Wang C, Duan W, Cheng S, Jiang K. Emission inventory and air quality impact of non-road construction equipment in different emission stages.
THE SCIENCE OF THE TOTAL ENVIRONMENT 2024;
906:167416. [PMID:
37774875 DOI:
10.1016/j.scitotenv.2023.167416]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/05/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023]
Abstract
Non-road construction equipment (NRCE) is an important source of air pollution, and it is crucial to fully understand the impact of NRCE on atmospheric PM2.5 and O3 pollution. However, systematic assessment of the impact of NRCE emissions on the atmosphere is lacking, especially with the latest implementation of the Stage IV Standard, and current research progress is insufficient for the development of effective control measures. This study estimated NRCE emission inventories at different emission standard stages and their impact on the atmosphere, using the "2 + 26" cities as the case study area. The results showed that the total NRCE emissions of CO, NOx, VOC, and PM2.5 were 387, 418, 82, and 24 kt in 2015 and 319, 262, 62, and 15 kt in 2020 and are predicted to be 270, 226, 48, and 10 kt in 2025, respectively. Simulation results showed that the contributions of NRCE to NO3-, NO2, PM2.5, and O3 were 16.7 %, 18.9 %, 7.7 %, and 8.2 % in 2015 to 13.6 %, 18.4 %, 6.5 %, and 6.7 % in 2020, respectively. In both 2015 and 2020, NRCE emissions in southern cities showed greater impacts on the average concentrations in the "2 + 26" cities than those in northern cities. The contributions of local NRCE emissions to local PM2.5 and O3 concentrations in the 28 cities ranged from 30 %-59 % and 13 %-39 %, respectively. The O3 sensitivity estimated by the HDDM illustrated that nonlinear characteristics highlighted the importance of coordinated control of NOx and VOC and can inspire development of post-processing technology and electricity substitution. The belt-like area connecting Zhengzhou to Beijing showed higher exposure concentrations of PM2.5 and O3, and the concentration exposure in urban areas was much higher than that in the rural and other areas. The environmental impact assessment of NRCE emissions can provide guidance for its management and development.
Collapse