1
|
Cao C, Wu X, Zheng Y, Zhang L, Chen Y. Employing Manganese Dioxide and Bamboo Carbon for Capacitive Water Desalination and Disinfection. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1565. [PMID: 39404292 PMCID: PMC11478331 DOI: 10.3390/nano14191565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024]
Abstract
A manganese dioxide (MnO2)/bamboo carbon (BC) composite was prepared using hydrothermal and impregnation methods and used for the capacitive desalination (CDI) and disinfection of water. The results showed that these composites had fast Na+ ion exchange and charge transfer properties. During the CDI process, these composites' electrodes exhibited good cycle stability and electrosorption capacity (4.09 mg/g) and an excellent bactericidal effect. These carbon-based composite electrodes' bactericidal rate for Escherichia coli could reach 99.99% within 180 min; therefore, they had good performance and are a good choice for high-performance deionization applications.
Collapse
Affiliation(s)
- Cuihui Cao
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (C.C.)
- Department of Chemistry and Pharmacy, Guilin Normal College, Guilin 541119, China
| | - Xiaofeng Wu
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (C.C.)
| | - Yuming Zheng
- Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Lizhen Zhang
- Department of Chemistry and Pharmacy, Guilin Normal College, Guilin 541119, China
| | - Yunfa Chen
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (C.C.)
- Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Wang X, Wang X, Zhu W, Ding L, Liang X, Wu R, Jia H, Huang X, Guo X. Insight into interactions between microplastics and fulvic acid: Mechanisms affected by microplastics type. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169427. [PMID: 38135066 DOI: 10.1016/j.scitotenv.2023.169427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023]
Abstract
Microplastics (MPs) can interact with dissolved organic matter (DOM), a common component found in the environment. However, the effect of MPs type on its interaction with DOM has not been systematically studied. Therefore, the binding properties of different MPs with fulvic acid (FA) were explored in this study. The results showed that polypropylene (PP) and polyethylene (PE) had higher adsorption affinity for FA than polystyrene (PS) and polyvinyl chloride (PVC). The interaction between MPs and FA conformed to the pseudo-first-order model and Freundlich model (except PS). The interaction mechanisms between various MPs tested in this paper and FA are considered to be different. PP, PE and PS interacted with the aromatic structure of FA and were entrapped in the FA polymers by the carboxyl groups and CO bonds, resulting in a highly conjugated co-polymer, suggesting that oxygen-containing functional groups played a key role. However, it was assumed that the interaction between PVC and FA was more likely to be caused by hydrophobic interaction. This research will help to enhance our comprehension of the environmental behavior of MPs and their interaction with the DOM specifically.
Collapse
Affiliation(s)
- Xinglei Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoxiao Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Weimin Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ling Ding
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Xujun Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Renren Wu
- State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, MEE, Guangzhou 510655, China.
| | - Hongtao Jia
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, China
| | - Xianfei Huang
- Guizhou Provincial Key Laboratory for Environment, Guizhou Normal University, Guiyang, Guizhou 550001, China
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
3
|
Ouyang Z, Li S, Xue J, Liao J, Xiao C, Zhang H, Li X, Liu P, Hu S, Guo X, Zhu L. Dissolved organic matter derived from biodegradable microplastic promotes photo-aging of coexisting microplastics and alters microbial metabolism. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130564. [PMID: 37055972 DOI: 10.1016/j.jhazmat.2022.130564] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/21/2022] [Accepted: 12/05/2022] [Indexed: 06/19/2023]
Abstract
Dissolved organic matter (DOM) leaching from biodegradable microplastics (BMPs) and its characteristics and corresponding environmental implication are rarely investigated. In this study, the main component of DOM leachate from the two BMPs (polyadipate/butylene terephthalate (PBAT)/polycaprolactone (PCL)) was verified by using excitation-emission matrix-parallel factor analysis (EEM-PARAFAC). The PBAT-DOM (PBOM) was aromatized and terrestrial. Comparatively, PCL-DOM (PLOM) had low molecular weight. PBOM contained protein-like components while PLOM contained tryptophan and tyrosine components. Interestingly, both PBOM and PLOM could accelerate the decomposition and oxidation of coexisting polystyrene (PS) under light irradiation. Further, the difference in composition and the properties of BMPs-DOM significantly affected its photochemical activity. The high territoriality and protein-like component of PBOM significantly promoted the generation of 1O2 and O2•-, which caused faster disruptions to the backbone of PS. Simultaneously, the microbial community's richness, diversity, and metabolism were obviously improved under the combined pressure of aged PS and BMPs-DOM. This study threw light on the overlooked contribution of DOM derived from BMPs in the aging process of NMPs and their impact on the microbial community and provided a promising strategy for better understanding of combined MPs' fate and environmental risk.
Collapse
Affiliation(s)
- Zhuozhi Ouyang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China
| | - Shuxing Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jincheng Xue
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jinmo Liao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chuanqi Xiao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hong Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaohan Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Peng Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China
| | - Shiwen Hu
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of the Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China.
| | - Lingyan Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China; Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
4
|
Parra-Marfil A, López-Ramón MV, Aguilar-Aguilar A, García-Silva IA, Rosales-Mendoza S, Romero-Cano LA, Bailón-García E, Ocampo-Pérez R. An efficient removal approach for degradation of metformin from aqueous solutions with sulfate radicals. ENVIRONMENTAL RESEARCH 2023; 217:114852. [PMID: 36457238 DOI: 10.1016/j.envres.2022.114852] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/18/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Metformin consumption for diabetes treatment is increasing, leading to its presence in wastewater treatment plants where conventional methods cannot remove it. Therefore, this work aims to analyze the performance of advanced oxidation processes using sulfate radicals in the degradation of metformin from water. Experiments were performed in a photoreactor provided with a low-pressure Hg lamp, using K2S2O8 as oxidant and varying the initial metformin concentration (CA0), oxidant concentration (Cox), temperature (T), and pH in a response surface experimental design. The degradation percentages ranged from 26.1 to 87.3%, while the mineralization percentages varied between 15.1 and 64%. Analysis of variance (ANOVA) showed that the output variables were more significantly affected by CA0, Cox, and T. Besides, a reduction of CA0 and an increase of Cox up to 5000 μM maximizes the metformin degradation since the generation of radicals and their interaction with metformin molecules are favored. For the greatest degradation percentage, the first order apparent rate constant achieved was 0.084 min-1. Furthermore, while in acidic pH, temperature benefits metformin degradation, an opposite behavior is obtained in a basic medium because of recombination and inhibition reactions. Moreover, three degradation pathways were suggested based on the six products detected by HPLC-MS: N-cyanoguanidine m/z = 85; N,N-dimethylurea m/z = 89; N,N-dimethyl-cyanamide m/z = 71 N,N-dimethyl-formamide m/z = 74; glicolonitrilo m/z = 58; and guanidine m/z = 60. Finally, it was shown that in general the toxicity of the degradation byproducts was lower than the toxicity of metformin toward Chlamydomonas reinhardtii.
Collapse
Affiliation(s)
- A Parra-Marfil
- Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, 78260, Mexico; Grupo de Investigación en Materiales del Carbón, Facultad de Ciencias, Universidad de Granada, Campus Fuente Nueva s/n., 18071, Granada, Spain.
| | - M V López-Ramón
- Grupo de Investigación en Materiales de Carbón y Medio Ambiente, Facultad de Ciencias Experimentales, Campus Las Lagunillas s/n, 23071, Jaén, Spain.
| | - A Aguilar-Aguilar
- Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, 78260, Mexico.
| | - I A García-Silva
- Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, 78260, Mexico
| | - S Rosales-Mendoza
- Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, 78260, Mexico.
| | - L A Romero-Cano
- Grupo de Investigación en Materiales y Fenómenos de Superficie, Departamento de Ciencias Biotecnológicas y Ambientales, Universidad Autónoma de Guadalajara, Av. Patria 1201, C.P. 45129, Zapopan, Jalisco, Mexico.
| | - E Bailón-García
- Grupo de Investigación en Materiales del Carbón, Facultad de Ciencias, Universidad de Granada, Campus Fuente Nueva s/n., 18071, Granada, Spain.
| | - R Ocampo-Pérez
- Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, 78260, Mexico.
| |
Collapse
|
5
|
Hsieh CY, Wu YC, Mudigonda S, Dahms HU, Wu MC. Assessing the Effects of Ozonation on the Concentrations of Personal Care Products and Acute Toxicity in Sludges of Wastewater Treatment Plants. TOXICS 2023; 11:75. [PMID: 36668801 PMCID: PMC9865304 DOI: 10.3390/toxics11010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/27/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
The aim of this study was to understand the distribution of the personal care products nonylphenol (NP), triclosan (TCS), benzophenone-3 (BP-3), and caffeine in the sludges from three wastewater treatment plants (WWTP-A, -B, and -C) in southern Taiwan. The four compounds were analyzed from activated sludge and dewatered sludge samples, and then the samples were treated with pressure-assisted ozonation under different conditions and removal efficiencies. All four target compounds were detected, especially NP, which was detected in the highest concentrations in the activated sludges of WWTP-A and dewatered sludges of WWTP-C at 17.19 ± 4.10 and 2.41 ± 1.93 µg/g, respectively. TCS was dominant in dewatered sludges from WWTP-B, and the highest detected concentration was 13.29 ± 6.36 µg/g. Removals of 70% and 90% were attained under 150 psi at 40 cycles for NP and TCS, respectively, with 5 min of ozonation reaction time, a solid/water ratio of 1:20, and 2% ozone concentration. Ecological risk quotients (RQs) were calculated by the ratios of the 10-day Hyalella azteca (freshwater amphipod) LC50 to the environmental concentrations of the target compounds. High RQs were found to be >10 for NP, TCS, and BP-3 in untreated sludges, resulting in significant ecological risks to aquatic organisms when the sludges are arbitrarily disposed. However, the toxic effects on Hyalella azteca were not significantly different among ozone sludge treatments. The reason for this may be related to the formation of toxic oxidation by-products and incomplete mineralization of organic compounds. This could also be true for unknown intermediates. The relatively high detection frequencies of these emerging compounds in WWTP sludges requires further applications and treatments.
Collapse
Affiliation(s)
- Chi-Ying Hsieh
- Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
- Center for Water Resources Education and Research, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung City 80708, Taiwan
| | - Ya-Chin Wu
- Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| | - Sunaina Mudigonda
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung City 80708, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
| | - Hans-Uwe Dahms
- Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung City 80708, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Meng-Chun Wu
- Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| |
Collapse
|
6
|
Cao C, Wu X, Zheng Y, Zhang L, Chen Y. Capacitive Desalination and Disinfection of Water Using UiO-66 Metal-Organic Framework/Bamboo Carbon with Chitosan. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3901. [PMID: 36364677 PMCID: PMC9655982 DOI: 10.3390/nano12213901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/20/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
The zirconium-based metal-organic framework (MOF) (UiO-66)/bamboo carbon (BC) composite with chitosan was prepared using hydrothermal and impregnation methods and used for capacitive desalination (CDI) and disinfection of water. The results showed that these composites had fast ion exchange and charge transfer properties. During the CDI process, these composites' electrodes exhibited good cycle stability, electrosorption capacity (4.25 mg/g) and excellent bactericidal effect. These carbon-based composites electrodes' bactericidal rate for Escherichia coli could reach 99.99% within 20 minutes; therefore, they had good performance and were a good choice for high-performance deionization applications.
Collapse
Affiliation(s)
- Cuihui Cao
- Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Department of Chemistry and Pharmacy, Guilin Normal College, Guilin 541119, China
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaofeng Wu
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuming Zheng
- Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Lizhen Zhang
- Department of Chemistry and Pharmacy, Guilin Normal College, Guilin 541119, China
| | - Yunfa Chen
- Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Feng K, Mu S, Fang F, Xie M. An assessment of the UV/nFe 0 /H 2 O 2 system for the removal of refractory organics in the effluent produced by the biological treatment of landfill leachate. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10801. [PMID: 36307975 DOI: 10.1002/wer.10801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/11/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
The removal efficiency and mechanism of the ultraviolet/nanoscale Fe0 /H2 O2 (UV/nFe0 /H2 O2 ) system for refractory organics in membrane bioreactor effluent were investigated. The most effective removal of organics was achieved at initial pH = 3.0, H2 O2 dosage = 50 mM, nFe0 dosage = 1.0 g/L, and UV power = 15 W, with a reaction time of 60 min. Under these conditions, the absorbance at 254 nm, chromaticity, and total organic carbon removal efficiencies were 65.13%, 79.67%, and 61.51%, respectively, and the aromaticity, humification, molecular weight, and polymerization of organics were all significantly reduced. The surface morphology and elemental valence analysis of nano zero-valent iron (nFe0 ) before and after the reaction revealed the formation of iron-based (hydrated) oxides, such as Fe2 O3 , Fe3 O4 , FeOOH, and Fe (OH)3 , on the surface of the nFe0 . Refractory organics were removed by Fenton-like reactions in the homogeneous and heterogeneous adsorption-precipitation of iron-based colloids. At the same time, UV radiation accelerated the formation of Fe2+ on the nFe0 surface and promoted the Fe3+ /Fe2+ redox cycle to a certain extent, enhancing the removal of refractory organics. The results provide a theoretical basis for the application of the UV/nFe0 /H2 O2 system to remove refractory organics in the effluent produced by the biological treatment of landfill leachate. PRACTITIONER POINTS: The UV/nFe0 /H2 O2 process is effective in refractory organics removal in leachate treatment. Humus in leachate was largely destroyed and mineralized by the UV/nFe0 /H2 O2 process. Active nFe0 material participated in the Fenton-like process and was promoted by UV. The effects of nFe0 material and UV introduction were investigated.
Collapse
Affiliation(s)
- Ke Feng
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China
| | - Shiqi Mu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China
| | - Feiyan Fang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China
| | - Mingde Xie
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
8
|
Zhang H, Zhao K, Liu X, Chen S, Huang T, Guo H, Ma B, Yang W, Yang Y, Liu H. Bacterial community structure and metabolic activity of drinking water pipelines in buildings: A new perspective on dual effects of hydrodynamic stagnation and algal organic matter invasion. WATER RESEARCH 2022; 225:119161. [PMID: 36191525 DOI: 10.1016/j.watres.2022.119161] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/12/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Eutrophication and algal blooms have become global issues. The drinking water treatment process suffers from pollution by algal organic matter (AOM) through cell lysis during the algal blooms. Nevertheless, it remains unclear how AOM invasion affects water quality and microbial communities in drinking water, particularly in the stagnant settings. In this study, the addition of AOM caused the residual chlorine to rapidly degrade and below the limit of 0.05 mg/L, while the NO2--N concentration ranged from 0.11 to 3.71 mg/L. Additionally, total bacterial counts increased and subsequently decreased. The results of Biolog demonstrated that the AOM significantly improved the utilization capacity of carbon sources and changed the preference for carbon sources. Full-length 16S rRNA gene sequencing and network modeling revealed a considerable reduction in the abundance of Proteobacteria, whereas that of Bacteroidetes increased significantly under the influence of AOM. Furthermore, the species abundance distributions of the Microcystis group and Scenedesmus group was most consistent with the Mandelbrot model. According to redundancy analysis and structural equation modeling, the bacterial community structure of the control group was most positively regulated by the free residual chlorine concentrations, whereas the Microcystis group and Scenedesmus group were positively correlated with the total organic carbon (TOC) concentration. Overall, these findings provide a scientific foundation for the evolution of drinking water quality under algae bloom pollution.
Collapse
Affiliation(s)
- Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Kexin Zhao
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiang Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Shengnan Chen
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tinglin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Honghong Guo
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ben Ma
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Wanqiu Yang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yansong Yang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hanyan Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|