immobilization in amended sediments under various pH and DO levels are primarily the conversion of reactive P to stable P. The P immobilization performance of CA and LCA could cope with a wide range of pH and redox conditions in eutrophic lakes, and they would help to correct extreme pH values, thus they are expected to be a new generation of commercial P-passivators.
Collapse
Affiliation(s)
- Fengrui Zhang
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan, Hubei 430074, China
| | - Jin Yan
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan, Hubei 430074, China
| | - Jiangling Fang
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan, Hubei 430074, China
| | - Yi Yan
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan, Hubei 430074, China
| | - Shenghua Zhang
- Key Laboratory of Resources Conversion and Pollution Control of the State Ethnic Affairs Commission, College of Resources and Environmental Science, South-Central Minzu University, Wuhan, Hubei 430074, China.
| | - Gaboury Benoit
- School of Forestry & Environmental Studies, Yale University, New Haven, CT 06511, United States
| |
Collapse
|
11
|
Zhou P, Qin B, Zhang L, Wu Z, Dai Y, Hu C, Xu H, Mao Z. Facile construction of photocatalytic cellulose-based sponge with stable flotation properties as efficient and recyclable photocatalysts for sewage treatment. Int J Biol Macromol 2023; 239:124233. [PMID: 36996952 DOI: 10.1016/j.ijbiomac.2023.124233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/23/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023]
Abstract
Dispersion and recycling of powdered nano-photocatalysts for water purification is still not an easy task. The self-supporting and floating photocatalytic cellulose-based sponges ware conveniently prepared by anchoring BiOX nanosheet arrays on cellulose-based sponge's surface. The introduction of sodium alginate into the cellulose-based sponge significantly enhanced the electrostatic adsorption of bismuth oxygen ions and promoted the formation of bismuth oxyhalide (BiOX) crystal nuclei. Among the photocatalytic cellulose-based sponges, the sponge (BiOBr-SA/CNF) modified with bismuth oxybromide displayed excellent photocatalytic ability for photodegrading 96.1 % rhodamine B within 90 min under 300 W Xe lamp irradiation (λ > 400 nm). The loading of bismuth oxybromide on cellulose-based sponge's surface improves the flotation stability of the cellulose-based sponge. Benefiting from excellent load fastness of bismuth oxybromide nanosheet and flotation stability of BiOBr-SA/CNF sponge, after 5 cycles of recycling, the photodegradation rates of BiOBr-SA/CNF sponge to rhodamine B remained above 90.2 % (90 min), and it also has excellent photocatalytic degradation effect on methyl orange and herbicide isoproteron. This work may provide a convenient and efficient method to construct self-supporting and floating photocatalytic sponges using cellulose based materials as substrates for sewage treatment.
Collapse
|
12
|
Saha A, Vijaykumar ME, Das BK, Samanta S, Khan MF, Kayal T, Jana C, Chowdhury AR. Geochemical distribution and forms of phosphorus in the surface sediment of Netravathi-Gurupur estuary, southwestern coast of India. MARINE POLLUTION BULLETIN 2023; 187:114543. [PMID: 36640498 DOI: 10.1016/j.marpolbul.2022.114543] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Estuaries are the most productive transition ecosystem and phosphorus (P) plays an important role in these ecosystems. Therefore, in the present study, sequential extraction method was used to determine the abundance of five sediment P fractions (calcium (Ca-P), Iron (FeP), aluminum (AlP), exchangeable (Ex-P) and organic (OrgP) bound P) in Netravathi-Gurupur estuary, India. Total phosphorus (TP) content varied from 435-810 mg/kg (non-monsoon) and 258-699 mg/kg (monsoon). Inorganic P was dominant part. Different P fractions followed similar order (Fe-P > Ca-P > Al-P > Org-P > Ex-P) with respect to seasons. FeP was dominant fraction, indicating probable anthropogenic stress. Sediment may act as source of P as bioavailable P constituted 40-69.2 % of TP. Molar ratio of OC to Org-P in sediment indicated terrestrial sources of organic matter. However, the estimated phosphorus pollution index were lower than one except a few cases indicating less ecological risk with respect to sedimentary TP load.
Collapse
Affiliation(s)
- Ajoy Saha
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700 120, India.
| | - M E Vijaykumar
- Regional Centre of ICAR-Central Inland Fisheries Research Institute, Bangalore 560 089, India
| | - B K Das
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700 120, India
| | - S Samanta
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700 120, India
| | - M Feroz Khan
- Regional Centre of ICAR-Central Inland Fisheries Research Institute, Bangalore 560 089, India
| | - Tania Kayal
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700 120, India
| | - Chayna Jana
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700 120, India
| | | |
Collapse
|
13
|
Li T, Zhou P, Ding Y, Tang Q, Zhou S, Liu Y. Distribution Characteristics and Source Analysis of Nitrogen and Phosphorus in Different Rivers in Two Water Period: A Case Study of Pi River and Shiting River in the Upper Reaches of Tuo River in China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12433. [PMID: 36231734 PMCID: PMC9566003 DOI: 10.3390/ijerph191912433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
In this paper, the distribution characteristics of total nitrogen (TN), total phosphorus (TP) and fractions of nitrogen and phosphorus in water and surface sediments of the Pi and Shiting rivers in the dry and wet seasons were studied by molybdenum blue/ascorbic acid spectrophotometry and Standard Measurements and Testing (SMT). Correlation analysis, cluster analysis and principal component analysis were used to identified nitrogen and phosphorus pollution sources. The results showed that: (1) nitrogen and phosphorus in water and surface sediments in the study area were at different levels. (2) In the Pi river, the decomposition of animal and plant residues, the leachate from the accumulation of aquaculture wastewater and urban domestic sewage were the main sources of nitrogen and phosphorus pollution, while in the Shiting river, the unreasonable application of pesticides and fertilizers, the degradation of animal and plant residues, agricultural wastewater from agricultural drainage channels, industrial production wastewater and the weathering of agricultural wastes had a great impact on the nitrogen and phosphorus pollution. The results in this study provide reliable experimental data and a reference to local relevant departments for the implementation of effective control measures for the reduction of the nitrogen and phosphorus pollution load in the river basin.
Collapse
Affiliation(s)
- Tongfei Li
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Pingyan Zhou
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Yunchang Ding
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Qiding Tang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Shanshan Zhou
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Ying Liu
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Beijing Engineering Research Center of Food Environment and Public Health, Minzu University of China, Beijing 100081, China
| |
Collapse
|
14
|
Zheng Z, Wang X, Jin J, Hao J, Nie Y, Chen X, Mou J, Emslie SD, Liu X. Fraction distribution and dynamic cycling of phosphorus in lacustrine sediment at Inexpressible Island, Antarctica. ENVIRONMENT INTERNATIONAL 2022; 164:107228. [PMID: 35468407 DOI: 10.1016/j.envint.2022.107228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/06/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Phosphorus (P) chemistry and its dynamic cycling are essential for understanding aquatic primary productivity and ecosystem structure. However, there is a lack of knowledge on P chemistry in pristine aquatic ecosystems, such as in Antarctica. Here, we applied the Standards, Measurements and Testing Program (SMT) procedure and nuclear magnetic resonance spectroscopy (NMR) to reveal P speciation in two types of lacustrine sediment cores collected from Inexpressible Island, Ross Sea, East Antarctica. The Positive Matrix Factorization Model and Generalized Additive Models were applied to quantitatively identify the P sources and estimate relative effects of various environmental factors on the speciation. Our results demonstrate that orthophosphate, mainly as Ca-P, is the major component and the ortho-monoesters are the predominant organic phosphorus (OP) form in lacustrine sediments. Ornithogenic lacustrine sediments have a higher content of P as Ca-P than sediments with little or no penguin influence. Our model further suggests that penguin guano is the most important source for Ca-P, accounting for 80%, while detrital input is the predominant source for Fe/Al-P (up to 90%). The content of ortho-monoesters, as revealed by NMR, declines with depth, reflecting mineralization process of OP in the sediments. Moreover, we observed higher relative proportions of organic P in the sediments with little guano influence and the deposition of organic P are likely facilitated by microbial mats. Overall, our data suggest that burial of P in Antarctic lakes is sensitive to different P sources and sedimentary environments. The relatively higher bioavailable phosphorus in lacustrine sediments largely controls growth of aquatic microbial mats in oligotrophic lakes and ponds in Antarctica. The sediment profile data also indicate that P burial increased during the Medieval Climate Anomaly period, and climate warming is more conducive to P burial through the expansion of penguin populations and productivity of microbial mats. Our findings represent the first systematic understanding of natural P cycling dynamics and its main controlling factors in pristine ponds with different organic sources in Antarctica.
Collapse
Affiliation(s)
- Zhangqin Zheng
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xueying Wang
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jing Jin
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jihua Hao
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China; CAS Center for Excellence in Comparative Planetology, USTC, Hefei 230026, Anhui, China.
| | - Yaguang Nie
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Xin Chen
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China; School of Oceanography, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jinhua Mou
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China; School of Energy and Environment, City University of Hong Kong, 999077, Hong Kong, China
| | - Steven D Emslie
- Department of Biology and Marine Biology, University of North Carolina, 601 S. College Road, Wilmington, NC 28403, USA
| | - Xiaodong Liu
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China; CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
15
|
Water Information Extraction Based on Multi-Model RF Algorithm and Sentinel-2 Image Data. SUSTAINABILITY 2022. [DOI: 10.3390/su14073797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
For the Sentinel-2 multispectral satellite image remote sensing data, due to the rich spatial information, the traditional water body extraction methods cannot meet the needs of practical applications. In this study, a random forest-based RF_16 optimal combination model algorithm is proposed to extract water bodies. The research process uses Sentinel-2 multispectral satellite images and DEM data as the basic data, collected 24 characteristic variable indicators (B2, B3, B4, B8, B11, B12, NDVI, MSAVI, B5, B6, B7, B8A, NDI45, MCARI, REIP, S2REP, IRECI, PSSRa, NDWI, MNDWI, LSWI, DEM, SLOPE, SLOPE ASPECT), and constructed four combined models with different input variables. After analysis, it was determined that RF_16 was the optimal combination for extracting water body information in the study area. Model. The results show that: (1) The characteristic variables that have an important impact on the accuracy of the model are the improved normalized difference water index (MNDWI), band B2 (Blue), normalized water index (NDWI), B4 (Red), B3 (Green), and band B5 (Vegetation Red-Edge 1); (2) The water extraction accuracy of the optimal combined model RF_16 can reach 93.16%, and the Kappa coefficient is 0.8214. The overall accuracy is 0.12% better than the traditional Relief F algorithm. The RF_16 method based on the optimal combination model of random forest is an effective means to obtain high-precision water body information in the study area. It can effectively reduce the “salt and pepper effect” and the influence of mixed pixels such as water and shadows on the water extraction accuracy.
Collapse
|