1
|
Al Abass N, Qahtan TF, Alansi AM, Bubshait A, Al-Ghamdi M, Albu Z, Albasiry NS, Aljahfal HM, Aldossary AE, Faraj MT. Enhanced Photoelectrocatalytic Performance of ZnO Nanowires for Green Hydrogen Production and Organic Pollutant Degradation. MATERIALS (BASEL, SWITZERLAND) 2025; 18:444. [PMID: 39859915 PMCID: PMC11766730 DOI: 10.3390/ma18020444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/12/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025]
Abstract
With growing environmental concerns and the need for sustainable energy, multifunctional materials that can simultaneously address water treatment and clean energy production are in high demand. In this study, we developed a cost-effective method to synthesize zinc oxide (ZnO) nanowires via the anodic oxidation of zinc foil. By carefully controlling the anodization time, we optimized the Zn/ZnO-5 min electrode to achieve impressive dual-function performance in terms of effective photoelectrocatalysis for water splitting and waste water treatment. The electrode exhibited a high photocurrent density of 1.18 mA/cm2 at 1.23 V vs. RHE and achieved a solar-to-hydrogen conversion efficiency of 0.55%. A key factor behind this performance is the presence of surface defects, such as oxygen vacancies (OVs), which enhanced charge separation and boosted electron transport. In tests for waste water treatment, the Zn/ZnO-5 min electrode demonstrated the highly efficient degradation of methylene blue (MB) dye, with a reaction rate constant of 0.4211 min-1 when exposed to light and a 1.0 V applied voltage significantly faster than using light or voltage alone. Electrochemical analyses, including impedance spectroscopy and voltammetry, further confirmed the superior charge transfer properties of the electrode under illumination, making it an excellent candidate for both energy conversion and pollutant removal. This study highlights the potential of using simple anodic oxidation to produce scalable and efficient ZnO-based photocatalysts. The dual-function capability of this material could pave the way for large-scale applications in renewable hydrogen production and advanced waste water treatment, offering a promising solution to some of today's most pressing environmental and energy challenges.
Collapse
Affiliation(s)
- Nawal Al Abass
- King Abdulaziz City for Science and Technology (KACST), Hydrogen Technologies Institute, Mailbox 6086, Riyadh 11442, Saudi Arabia; (A.B.); (H.M.A.); (A.E.A.)
| | - Talal F. Qahtan
- Physics Department, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Amani M. Alansi
- Chemistry Department, College of Science, Taiz University, Taiz 12372, Yemen;
| | - Almqdad Bubshait
- King Abdulaziz City for Science and Technology (KACST), Hydrogen Technologies Institute, Mailbox 6086, Riyadh 11442, Saudi Arabia; (A.B.); (H.M.A.); (A.E.A.)
| | - Maria Al-Ghamdi
- College of Engineering Sciences, Materials Science and Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia;
| | - Zahra Albu
- The Center of Excellence for Advanced Materials and Manufacturing, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia;
- Institute for Materials Discovery, Functional Materials and Energy Device Group, University College London, London WC1E 6BT, UK
| | - Noof Soltan Albasiry
- Department of Physics, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 84428, Saudi Arabia;
| | - Hisham Mohammed Aljahfal
- King Abdulaziz City for Science and Technology (KACST), Hydrogen Technologies Institute, Mailbox 6086, Riyadh 11442, Saudi Arabia; (A.B.); (H.M.A.); (A.E.A.)
| | - Abdulrahman E. Aldossary
- King Abdulaziz City for Science and Technology (KACST), Hydrogen Technologies Institute, Mailbox 6086, Riyadh 11442, Saudi Arabia; (A.B.); (H.M.A.); (A.E.A.)
| | - Mohammed Tariq Faraj
- King Abdulaziz City for Science and Technology (KACST), Microelectronics and Semiconductors Institute, Mailbox 6086, Riyadh 11442, Saudi Arabia;
| |
Collapse
|
2
|
Steurer M, Somers P, Kraft K, Grünewald L, Kraus S, Feist F, Weinert B, Müller E, Dehnen S, Feldmann C, Eggeler YM, Barner‐Kowollik C, Wegener M. Photothermal Laser Printing of Sub-Micrometer Crystalline ZnO Structures. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410771. [PMID: 39632501 PMCID: PMC11789601 DOI: 10.1002/advs.202410771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/24/2024] [Indexed: 12/07/2024]
Abstract
During light-driven 3D additive manufacturing, an object represented in digital form is initially translated into a spatial distribution of light intensity (sequentially or in parallel), which then results in a spatial material distribution. To date, this process typically proceeds by photoexcitation of small functional molecules, leading to photochemically induced crosslinking of soft materials. Alternatively, thermal triggers can be employed, yet thermal processes are often slow and provide only low spatial localization. Nevertheless, sub-micrometer ZnO structures for functional microelectronic devices have recently been laser-printed. Herein, the photothermal laser-printing of ZnO is advanced by i) introducing single-crystalline rather than amorphous sub-micrometer ZnO shapes that crystallize in the hexagonal ZnO wurtzite structure, ii) employing dimethyl sulfoxide (DMSO) instead of water, enabling higher local process temperatures without micro-bubble formation, and iii) using substrates tailored for light absorption and heat management, resolving the challenge of light to heat conversion. Finally, the herein-demonstrated ZnO printing requires no post-processing and is a cleanroom-free technique for the fabrication of crystalline semiconductors.
Collapse
Affiliation(s)
- Matthias Steurer
- School of Chemistry and Physics and Centre for Materials ScienceQueensland University of Technology (QUT)2 George StreetBrisbaneQLD4000Australia
- Institute of Nanotechnology (INT)Karlsruhe Institute of Technology (KIT)76131KarlsruheGermany
| | - Paul Somers
- Institute of Nanotechnology (INT)Karlsruhe Institute of Technology (KIT)76131KarlsruheGermany
| | - Kristian Kraft
- Laboratory for Electron Microscopy (LEM)Karlsruhe Institute of Technology (KIT)76131KarlsruheGermany
| | - Lukas Grünewald
- Laboratory for Electron Microscopy (LEM)Karlsruhe Institute of Technology (KIT)76131KarlsruheGermany
| | - Steven Kraus
- Institute of Nanotechnology (INT)Karlsruhe Institute of Technology (KIT)76131KarlsruheGermany
| | - Florian Feist
- Institute of Nanotechnology (INT)Karlsruhe Institute of Technology (KIT)76131KarlsruheGermany
| | - Bastian Weinert
- Institute of Nanotechnology (INT)Karlsruhe Institute of Technology (KIT)76131KarlsruheGermany
| | - Erich Müller
- Laboratory for Electron Microscopy (LEM)Karlsruhe Institute of Technology (KIT)76131KarlsruheGermany
| | - Stefanie Dehnen
- Institute of Nanotechnology (INT)Karlsruhe Institute of Technology (KIT)76131KarlsruheGermany
| | - Claus Feldmann
- Institute of Inorganic Chemistry (AOC)Karlsruhe Institute of Technology (KIT)76131KarlsruheGermany
| | - Yolita M. Eggeler
- Laboratory for Electron Microscopy (LEM)Karlsruhe Institute of Technology (KIT)76131KarlsruheGermany
| | - Christopher Barner‐Kowollik
- School of Chemistry and Physics and Centre for Materials ScienceQueensland University of Technology (QUT)2 George StreetBrisbaneQLD4000Australia
- Institute of Nanotechnology (INT)Karlsruhe Institute of Technology (KIT)76131KarlsruheGermany
| | - Martin Wegener
- Institute of Nanotechnology (INT)Karlsruhe Institute of Technology (KIT)76131KarlsruheGermany
- Institute of Applied Physics (APH)Karlsruhe Institute of Technology (KIT)76131KarlsruheGermany
| |
Collapse
|
3
|
Li M, Zhang L, Liu W, Jin Y, Li B. Simple and low-cost colorimetric method for quantification of surface oxygen vacancy in zinc oxide. Talanta 2025; 282:126969. [PMID: 39357408 DOI: 10.1016/j.talanta.2024.126969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/18/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
Zinc oxide (ZnO) nanoparticles with surface oxygen vacancy (OV) was found to catalyze the colorimetric reaction of 3,3',5,5'-tetramethylbenzidine (TMB)-H2O2, and the absorbance of this TMB-H2O2-ZnO system was strongly dependent the OV concentration on surface of ZnO. By taking advantage of this phenomenon, one colorimetric method was proposed for quantifying surface OV in ZnO. The surface OV amount obtained through this colorimetric method matched well with that obtained through X-ray photoelectron spectroscopy (XPS). This colorimetric method doesn't need any advanced instruments, and can be completed in any an ordinary laboratory. This colorimetric method for detecting surface OV amount was simple, rapid (about 15 min) and low-cost.
Collapse
Affiliation(s)
- Mei Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Ling Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Wei Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Yan Jin
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Baoxin Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China.
| |
Collapse
|
4
|
De Pamphilis L, Ma S, Dahiya AS, Christou A, Dahiya R. Site-Selective Nanowire Synthesis and Fabrication of Printed Memristor Arrays with Ultralow Switching Voltages on Flexible Substrate. ACS APPLIED MATERIALS & INTERFACES 2024; 16:60394-60403. [PMID: 39450971 PMCID: PMC11551952 DOI: 10.1021/acsami.4c07172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024]
Abstract
Large area electronics (LAE) with the capability to sense and retain information are crucial for advances in applications such as wearables, digital healthcare, and robotics. The big data generated by these sensor-laden systems need to be scaled down or processed locally. In this regard, brain-inspired computing and in-memory computing have attracted considerable interest. However, suitable architectures have mainly been developed using costly and resource-intensive conventional lithography-based methods. There is a need for the development of innovative, resource-efficient fabrication routes that enable such devices and concepts. Herein, we present ZnO nanowire (NW)-based memristors on a polyimide substrate fabricated by a LAE-compatible and resource-efficient route comprising solution processing and printing technologies. High-resolution "drop-on-demand" and "direct ink write" printers are employed to deposit metallic layers (silver and gold) and a ZnO seed layer, needed for the site-selective growth of ZnO NWs via a low-cost hydrothermal method. The printed memristors show high bipolar resistance switching (ON/OFF ratio >103) between two nonvolatile states and consistent switching at ultralow voltages (all devices showed switching at amplitudes <200 mV), with the best performing device showing consistent cycled resistance switching over 4 orders of magnitude with SET and RESET voltages of about 71 and -57 mV, respectively. Thus, the presented devices offer reliable high resistance switching at the lowest reported voltage for printed memristors and prove to be competitive with many conventional nanofabrication-based devices. The presented results show the potential printed memristors technology holds for large-area, low-voltage sensing applications such as electronic skin.
Collapse
Affiliation(s)
- Luca De Pamphilis
- James
Watt School of Engineering, University of
Glasgow, Glasgow G12 8QQ, U.K.
| | - Sihang Ma
- James
Watt School of Engineering, University of
Glasgow, Glasgow G12 8QQ, U.K.
| | - Abhishek Singh Dahiya
- Bendable
Electronics and Sustainable Technologies (BEST) Group, Department
of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Adamos Christou
- Bendable
Electronics and Sustainable Technologies (BEST) Group, Department
of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Ravinder Dahiya
- Bendable
Electronics and Sustainable Technologies (BEST) Group, Department
of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
5
|
Erusappan E, Govindan M, Choi Y, Kim D. Enhanced photocatalytic oxidation of gaseous acetaldehyde using Fe-grafted ZnO nanocomposites in a continuous flow reactor. CHEMOSPHERE 2024; 365:143405. [PMID: 39326713 DOI: 10.1016/j.chemosphere.2024.143405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
The purification of indoor air is a crucial application of photocatalysis, emphasizing the urgent need for more efficient photocatalytic systems. While photocatalytic oxidation of volatile organic compounds (VOCs) has been extensively studied in the liquid phase, effective removal of VOCs in the gaseous state in indoor air remains a significant challenge. This study focuses on the continuous gas-phase oxidation of gaseous acetaldehyde using ZnO and different weight percentage of Fe-grafted ZnO catalysts under light irradiation. The surface analysis using XPS and HR-TEM confirmed the presence of Fe(III) species, and UV-Vis-DRS analysis demonstrated a shift in the absorption edge towards the visible region. Real-time gas FTIR monitoring of acetaldehyde oxidation revealed that the 0.7% Fe(III)-grafted ZnO composite catalyst achieved a higher removal efficiency (74%) compared to bare ZnO and other Fe(III)-grafted ZnO ratios. The enhanced photocatalytic efficiency of acetaldehyde by Fe(III)-grafted ZnO supports indicated direct interfacial charge transfer (IFCT) from ZnO to Fe(III) species. Additionally, the Fe(III) cluster effectively improved the separation of electrons and holes, preventing their recombination and accelerating O₂ activation to generate O₂•⁻ radicals, which lead to high photocatalytic performance. The 0.7% Fe(III)-grafted ZnO also maintained its performance over a prolonged period of 360 min, showing excellent structural stability and durability across multiple cycles. This study highlights the possible synergistic effect of the ZnO and Fe systems, offering a new perspective on the photocatalytic decomposition of gaseous acetaldehyde in indoor environments.
Collapse
Affiliation(s)
- Elangovan Erusappan
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| | - Muthuraman Govindan
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| | - Youngyu Choi
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| | - Daekeun Kim
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea.
| |
Collapse
|
6
|
Gegova-Dzhurkova R, Nesheva D, Stambolova I, Zaharieva K, Dzhurkov V, Miloushev I. Enhanced Photocatalytic Performance under Ultraviolet and Visible Light Illumination of ZnO Thin Films Prepared by Modified Sol-Gel Method. Molecules 2024; 29:4005. [PMID: 39274853 PMCID: PMC11396622 DOI: 10.3390/molecules29174005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/17/2024] [Accepted: 08/22/2024] [Indexed: 09/16/2024] Open
Abstract
Semiconductor oxides are frequently used as active photocatalysts for the degradation of organic agents in water polluted by domestic industry. In this study, sol-gel ZnO thin films with a grain size in the range of 7.5-15.7 nm were prepared by applying a novel two-step drying procedure involving hot air treatment at 90-95 °C followed by conventional furnace drying at 140 °C. For comparison, layers were made by standard furnace drying. The effect of hot air treatment on the film surface morphology, transparency, and photocatalytic behavior during the degradation of Malachite Green azo dye in water under ultraviolet or visible light illumination is explored. The films treated with hot air demonstrate significantly better photocatalytic activity under ultraviolet irradiation than the furnace-dried films, which is comparable with the activity of unmodified ZnO nanocrystal powders. The achieved percentage of degradation is 78-82% under ultraviolet illumination and 85-90% under visible light illumination. Multiple usages of the hot air-treated films (up to six photocatalytic cycles) are demonstrated, indicating improved photo-corrosion resistance. The observed high photocatalytic activity and good photo-corrosion stability are related to the hot air treatment, which causes a reduction of oxygen vacancies and other defects and the formation of interstitial oxygen and/or zinc vacancies in the films.
Collapse
Affiliation(s)
- Radka Gegova-Dzhurkova
- G. Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences, 1784 Sofia, Bulgaria
| | - Diana Nesheva
- G. Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences, 1784 Sofia, Bulgaria
| | - Irina Stambolova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Katerina Zaharieva
- Institute of Mineralogy and Crystallography "Acad. Ivan Kostov", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Valeri Dzhurkov
- G. Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences, 1784 Sofia, Bulgaria
| | - Ilko Miloushev
- G. Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences, 1784 Sofia, Bulgaria
| |
Collapse
|
7
|
Martins E, Trigueiro P, Jerônimo AG, Barbosa R, Neves L, Sales DA, Almeida LC, Viana BC, Soares AS, Peña-Garcia RR. Efficient photocatalytic degradation of diclofenac drug using the Zn 1-x-yPr xAl yO photocatalyst under UV light irradiation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:53074-53089. [PMID: 39172341 DOI: 10.1007/s11356-024-34768-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
Herein, we report the efficient photocatalytic degradation of the diclofenac drug using the Zn1-x-yPrxAlyO photocatalyst [x, y] = (0.00, 0.00), (0.03, 0.01), (0.03,0.03) under UV light irradiation. The analysis of the structure reveals that the Pr3+ and Al3+ cations insertion into the ZnO lattice leads to a decrease in the lattice constant (a and c), Zn-O bond length, strain lattice, and crystallite size. These alterations are linked to the high degree of atomic disorder triggered by the dopants, which produce stress and strain in the ZnO structure. The Raman measurements confirmed the structural phase and showed changes in the position and intensity of the E2High mode, associated with oxygen vibrations and material crystallinity. The presence of the dopants reduces the concentration of VZn and VO++ type defects while increasing the levels of VO, VO+, and Oi defects, as observed from the fitting of the Photoluminescence spectra. Furthermore, it was noted that de Pr3+ and Al3+ cations insertion into ZnO increases the optical band gap, which is associated with the Moss-Burstein effect. The micrograph images show that dopants transform the morphology from quasi-spherical particles to irregular cluster structures. The textural analysis indicated that an increase in the concentration of Al3+ in the ZnO lattice led to a higher surface area, likely enhancing photocatalytic activity. The sample containing 3% Pr3+ and 3% Al3+ showed the highest photocatalytic activity and degraded up to 71.42% of diclofenac. In addition, experiments with scavengers revealed that hydroxyl radicals are the main species involved in the drug's photodegradation mechanism. Finally, the Zn1-x-yPrxAlyO compound is highly recyclable and stable.
Collapse
Affiliation(s)
- Emanoel Martins
- Programa de Pós-Graduação Em Ciências E Engenharia Dos Materiais, Universidade Federal de Piauí, Teresina, PI, Brazil
| | - Pollyana Trigueiro
- Programa de Pós-Graduação Em Engenharia Física, Universidade Federal Rural de Pernambuco, Unidade Acadêmica Do Cabo de Santo Agostinho, Cabo de Santo Agostinho, PE, Brazil
| | - Aimée G Jerônimo
- Programa de Pós-Graduação Em Engenharia Física, Universidade Federal Rural de Pernambuco, Unidade Acadêmica Do Cabo de Santo Agostinho, Cabo de Santo Agostinho, PE, Brazil
| | - Ricardo Barbosa
- Programa de Pós-Graduação Em Engenharia Física, Universidade Federal Rural de Pernambuco, Unidade Acadêmica Do Cabo de Santo Agostinho, Cabo de Santo Agostinho, PE, Brazil
| | - Luan Neves
- Programa de Pós-Graduação Em Engenharia Física, Universidade Federal Rural de Pernambuco, Unidade Acadêmica Do Cabo de Santo Agostinho, Cabo de Santo Agostinho, PE, Brazil
| | - Débora A Sales
- Programa de Pós-Graduação Em Ciências E Engenharia Dos Materiais, Universidade Federal de Piauí, Teresina, PI, Brazil
| | - Luciano C Almeida
- Departamento de Engenharia Química, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Bartolomeu C Viana
- Programa de Pós-Graduação Em Ciências E Engenharia Dos Materiais, Universidade Federal de Piauí, Teresina, PI, Brazil
| | - Adriano S Soares
- Programa de Pós-Graduação Em Ciências E Engenharia Dos Materiais, Universidade Federal de Piauí, Teresina, PI, Brazil
| | - Ramón R Peña-Garcia
- Programa de Pós-Graduação Em Ciências E Engenharia Dos Materiais, Universidade Federal de Piauí, Teresina, PI, Brazil.
- Programa de Pós-Graduação Em Engenharia Física, Universidade Federal Rural de Pernambuco, Unidade Acadêmica Do Cabo de Santo Agostinho, Cabo de Santo Agostinho, PE, Brazil.
| |
Collapse
|
8
|
Che X, Fan Y, Su Y, Gong Y, Guo Q, Feng Y, Hu D, Wang W, Fan H. Performance Improvement and Application of Degradable Poly-l-lactide and Yttrium-Doped Zinc Oxide Hybrid Films for Energy Harvesting. ACS APPLIED MATERIALS & INTERFACES 2024; 16:33517-33526. [PMID: 38885354 DOI: 10.1021/acsami.4c05807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Piezoelectric nanogenerators (PENGs) are booming for energy collection and wearable energy supply as one of the next generations of green energy-harvesting devices. Balancing the output, safety, degradation, and cost is the key to solving the bottleneck of PENG application. In this regard, yttrium (Y)-doped zinc oxide (ZnO) (Y-ZnO) was synthesized and embedded into polylactide (PLLA) for developing degradable piezoelectric composite films with an enhanced energy-harvesting performance. The synthesized Y-ZnO exhibits high piezoelectric properties benefiting from the stronger polarity of the Y-O bond and regulation of oxygen vacancy concentration, which improve the output performance of the composite film with Y-ZnO and PLLA (Y-Z-PLLA). The obtained open-circuit voltage (Voc), short-circuit current (Isc), and instantaneous power density of the optimized Y-Z-PLLA PENG reach 17.52 V, 2.45 μA, and 1.76 μW/cm2, respectively. The proposed PENG also shows good degradability. In addition, practical applications of the proposed PENG were demonstrated by converting biomechanical energy, such as walking, running, and jumping, into electricity.
Collapse
Affiliation(s)
- Xiuzi Che
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Yongbo Fan
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong
| | - Yao Su
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Yuanbiao Gong
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Qinghua Guo
- Orthopedic Medicine Department of the General Hospital of the People's Liberation Army, Beijing 100048, P. R. China
| | - Yafei Feng
- Department of Orthopedics Cine, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, P. R. China
| | - Dengwei Hu
- Faculty of Chemistry and Chemical Engineering, Engineering Research Center of Advanced Ferroelectric Functional Materials, Key Laboratory of Functional Materials of Baoji, Baoji University of Arts and Sciences, 1 Hi-Tech Avenue, Baoji 721013, P. R. China
| | - Weijia Wang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Huiqing Fan
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| |
Collapse
|
9
|
Hu T, Li Y, Wang Y, Chen Y, Zhang J, Luo E, Lv B, Jia J. Controlled evolution of surface microstructure and phase boundary of ZnO nanoparticles for the multiple sensitization effects on triethylamine detection. NANOSCALE 2024; 16:11774-11785. [PMID: 38864550 DOI: 10.1039/d4nr01135j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
In ZnO gas sensors, donor defects (such as zinc interstitials and oxygen vacancies) are considered active sites for the chemical adsorption and ionization of oxygen on the surface of ZnO, which can significantly enhance the sensor's response. However, the influence of the surface microstructure and phase boundaries of ZnO nanoparticles on the chemical adsorption and ionization of surface oxygen has rarely been explored. In this study, we developed a mixed-phase ZnO nanoparticle gas sensor with a rich phase boundary showing 198-50 ppm improvement in response to triethylamine at 340 °C. This is attributed to the generation of defects originating from lattice mismatch at the ZnO - zincite phase boundaries, which providing more active sites for adsorption of oxygen and triethylamine molecules. This work demonstrates a feasible method of combining surface microstructure regulation with pyrolysis strategies to develop ZnO sensors with significantly enhanced gas response performance.
Collapse
Affiliation(s)
- Tianjun Hu
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030032, China.
| | - Yifan Li
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030032, China.
| | - Ying Wang
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030032, China.
| | - Yaru Chen
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030032, China.
| | - Junming Zhang
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030032, China.
| | - Ergui Luo
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030032, China.
| | - Baoliang Lv
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030032, China.
| | - Jianfeng Jia
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030032, China.
| |
Collapse
|
10
|
Garza RER, Rodríguez de Luna SL, Gómez I. Photoluminescence research of the graphene quantum dots (GQD) interaction on the zinc oxide (ZnO) surface for application as H 2O 2 photosensor. Heliyon 2024; 10:e31144. [PMID: 39668972 PMCID: PMC11637081 DOI: 10.1016/j.heliyon.2024.e31144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/30/2024] [Accepted: 05/10/2024] [Indexed: 12/14/2024] Open
Abstract
Photoluminescence (PL) spectroscopy is one of the best methods to detect molecules due to its easiness, fast time of analysis and high sensitivity. In addition, zinc oxide (ZnO) possesses good optical properties and particularly PL emission in these materials have been exploited for their potential use as photocatalyst, light harvesting and photosensor. These PL properties enhance when graphene quantum dots (GQD) are added to ZnO. For these reasons, we investigated the PL performance of ZnO-GQD nanocomposites. In one experiment we evaluated the PL emission of solid samples ZnO and ZnO-GQD. In a second experiment, these samples were also evaluated in aqueous phase to investigate the H2O2 effect during an experiment lasting 170 minutes. Both experiments displayed six peaks and they were related to the same PL emission source. The PL emission peak around 415 nm was found to be principal source where GQD are interacting. By varying the GQD amount to low, medium, and high concentration, the effect of H2O2 acted consequently, altering the PL emission during experiment in aqueous phase. An oxygen rich environment (ORE) occurred due to H2O2 which oxides the ZnO surface. Low GQD concentration resulted affected by an ORE weakening the GQD-ZnO contact, decreasing PL emission. In high GQD concentration, H2O2 induced GQD to reach the ZnO surface, increasing the PL emission. Only medium GQD concentration prevented oxidation of ZnO and maintained the PL emission intensity constant. When H2O2 concentration increased, for the medium GQD concentration, an excess of charge by peroxides inhibited the charge transfer from GQD to ZnO. This inhibition produces a quenching of the PL emission.
Collapse
Affiliation(s)
- Rolando Efraín Ramírez Garza
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Lab. Mat. I, Av. Pedro de Alba s/n, San Nicolás de los Garza, 66455, Nuevo León, Mexico
| | - Sara Luisa Rodríguez de Luna
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Lab. Mat. I, Av. Pedro de Alba s/n, San Nicolás de los Garza, 66455, Nuevo León, Mexico
| | - Idalia Gómez
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Lab. Mat. I, Av. Pedro de Alba s/n, San Nicolás de los Garza, 66455, Nuevo León, Mexico
| |
Collapse
|
11
|
Tanuj, Kumar R, Kumar S, Kalra N, Sharma S, Singh A. Exploitation of green synthesized chromium doped zinc oxide nanorods (NRs) mediated by flower extract of Rhododendron arboreum for highly efficient photocatalytic degradation of cationic dyes Malachite green (MG) and Fuchsin basic (FB). INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1193-1211. [PMID: 38226539 DOI: 10.1080/15226514.2023.2300406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
In this work, green method to synthesize chromium-doped zinc oxide (ZnO) nanorods (NRs) using an aqueous flower extract from Rhododendron arboretum is explored. Herein, chromium-doped ZnO NRs were prepared with different amount of chromium doping, varied as 2-10%. The green synthesized products underwent substantial analysis through X-ray diffraction (XRD), spectroscopic such as ultraviolet spectroscopy(UV-Vis) and scanning electron microscopy (SEM) methods. All samples were found to have hexagonal wurtzite ZnO, with average particle sizes of 52.41, 56.6, 54.44, 53.05, and 56.99 nm, respectively, for 2, 4, 6, 8, and 10% chromium doping in ZnO NRs. The Cr-doped ZnO NRs exhibited remarkable photocatalytic degradation activity of cationic dyes under UV-light, i.e., Malachite Green and Fuchsin Basic with degradation of 99.604 and 99.881%, respectively in 90 min. The reusability tests for these green synthesized Cr-doped ZnO NRs have also been carried out, showed 9-11 cycles with 85% of degradation efficiency. In addition, the Cr-doped ZnO NRs exhibited high selectivity for cationic dyes when experiments against mixture of dyes were performed. Photodegradation kinetics followed the pseudo-first-order model. The flower-extract-stabilized chromium-doped ZnO NRs demonstrated high photocatalytic activity toward malachite green and fuchsin basic dyes, potential material for pollution remediation.
Collapse
Affiliation(s)
- Tanuj
- Department of Chemistry, Himachal Pradesh University, Shimla, HP, India
| | - Rajesh Kumar
- Department of Chemistry, Himachal Pradesh University, Shimla, HP, India
| | - Santosh Kumar
- Department of Chemistry, Himachal Pradesh University, Shimla, HP, India
| | - Neerja Kalra
- Department of Chemistry, Government College, Ateli, Haryana, India
| | - Subhash Sharma
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, B.C, México
| | - Amritpal Singh
- Department of Pure of Applied Chemistry, Strathclyde University, Glasgow, UK
- Department of Chemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
12
|
Chen R, Yang H, Li R, Yu G, Zhang Y, Dong J, Han D, Zhou Z, Huang P, Liu L, Liu X, Kang J. Thin-film transistor for temporal self-adaptive reservoir computing with closed-loop architecture. SCIENCE ADVANCES 2024; 10:eadl1299. [PMID: 38363846 PMCID: PMC10871528 DOI: 10.1126/sciadv.adl1299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/17/2024] [Indexed: 02/18/2024]
Abstract
Reservoir computing is a powerful neural network-based computing paradigm for spatiotemporal signal processing. Recently, physical reservoirs have been explored based on various electronic devices with outstanding efficiency. However, the inflexible temporal dynamics of these reservoirs have posed fundamental restrictions in processing spatiotemporal signals with various timescales. Here, we fabricated thin-film transistors with controllable temporal dynamics, which can be easily tuned with electrical operation signals and showed excellent cycle-to-cycle uniformity. Based on this, we constructed a temporal adaptive reservoir capable of extracting temporal information of multiple timescales, thereby achieving improved accuracy in the human-activity-recognition task. Moreover, by leveraging the former computing output to modify the hyperparameters, we constructed a closed-loop architecture that equips the reservoir computing system with temporal self-adaptability according to the current input. The adaptability is demonstrated by accurate real-time recognition of objects moving at diverse speed levels. This work provides an approach for reservoir computing systems to achieve real-time processing of spatiotemporal signals with compound temporal characteristics.
Collapse
Affiliation(s)
- Ruiqi Chen
- School of Integrated Circuits, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing 100871, China
| | - Haozhang Yang
- School of Integrated Circuits, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing 100871, China
| | - Ruiyi Li
- School of Integrated Circuits, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing 100871, China
| | - Guihai Yu
- School of Integrated Circuits, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing 100871, China
| | - Yizhou Zhang
- School of Integrated Circuits, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing 100871, China
| | - Junchen Dong
- Beijing Information Science and Technology University, Beijing 100192, China
| | - Dedong Han
- School of Integrated Circuits, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing 100871, China
| | - Zheng Zhou
- School of Integrated Circuits, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing 100871, China
| | - Peng Huang
- School of Integrated Circuits, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing 100871, China
| | - Lifeng Liu
- School of Integrated Circuits, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing 100871, China
| | - Xiaoyan Liu
- School of Integrated Circuits, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing 100871, China
| | - Jinfeng Kang
- School of Integrated Circuits, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Integrated Circuits, Beijing 100871, China
| |
Collapse
|
13
|
Rezaei M, Nezamzadeh-Ejhieh A, Massah AR. A Comprehensive Review on the Boosted Effects of Anion Vacancy in the Heterogeneous Photocatalytic Degradation, Part II: Focus on Oxygen Vacancy. ACS OMEGA 2024; 9:6093-6127. [PMID: 38371849 PMCID: PMC10870278 DOI: 10.1021/acsomega.3c07560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/20/2024]
Abstract
Environmental problems, including the increasingly polluted water and the energy crisis, have led to a need to propose novel strategies/methodologies to contribute to sustainable progress and enhance human well-being. For these goals, heterogeneous semiconducting-based photocatalysis is introduced as a green, eco-friendly, cost-effective, and effective strategy. The introduction of anion vacancies in semiconductors has been well-known as an effective strategy for considerably enhancing the photocatalytic activity of such photocatalytic systems, giving them the advantages of promoting light harvesting, facilitating photogenerated electron-hole pair separation, optimizing the electronic structure, and enhancing the yield of reactive radicals. This Review will introduce the effects of anion vacancy-dominated photodegradation systems. Then, their mechanism will illustrate how an anion vacancy changes the photodegradation pathway to enhance the degradation efficiency toward pollutants and the overall photocatalytic performance. Specifically, the vacancy defect types and the methods of tailoring vacancies will be briefly illustrated, and this part of the Review will focus on the oxygen vacancy (OV) and its recent advances. The challenges and development issues for engineered vacancy defects in photocatalysts will also be discussed for practical applications and to provide a promising research direction. Finally, some prospects for this emerging field will be proposed and suggested. All permission numbers for adopted figures from the literature are summarized in a separate file for the Editor.
Collapse
Affiliation(s)
- Mahdieh Rezaei
- Department
of Chemistry, Shahreza Branch, Islamic Azad
University, P.O. Box 311-86145, Shahreza, Isfahan 86139-74183, Iran
| | - Alireza Nezamzadeh-Ejhieh
- Department
of Chemistry, Shahreza Branch, Islamic Azad
University, P.O. Box 311-86145, Shahreza, Isfahan 86139-74183, Iran
- Department
of Chemistry, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Isfahan 81551-39998, Iran
| | - Ahmad Reza Massah
- Department
of Chemistry, Shahreza Branch, Islamic Azad
University, P.O. Box 311-86145, Shahreza, Isfahan 86139-74183, Iran
- Department
of Chemistry, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Isfahan 81551-39998, Iran
| |
Collapse
|
14
|
Fu S, Xi W, Ren J, Wei H, Sun W. Study on the Photocatalytic Properties of Metal-Organic Framework-Derived C-, N-Co-Doped ZnO. MATERIALS (BASEL, SWITZERLAND) 2024; 17:855. [PMID: 38399106 PMCID: PMC10890417 DOI: 10.3390/ma17040855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024]
Abstract
In this study, C- and N-co-doped ZnO photocatalysts were prepared through pyrolysis using metal-organic frameworks (MOFs) as precursor materials. The crystal structure, morphology, and surface chemical composition of the samples were characterised via X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). Their activities in photocatalytic reactions were also evaluated through photocatalytic experiments. The results show that C-, N-co-doped ZnO has a high specific surface area, which is favourable for a photocatalytic reaction. Meanwhile, C-, N-doping can effectively modulate the energy band structure of ZnO, broaden its light absorption range, and improve the separation efficiency of photogenerated electron-hole pairs. The photocatalytic experiments show that the C/N-ZnO-500 samples, which have the optimal photocatalytic performances, have improved performances of 50% and 35%, respectively, compared with those of the blank control group and the ZIF-8 samples. The preparation of ZnO materials with a morphology change and doping using metal frameworks as precursors provides a new idea for designing efficient photocatalysts.
Collapse
Affiliation(s)
- Su Fu
- School of Mechanical Engineering, Xi’an Shiyou University, Xi’an 710065, China; (S.F.)
| | - Wenkui Xi
- School of Mechanical Engineering, Xi’an Shiyou University, Xi’an 710065, China; (S.F.)
| | - Jinlong Ren
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Hangxin Wei
- School of Mechanical Engineering, Xi’an Shiyou University, Xi’an 710065, China; (S.F.)
| | - Wen Sun
- School of Mechanical Engineering, Xi’an Shiyou University, Xi’an 710065, China; (S.F.)
| |
Collapse
|
15
|
Yao J. A multiple signal amplification photoelectrochemical biosensor based on biotin-avidin system for kanamycin sensing in fish and milk via synergism of g-C 3N 4 and Ru@SiO 2. Anal Chim Acta 2024; 1288:342141. [PMID: 38220276 DOI: 10.1016/j.aca.2023.342141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND The residues of kanamycin can accumulate in the human body for a long time and pose serious health risks, including hearing loss, kidney poisoning, and drug allergic reactions. Therefore, it is crucial to develop a rapid, highly sensitive, and low-cost method for detecting kanamycin residues in foods. However, the current methods have limitations such as low sensitivity, expensive instruments, and multiple steps, which make them impractical for use in resource-limited environments and emergencies. In this study, the creation of a multiple-signal amplification photoelectrochemical biosensor to address these aforementioned issues is discussed. RESULTS Herein, we proposed a multiple signal amplification photoelectrochemical (PEC) biosensor based on carboxylated g-C3N4 and avidin functionalized Ru@SiO2 for the ultrasensitive detection of kanamycin. The carboxylated g-C3N4 was a highly efficient photoactive substance for amplifying photoelectric signals and a substrate for aptamer immobilization. The DOS and PDOS of g-C3N4 were studied by simulation, and the sensing mechanism of the probe at the molecular level was revealed. Meanwhile, using Ru@SiO2 as a signal amplifying unit, through the cooperative work between Ru@SiO2 and g-C3N4, the photoelectric signal could be double amplified to produce an excellent photocurrent response. Under optimized conditions, the photocurrent response of the PEC biosensor to kanamycin was obtained at concentrations from 0.1 nM to 1000 nM with a lower detection limit of 4.1052 × 10-11 mol L-1. This protocol demonstrates high sensitivity, brilliant specific recognition ability, excellent reproducibility, and acceptable stability. SIGNIFICANCE The first combination of g-C3N4 and avidin-Ru@SiO2 as photocurrent materials greatly enhanced the sensitivity of the PEC biosensors. Moreover, the specificity and sensitivity of the PEC biosensor were further improved through the specific interaction between kanamycin and aptamer. The photoelectric conversion mechanism based on g-C3N4 and two pathways for enhancing the photocurrent by Ru(byp)32+ were proposed. Through simulations of the DOS and PDOS of g-C3N4, the sensing mechanism of the probe at the molecular level was revealed. Under the optimum conditions, the PEC biosensor exhibited a wide linear concentration range and a low detection limit.
Collapse
Affiliation(s)
- Jun Yao
- College of Food Science and Technology, Sichuan Tourism University, Chengdu, Sichuan Province, 610100, People's Republic of China; Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu, Sichuan Province, 610100, People's Republic of China.
| |
Collapse
|
16
|
Elmehdi HM, Ramachandran K, Chidambaram S, Mani GT, Pandiaraj S, Alqarni SA, Daoudi K, Gaidi M. Diode characteristics, piezo-photocatalytic antibiotic degradation and hydrogen production of Ce 3+ doped ZnO nanostructures. CHEMOSPHERE 2024; 350:141015. [PMID: 38154676 DOI: 10.1016/j.chemosphere.2023.141015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/27/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023]
Abstract
Piezo-photocatalysis of ZnO nanostructures had recently well attracted due to their exceptional potential in degrading the antibiotics and scalable hydrogen production. Here, we have synthesized the Ce3+ doped ZnO nanospheres in a facile wet chemical strategy. Dopant ions induced morphological evolution and optical bandgap tuning had observed in our experiment. Optical absorbance spectrum had confirmed the bandgap shortening occurs with Ce3+ doped ZnO specimens. The bandgap gap value had reduced to 2.82 eV from 3.05eV confirming the visible light responsivity of ZnO nano specimens. Obtained Zn(1-x)CexO nanospheres were utilized to fabricate the p-Si/n- Zn(1-x)CexO heterojunction diodes as well studied the improved electrical conductivity for the Ce3+ specimen-based diodes. Besides, ideality factor and barrier height values of the heterojunction diodes ZnO/p-Si, Zn0.99Ce0.01O/p-Si, Zn0.97Ce0.03O/p-Si, and Zn0.95Ce0.05O/p-Si are 15.97 & 0.43 eV, 15.47 & 0.44 eV, 8.02 & 0.46 eV and 5.21 & 0.47 eV, respectively. Direct sunlight assisted piezo-photocatalytic tetracycline (TC) degradation efficiency of ZnO, Zn0.99Ce0.01O, Zn0.97Ce0.03O, and Zn0.95Ce0.05O nanostructures respectively are 64%, 69%, 74% and 82%. We have produced the hydrogen quantity of 1234 μ mol h-1, 1490 μ mol h-1, 1750 μ mol h-1 and 1980 μ mol h-1 with 0%, 1%, 3% and 5% Ce3+ doped ZnO specimens under the direct sunlight assisted piezo-photocatalytic H2 production from H2S splitting.
Collapse
Affiliation(s)
- Hussein M Elmehdi
- Department of Applied Physics and Astronomy, College of Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates.
| | - Krithikadevi Ramachandran
- Centre for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates; University College of Engineering, BIT Campus, Tiruchirappalli, Tamilnadu, India
| | - Siva Chidambaram
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, 603203, India.
| | | | - Saravanan Pandiaraj
- Department of Self-Development Skills, CFY Deanship, King Saud University, Riyadh 11451, Saudi Arabia
| | | | - Kais Daoudi
- Department of Applied Physics and Astronomy, College of Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; Centre for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mounir Gaidi
- Department of Applied Physics and Astronomy, College of Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; Centre for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
17
|
Kim SC, Kim BS. Catalytic removal of harmful volatile organic compounds by reutilizing zinc rods waste from spent batteries as a palladium catalyst support. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122678. [PMID: 37804904 DOI: 10.1016/j.envpol.2023.122678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/13/2023] [Accepted: 10/01/2023] [Indexed: 10/09/2023]
Abstract
The emission of volatile organic compounds (VOCs) has led to significant deterioration in air quality, making it imperative to ensure that these compounds are removed from emission sources before they are released into the atmosphere. In this context, the present study recycled spent primary batteries to use their zinc rods waste (ZRW) as a palladium catalyst support for the removal of harmful VOCs. To this end, palladium supported on ZRW (Pd/ZRW) catalysts were prepared and tested for the catalytic oxidation of benzene, methylbenzene and 1,2-dimethylbenzene. The physicochemical properties of the Pd/ZRW catalysts were carefully characterized by ICP-OES, BET, SEM, XRD, FE-TEM, XPS, and H2-TPR analyses. The main component of ZRW was identified as ZnO. Consistent with expectations, increases in the loading of Pd from 0.1 to 1.0 wt% in the Pd/ZRW catalysts resulted in enhanced VOCs removal efficiency. The reaction temperature required for the complete oxidation (100% removal efficiency) of methylbenzene and 1,2-dimethylbenzene on the 1.0 wt% Pd/ZRW catalyst was below 340 °C at a gas hourly space velocity of 50,000 h-1. TEM, XPS, and H2-TPR results implied that the enhancement of catalytic activity with the addition of Pd could be attributed to the readily movable surface lattice oxygen as well as the active component (Pd species). Ultimately, ZRW of spent primary batteries appear to show promise as a catalyst support for VOCs removal. This study has introduced a novel strategy for reducing air pollutants by utilizing waste, which promotes the disposal of hazardous solid waste and ensures clean air quality.
Collapse
Affiliation(s)
- Sang Chai Kim
- Department of Environmental Education, Mokpo National University, Muan, 58554, Republic of Korea
| | - Beom-Sik Kim
- Hydrogen and Low-Carbon Energy R&D Lab., POSCO N.EX.T. Hub, POSCO Holdings, Pohang, 37673, Republic of Korea.
| |
Collapse
|
18
|
Wang S, Yao M, Cheng Y, Ding K, Dou M, Shao H, Xue S, Li S, Chen Y. Improving photocatalytic hydrogen production by switching charge kinetics from type-I to Z-scheme via defective engineering. Dalton Trans 2023; 52:16720-16731. [PMID: 37899698 DOI: 10.1039/d3dt03043a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
By providing the spatial separation of the active sites and retaining high oxidative and reducing capacity, the direct Z-scheme heterostructure is considered the most potential structure for yielding photo-electric response. However, challenges still exist in the directional transfer of charge carriers between two semiconductors in direct Z-scheme structures. In this regard, by constructing the Vzn defect and p-n junction, a direct Z-scheme ZnxCd1-xS@ZnS-NiS heterostructure was obtained for the regulated electronic structure, which ensured high-yield hydrogen properties. The Zn vacancy in the partially-coated ZnS shell led to the Vzn energy level, and the addition of NiS led to the p-n structure, which caused a drastic downshift of the band edge potentials in comparison to that of pristine CdS. This variation gave rise to a staggered band edge alignment between ZnxCd1-xS and NiS, resulting in the variation of charge transfer kinetics from type-I to direct Z-scheme. Through careful characterization, it was found that the optimal photocatalytic hydrogen precipitation activity reached 16 683.6 μmol g-1 h-1, which was 70 times that of CdS, and this improvement was considered to form a spatial barrier, providing a clear direction and path for carrier transmission.
Collapse
Affiliation(s)
- Shuang Wang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, PR China.
| | - Mengjie Yao
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, PR China.
| | - Yuye Cheng
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, PR China.
| | - Kai Ding
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, PR China.
| | - Minghao Dou
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, PR China.
| | - Hongyu Shao
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, PR China.
| | - Shuaitong Xue
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, PR China.
| | - Shenjie Li
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, PR China.
| | - Yanyan Chen
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, PR China.
| |
Collapse
|
19
|
Jia S, Hu M, Gu M, Ma J, Li D, Xiang G, Liu P, Wang K, Servati P, Ge WK, Sun XW. Optimizing ZnO-Quantum Dot Interface with Thiol as Ligand Modification for High-Performance Quantum Dot Light-Emitting Diodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2307298. [PMID: 37972284 DOI: 10.1002/smll.202307298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/16/2023] [Indexed: 11/19/2023]
Abstract
As the electron transport layer in quantum dot light-emitting diodes (QLEDs), ZnO suffers from excessive electrons that lead to luminescence quenching of the quantum dots (QDs) and charge-imbalance in QLEDs. Therefore, the interplay between ZnO and QDs requires an in-depth understanding. In this study, DFT and COSMOSL simulations are employed to investigate the effect of sulfur atoms on ZnO. Based on the simulations, thiol ligands (specifically 2-hydroxy-1-ethanethiol) to modify the ZnO nanocrystals are adopted. This modification alleviates the excess electrons without causing any additional issues in the charge injection in QLEDs. This modification strategy proves to be effective in improving the performance of red-emitting QLEDs, achieving an external quantum efficiency of over 23% and a remarkably long lifetime T95 of >12 000 h at 1000 cd m-2 . Importantly, the relationship between ZnO layers with different electronic properties and their effect on the adjacent QDs through a single QD measurement is investigated. These findings show that the ZnO surface defects and electronic properties can significantly impact the device performance, highlighting the importance of optimizing the ZnO-QD interface, and showcasing a promising ligand strategy for the development of highly efficient QLEDs.
Collapse
Affiliation(s)
- Siqi Jia
- Institute of Nanoscience and Applications, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Institute of Advanced Displays and Imaging, Henan Academy of Sciences, Zhengzhou, 450046, China
- Peng Cheng Laboratory, Shenzhen, 518038, China
| | - Menglei Hu
- Institute of Nanoscience and Applications, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Mi Gu
- Institute of Nanoscience and Applications, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jingrui Ma
- Institute of Nanoscience and Applications, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Depeng Li
- Institute of Nanoscience and Applications, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Guohong Xiang
- Institute of Nanoscience and Applications, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Pai Liu
- Institute of Nanoscience and Applications, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Shenzhen Key Laboratory of Deep Subwavelength Scale Photonics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Kai Wang
- Institute of Nanoscience and Applications, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Peyman Servati
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Wei Kun Ge
- Institute of Nanoscience and Applications, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiao Wei Sun
- Institute of Nanoscience and Applications, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
20
|
Zhu J, Hu S, Chen B, Zhang Y, Wei S, Guo X, Zou X, Lu X, Sun Q, Zhang DW, Ji L. Tunable-performance all-oxide structure field-effect transistor based atomic layer deposited Hf-doped In2O3 thin films. J Chem Phys 2023; 159:174704. [PMID: 37916595 DOI: 10.1063/5.0170886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023] Open
Abstract
The relocation of peripheral transistors from the front-end-of-line (FEOL) to the back-end-of-line (BEOL) in fabrication processes is of significant interest, as it allows for the introduction of novel functionality in the BEOL while providing additional die area in the FEOL. Oxide semiconductor-based transistors serve as attractive candidates for BEOL. Within these categories, In2O3 material is particularly notable; nonetheless, the excessive intrinsic carrier concentration poses a limitation on its broader applicability. Herein, the deposition of Hf-doped In2O3 (IHO) films via atomic layer deposition for the first time demonstrates an effective method for tuning the intrinsic carrier concentration, where the doping concentration plays a critical role in determine the properties of IHO films and all-oxide structure transistors with Au-free process. The all-oxide transistors with In2O3: HfO2 ratio of 10:1 exhibited optimal electrical properties, including high on-current with 249 µA, field-effect mobility of 13.4 cm2 V-1 s-1, and on/off ratio exceeding 106, and also achieved excellent stability under long time positive bias stress and negative bias stress. These findings suggest that this study not only introduces a straightforward and efficient approach to improve the properties of In2O3 material and transistors, but as well paves the way for development of all-oxide transistors and their integration into BEOL technology.
Collapse
Affiliation(s)
- Jiyuan Zhu
- School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Shen Hu
- School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Bojia Chen
- School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Yu Zhang
- School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Shice Wei
- School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Xiangyu Guo
- School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Xingli Zou
- State Key Laboratory of Advanced Special Steel and Shanghai Key Laboratory of Advanced Ferrometallurgy and School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Xionggang Lu
- State Key Laboratory of Advanced Special Steel and Shanghai Key Laboratory of Advanced Ferrometallurgy and School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Qingqing Sun
- School of Microelectronics, Fudan University, Shanghai 200433, China
| | - David W Zhang
- School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Li Ji
- School of Microelectronics, Fudan University, Shanghai 200433, China
- Hubei Yangtz Memory Laboratories, Wuhan 430205, China
| |
Collapse
|
21
|
Zheng S, Chen Z, Duley WW, Wu YA, Peng P, Zhou YN. Engineering the defect distribution in ZnO nanorods through laser irradiation. NANOTECHNOLOGY 2023; 34:495703. [PMID: 37643586 DOI: 10.1088/1361-6528/acf4a3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/28/2023] [Indexed: 08/31/2023]
Abstract
In recent years, defect engineering has shown great potential to improve the properties of metal oxide nanomaterials for various applications thus received extensive investigations. While traditional techniques mostly focus on controlling the defects during the synthesis of the material, laser irradiation has emerged as a promising post-deposition technique to further modulate the properties of defects yet there is still limited information. In this article, defects such as oxygen vacancies are tailored in ZnO nanorods through nanosecond (ns) laser irradiation. The relation between laser parameters and the temperature rise in the ZnO due to laser heating was established based on the observation in the SEM and the simulation. Raman spectra indicated that the concentration of the oxygen vacancies in the ZnO is temperature-dependent and can be controlled by changing the laser fluence and exposure time. This is also supported by the absorption spectra and the photoluminescence spectra of ZnO NRs irradiated under these conditions. On the other hand, the distribution of the oxygen vacancies was studied by XPS depth profiling, and it was confirmed that the surface-to-bulk ratio of the oxygen vacancies can be modulated by varying the laser fluence and exposure time. Based on these results, four distinctive regimes containing different ratios of surface-to-bulk oxygen vacancies have been identified. Laser-processed ZnO nanorods were also used as the catalyst for the photocatalytic degradation of rhodamine B (RhB) dye to demonstrate the efficacy of this laser engineering technique.
Collapse
Affiliation(s)
- Shuo Zheng
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
- Centre for Advanced Materials Joining, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Zuolong Chen
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
- Waterloo Institute of Nanotechnology, Materials Interface Foundry, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Walter W Duley
- Centre for Advanced Materials Joining, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Yimin A Wu
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
- Waterloo Institute of Nanotechnology, Materials Interface Foundry, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Peng Peng
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
- Centre for Advanced Materials Joining, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Y Norman Zhou
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
- Centre for Advanced Materials Joining, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
22
|
Krajewski M, Tokarczyk M, Świętochowski P, Wróbel P, Kamińska M, Drabińska A. Structural, Optical, and Electrical Properties of Hafnium-Aluminum-Zinc-Oxide Films Grown by Atomic Layer Deposition for TCO Applications. ACS OMEGA 2023; 8:30621-30629. [PMID: 37636974 PMCID: PMC10448667 DOI: 10.1021/acsomega.3c04256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023]
Abstract
ZnO is a widely studied material that exhibits versatile doping possibilities. Most research presents singly doped ZnO, leaving the potential of codoping unexplored. Within this study, hafnium-aluminum codoped zinc oxide (HAZO) thin films were grown on a glass substrate using the atomic layer deposition technique at 200 °C. A comprehensive analysis of the surface morphology and electrical and optical properties of the samples was conducted for varying the Al/Hf doping ratio. X-ray diffraction studies showed that the obtained films are polycrystalline, exhibiting a preferential growth direction along the (1 0 0) plane without any detectable precipitates. Moreover, the electrical measurements of HAZO films revealed that they exhibit lower resistivity (∼9.5 × 10-4 Ωcm) than the commonly used aluminum zinc oxide films (AZO). This improvement can be primarily attributed to the promotion of the n-type carrier concentration to 4.45 × 1020 cm-3 while maintaining a mobility value equal to 14.7 cm2/Vs. The doping also influences the optical properties of the material by widening the band gap and changing the refractive index, as observed by spectroscopy and ellipsometry studies. These findings highlight the potential of proposed HAZO thin films for future applications in electronic devices utilizing transparent conducting oxides.
Collapse
Affiliation(s)
| | | | | | - Piotr Wróbel
- Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
| | - Maria Kamińska
- Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
| | - Aneta Drabińska
- Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
| |
Collapse
|
23
|
Hendrix Y, Rauwel E, Nagpal K, Haddad R, Estephan E, Boissière C, Rauwel P. Revealing the Dependency of Dye Adsorption and Photocatalytic Activity of ZnO Nanoparticles on Their Morphology and Defect States. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1998. [PMID: 37446514 DOI: 10.3390/nano13131998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023]
Abstract
ZnO is an effective photocatalyst applied to the degradation of organic dyes in aqueous media. In this study, the UV-light and sunlight-driven photocatalytic activities of ZnO nanoparticles are evaluated. A handheld Lovibond photometer was purposefully calibrated in order to monitor the dye removal in outdoor conditions. The effect of ZnO defect states, i.e., the presence of zinc and oxygen defects on the photocatalytic activity was probed for two types of dyes: fuchsin and methylene blue. Three morphologies of ZnO nanoparticles were deliberately selected, i.e., spherical, facetted and a mix of spherical and facetted, ascertained via transmission electron microscopy. Aqueous and non-aqueous sol-gel routes were applied to their synthesis in order to tailor their size, morphology and defect states. Raman spectroscopy demonstrated that the spherical nanoparticles contained a high amount of oxygen vacancies and zinc interstitials. Photoluminescence spectroscopy revealed that the facetted nanoparticles harbored zinc vacancies in addition to oxygen vacancies. A mechanism for dye degradation based on the possible surface defects in facetted nanoparticles is proposed in this work. The reusability of these nanoparticles for five cycles of dye degradation was also analyzed. More specifically, facetted ZnO nanoparticles tend to exhibit higher efficiencies and reusability than spherical nanoparticles.
Collapse
Affiliation(s)
- Yuri Hendrix
- Institute of Forestry and Engineering Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia
| | - Erwan Rauwel
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia
| | - Keshav Nagpal
- Institute of Forestry and Engineering Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia
| | - Ryma Haddad
- Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), Collège de France, CNRS, Sorbonne Université, 75005 Paris, France
| | - Elias Estephan
- Laboratoire Bioinginirie et Nanoscience (LBN), University of Montpellier, 34193 Montpellier, France
| | - Cédric Boissière
- Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), Collège de France, CNRS, Sorbonne Université, 75005 Paris, France
| | - Protima Rauwel
- Institute of Forestry and Engineering Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia
| |
Collapse
|
24
|
Zhao X, Jheng JC, Chou NN, Wang FH, Yang CF. Synthesis of ZnO Nanoflower Arrays on a Protrusion Sapphire Substrate and Application of Al-Decorated ZnO Nanoflower Matrix in Gas Sensors. SENSORS (BASEL, SWITZERLAND) 2023; 23:5629. [PMID: 37420795 DOI: 10.3390/s23125629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/25/2023] [Accepted: 06/14/2023] [Indexed: 07/09/2023]
Abstract
In this study, we utilized a sapphire substrate with a matrix protrusion structure as a template. We employed a ZnO gel as a precursor and deposited it onto the substrate using the spin coating method. After undergoing six cycles of deposition and baking, a ZnO seed layer with a thickness of 170 nm was formed. Subsequently, we used a hydrothermal method to grow ZnO nanorods (NRs) on the aforementioned ZnO seed layer for different durations. ZnO NRs exhibited a uniform outward growth rate in various directions, resulting in a hexagonal and floral morphology when observed from above. This morphology was particularly evident in ZnO NRs synthesized for 30 and 45 min. Due to the protrusion structure of ZnO seed layer, the resulting ZnO nanorods (NRs) displayed a floral and matrix morphology on the protrusion ZnO seed layer. To further enhance their properties, we utilized Al nanomaterial to decorate the ZnO nanoflower matrix (NFM) using a deposition method. Subsequently, we fabricated devices using both undecorated and Al-decorated ZnO NFMs and deposited an upper electrode using an interdigital mask. We then compared the gas-sensing performance of these two types of sensors towards CO and H2 gases. The research findings indicate that sensors based on Al-decorated ZnO NFM exhibit superior gas-sensing properties compared to undecorated ZnO NFM for both CO and H2 gases. These Al-decorated sensors demonstrate faster response times and higher response rates during the sensing processes.
Collapse
Affiliation(s)
- Xin Zhao
- School of Information Engineering, Shanghai Zhongqiao Vocational and Technical University, Shanghai 201514, China
| | - Jang-Cheng Jheng
- Graduate Institute of Optoelectronic Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Ni-Ni Chou
- Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 811, Taiwan
| | - Fang-Hsing Wang
- Graduate Institute of Optoelectronic Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Cheng-Fu Yang
- Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 811, Taiwan
- Department of Aeronautical Engineering, Chaoyang University of Technology, Taichung 413, Taiwan
| |
Collapse
|
25
|
Lungu MV. Effects of Dopants and Processing Parameters on the Properties of ZnO-V 2O 5-Based Varistors Prepared by Powder Metallurgy: A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16103725. [PMID: 37241352 DOI: 10.3390/ma16103725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023]
Abstract
This article reviews the progress in developing ZnO-V2O5-based metal oxide varistors (MOVs) using powder metallurgy (PM) techniques. The aim is to create new, advanced ceramic materials for MOVs with comparable or superior functional properties to ZnO-Bi2O3 varistors using fewer dopants. The survey emphasizes the importance of a homogeneous microstructure and desirable varistor properties, such as high nonlinearity (α), low leakage current density (JL), high energy absorption capability, reduced power loss, and stability for reliable MOVs. This study investigates the effect of V2O5 and MO additives on the microstructure, electrical and dielectric properties, and aging behavior of ZnO-based varistors. The findings show that MOVs with 0.25-2 mol.% V2O5 and MO additives sintered in air over 800 °C contain a primary phase of ZnO with a hexagonal wurtzite structure and several secondary phases that impact the MOV performance. The MO additives, such as Bi2O3, In2O3, Sb2O3, transition element oxides, and rare earth oxides, act as ZnO grain growth inhibitors and enhance the density, microstructure homogeneity, and nonlinearity. Refinement of the microstructure of MOVs and consolidation under appropriate PM conditions improve their electrical properties (JL ≤ 0.2 mA/cm2, α of 22-153) and stability. The review recommends further developing and investigating large-sized MOVs from the ZnO-V2O5 systems using these techniques.
Collapse
Affiliation(s)
- Magdalena Valentina Lungu
- Metallic, Composite and Polymeric Materials Department, National Institute for Research and Development in Electrical Engineering ICPE-CA, 030138 Bucharest, Romania
| |
Collapse
|
26
|
Tuc Altaf C, Colak TO, Rostas AM, Popa A, Toloman D, Suciu M, Demirci Sankir N, Sankir M. Impact on the Photocatalytic Dye Degradation of Morphology and Annealing-Induced Defects in Zinc Oxide Nanostructures. ACS OMEGA 2023; 8:14952-14964. [PMID: 37151495 PMCID: PMC10157689 DOI: 10.1021/acsomega.2c07412] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/05/2023] [Indexed: 05/09/2023]
Abstract
In this study, three different morphologies, nanoflower (NF), nano sponge (NS), and nano urchin (NU), of zinc oxide (ZnO) nanostructures were synthesized successfully via a mild hydrothermal method. After synthesis, the samples were annealed in the atmosphere at 300, 600, and 800 °C. Although annealing provides different degradation kinetics for different morphologies, ZnO NS performed significantly better than other morphologies for all annealing temperatures we used in the study. When the photoluminescence, electron paramagnetic resonance spectroscopy, BET surface, and X-ray diffraction analysis results are examined, it is revealed that the defect structure, pore diameter, and crystallinity cumulatively affect the photocatalytic activity of ZnO nanocatalysts. As a result, to obtain high photocatalytic activity in rhodamine B (RhB) degradation, it is necessary to develop a ZnO catalyst with fewer core defects, more oxygen vacancies, near band emission, large crystallite size, and large pore diameter. The ZnO NS-800 °C nanocatalyst studied here had a 35.6 × 10-3 min-1 rate constant and excellent stability after a 5-cycle photocatalytic degradation of RhB.
Collapse
Affiliation(s)
- Cigdem Tuc Altaf
- Department
of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, SogutozuCaddesi No 43 Sogutozu, 06560 Ankara, Turkey
| | - Tuluhan Olcayto Colak
- Micro
and Nanotechnology Graduate Program, TOBB
University of Economics and Technology, SogutozuCaddesi No 43 Sogutozu, 06560 Ankara, Turkey
| | - Arpad Mihai Rostas
- National
Institute for Research and Development of Isotopic and Molecular Technologies−
INCDTIM, 67-103 Donat, 400293 Cluj-Napoca, Romania
- E-mail:
| | - Adriana Popa
- National
Institute for Research and Development of Isotopic and Molecular Technologies−
INCDTIM, 67-103 Donat, 400293 Cluj-Napoca, Romania
| | - Dana Toloman
- National
Institute for Research and Development of Isotopic and Molecular Technologies−
INCDTIM, 67-103 Donat, 400293 Cluj-Napoca, Romania
| | - Maria Suciu
- National
Institute for Research and Development of Isotopic and Molecular Technologies−
INCDTIM, 67-103 Donat, 400293 Cluj-Napoca, Romania
| | - Nurdan Demirci Sankir
- Department
of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, SogutozuCaddesi No 43 Sogutozu, 06560 Ankara, Turkey
- Micro
and Nanotechnology Graduate Program, TOBB
University of Economics and Technology, SogutozuCaddesi No 43 Sogutozu, 06560 Ankara, Turkey
- E-mail:
| | - Mehmet Sankir
- Department
of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, SogutozuCaddesi No 43 Sogutozu, 06560 Ankara, Turkey
- Micro
and Nanotechnology Graduate Program, TOBB
University of Economics and Technology, SogutozuCaddesi No 43 Sogutozu, 06560 Ankara, Turkey
- E-mail:
| |
Collapse
|
27
|
Zhao S, Zhang Y, Li J, Qi L, Tang Y, Zhu J, Zhi J, Huang F. A Heteroanionic Zinc Ion Conductor for Dendrite-Free Zn Metal Anodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300195. [PMID: 36813539 DOI: 10.1002/adma.202300195] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/11/2023] [Indexed: 05/05/2023]
Abstract
Although zinc-based batteries are promising candidates for eco-friendly and cost-effective energy storage devices, their performance is severely retarded by dendrite formation. As the simplest zinc compounds, zinc chalcogenides, and halides are individually applied as a Zn protection layer due to high zinc ion conductivity. However, the mixed-anion compounds are not studied, which constrains the Zn2+ diffusion in single-anion lattices to their own limits. A heteroanionic zinc ion conductor (Zny O1- x Fx ) coating layer is designed by in situ growth method with tunable F content and thickness. Strengthened by F aliovalent doping, the Zn2+ conductivity is enhanced within the wurtzite motif for rapid lattice Zn migration. Zny O1- x Fx also affords zincophilic sites for oriented superficial Zn plating to suppress dendrite growth. Therefore, Zny O1- x Fx -coated anode exhibits a low overpotential of 20.4 mV for 1000 h cycle life at a plating capacity of 1.0 mA h cm-2 during symmetrical cell test. The MnO2 //Zn full battery further proves high stability of 169.7 mA h g-1 for 1000 cycles. This work may enlighten the mixed-anion tuning for high-performance Zn-based energy storage devices.
Collapse
Affiliation(s)
- Siwei Zhao
- Beijing National Laboratory for Molecular Sciences and State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Yujing Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Jidao Li
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100871, P. R. China
| | - Limin Qi
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Yuxin Tang
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Jia Zhu
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100871, P. R. China
| | - Jian Zhi
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Fuqiang Huang
- Beijing National Laboratory for Molecular Sciences and State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| |
Collapse
|
28
|
Mo F, Song C, Zhou Q, Xue W, Ouyang S, Wang Q, Hou Z, Wang S, Wang J. The optimized Fenton-like activity of Fe single-atom sites by Fe atomic clusters-mediated electronic configuration modulation. Proc Natl Acad Sci U S A 2023; 120:e2300281120. [PMID: 37011202 PMCID: PMC10104488 DOI: 10.1073/pnas.2300281120] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/28/2023] [Indexed: 04/05/2023] Open
Abstract
The performance optimization of isolated atomically dispersed metal active sites is critical but challenging. Here, TiO2@Fe species-N-C catalysts with Fe atomic clusters (ACs) and satellite Fe-N4 active sites were fabricated to initiate peroxymonosulfate (PMS) oxidation reaction. The AC-induced charge redistribution of single atoms (SAs) was verified, thus strengthening the interaction between SAs and PMS. In detail, the incorporation of ACs optimized the HSO5- oxidation and SO5·- desorption steps, accelerating the reaction progress. As a result, the Vis/TiFeAS/PMS system rapidly eliminated 90.81% of 45 mg/L tetracycline (TC) in 10 min. The reaction process characterization suggested that PMS as an electron donor would transfer electron to Fe species in TiFeAS, generating 1O2. Subsequently, the hVB+ can induce the generation of electron-deficient Fe species, promoting the reaction circulation. This work provides a strategy to construct catalysts with multiple atom assembly-enabled composite active sites for high-efficiency PMS-based advanced oxidation processes (AOPs).
Collapse
Affiliation(s)
- Fan Mo
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin300350, China
| | - Chunlin Song
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin300350, China
| | - Qixing Zhou
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin300350, China
| | - Wendan Xue
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin300350, China
| | - Shaohu Ouyang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin300350, China
| | - Qi Wang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin300350, China
| | - Zelin Hou
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin300350, China
| | - Shuting Wang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin300350, China
| | - Jianling Wang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin300350, China
| |
Collapse
|
29
|
Zhu X, Li J, Zhang L, Lang F, Hou X, Zhao X, Zhang W, Zhao C, Yang Z. Effect of Strain Rate on Nano-Scale Mechanical Behavior of A-Plane (112¯0) ZnO Single Crystal by Nanoindentation. MICROMACHINES 2023; 14:404. [PMID: 36838103 PMCID: PMC9960592 DOI: 10.3390/mi14020404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
In this study, nanoindentation tests at three different strain rates within 100 nm indentation depth were conducted on an a-plane (112¯0) ZnO single crystal to investigate the effect of strain rate on its nano-scale mechanical behavior. The load-indentation-depth curves, pop-in events, hardness and Young's moduli of an a-plane (112¯0) ZnO single crystal at different strain rates were investigated at the nano-scale level. The results indicated that, with the indentation depth increasing, the load increased gradually at each maximum indentation depth, hma, during the loading process. A distinct pop-in event occurred on each loading curve except that corresponding to the hmax of 10 nm. The applied load at the same indentation depth increased with the increasing strain rate during the nanoindentation of the a-plane (112¯0) ZnO single crystal. The higher strain rate deferred the pop-in event to a higher load and deeper indentation depth, and made the pop-in extension width larger. The hardness showed reverse indentation size effect (ISE) before the pop-in, and exhibited normal ISE after the pop-in. Both the hardness and the Young's modulus of the a-plane (112¯0) ZnO single crystal increased with the increasing strain rate, exhibiting the positive strain-rate sensitivity.
Collapse
Affiliation(s)
- Xiaolin Zhu
- College of Science, Inner Mongolia University of Technology, Hohhot 010051, China
- School of Mechanical and Energy Engineering, Shanghai Technical Institute of Electronics & Information, Shanghai 201411, China
- College of Science and Technology, Inner Mongolia Open University, Hohhot 010011, China
| | - Jijun Li
- College of Science, Inner Mongolia University of Technology, Hohhot 010051, China
- School of Mechanical and Energy Engineering, Shanghai Technical Institute of Electronics & Information, Shanghai 201411, China
| | - Lihua Zhang
- College of Arts and Sciences, Shanghai Maritime University, Shanghai 201306, China
| | - Fengchao Lang
- College of Science, Inner Mongolia University of Technology, Hohhot 010051, China
| | - Xiaohu Hou
- Test Center, Inner Mongolia University of Technology, Hohhot 010051, China
| | - Xueping Zhao
- Test Center, Inner Mongolia University of Technology, Hohhot 010051, China
| | - Weiguang Zhang
- College of Science, Inner Mongolia University of Technology, Hohhot 010051, China
| | - Chunwang Zhao
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China
| | - Zijian Yang
- College of Science, Inner Mongolia University of Technology, Hohhot 010051, China
| |
Collapse
|
30
|
Heavy Metal Removal from Aqueous Effluents by TiO2 and ZnO Nanomaterials. ADSORPT SCI TECHNOL 2023. [DOI: 10.1155/2023/2728305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The presence of heavy metals in wastewater, such as Ni, Pb, Cd, V, Cr, and Cu, is a serious environmental problem. This kind of inorganic pollutant is not biodegradable for several years, and its harmful effect is cumulative. Recently, semiconductor nanomaterials based on metal oxides have gained interest due to their efficiency in the removal of heavy metals from contaminated water, by inducing photocatalytic ion reduction when they absorb light of the appropriate wavelength. The most commonly applied semiconductor oxides for these purposes are titanium oxide (TiO2), zinc oxide (ZnO), and binary nanomaterials composed of both types of oxides. The main purpose of this work is to critically analyse the existent literature concerning this topic focusing specially in the most important factors affecting the adsorption or photocatalytic capacities of this type of nanomaterials. In particular, photocatalytic activity is altered by various factors, such as proportion of polymorphs, synthesis method, surface area, concentration of defects and particle size, among others. After a survey of the actual literature, it was found that, although these metal oxides have low absorption capacity for visible light, it is possible to obtain an acceptable heavy metal reduction performance by sensitization with dyes, doping with metallic or nonmetallic atoms, introduction of defects, or the coupling of two or more semiconductors.
Collapse
|
31
|
Chizhov A, Kutukov P, Astafiev A, Rumyantseva M. Photoactivated Processes on the Surface of Metal Oxides and Gas Sensitivity to Oxygen. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23031055. [PMID: 36772093 PMCID: PMC9919573 DOI: 10.3390/s23031055] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 06/01/2023]
Abstract
Photoactivation by UV and visible radiation is a promising approach for the development of semiconductor gas sensors with reduced power consumption, high sensitivity, and stability. Although many hopeful results were achieved in this direction, the theoretical basis for the processes responsible for the photoactivated gas sensitivity still needs to be clarified. In this work, we investigated the mechanisms of UV-activated processes on the surface of nanocrystalline ZnO, In2O3, and SnO2 by in situ mass spectrometry and compared the obtained results with the gas sensitivity to oxygen in the dark and at UV irradiation. The results revealed a correlation between the photoactivated oxygen isotopic exchange activity and UV-activated oxygen gas sensitivity of the studied metal oxides. To interpret the data obtained, a model was proposed based on the idea of the generation of additional oxygen vacancies under UV irradiation due to the interaction with photoexcited holes.
Collapse
Affiliation(s)
- Artem Chizhov
- Chemistry Department, Moscow State University, 119991 Moscow, Russia
| | - Pavel Kutukov
- Chemistry Department, Moscow State University, 119991 Moscow, Russia
| | - Artyom Astafiev
- N.N. Semenov Federal Research Center for Chemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia
| | | |
Collapse
|
32
|
Filice S, Boscarino S, Scuderi M, Libertino S, Galati C, Terrasi A, Scalese S. AZO Nanoparticles-Decorated CNTs for UV Light Sensing: A Structural, Chemical, and Electro-Optical Investigation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:215. [PMID: 36616127 PMCID: PMC9823749 DOI: 10.3390/nano13010215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
Nanocomposites formed by aluminum-doped zinc oxide nanoparticles (AZO-NP) and multiwall carbon nanotubes (CNT) are proposed here as a promising material for UV light sensing applications, with the great advantage of operating in air, at room temperature, and at low voltage. Nanocomposite layers were prepared with different AZO:CNT weight ratios by a simple methodology at room temperature. They were characterized by means of UV-Vis spectroscopy, scanning and transmission electron microscopies (SEM and TEM), and X-ray photoelectron spectroscopy (XPS). The interaction between the two nanomaterials was demonstrated by comparing the properties of the nanocomposite with the ones shown by the AZO-NPs. Dense AZO-CNT nanocomposite layers were deposited between two metal electrodes on a SiO2/Si substrate, and the electrical properties were investigated in dark condition and under UV light irradiation. The electrical response to the UV light was a sudden current increase that reduced when the light was switched off. Several UV on/off cycles were performed, showing good repeatability and stability of the response. The mechanisms involved in the electrical response are discussed and compared to the ones previously reported for ZnO-CNT nanocomposites.
Collapse
Affiliation(s)
- Simona Filice
- Consiglio Nazionale delle Ricerche—Istituto per la Microelettronica e Microsistemi (CNR-IMM), Ottava Strada n.5, I-95121 Catania, Italy
| | - Stefano Boscarino
- Dipartimento di Fisica e Astronomia, Università degli Studi di Catania, Via S. Sofia 64, I-95123 Catania, Italy
- Consiglio Nazionale delle Ricerche—Istituto per la Microelettronica e Microsistemi (CNR-IMM), sede di Catania—Università, Via S. Sofia 64, I-95123 Catania, Italy
| | - Mario Scuderi
- Consiglio Nazionale delle Ricerche—Istituto per la Microelettronica e Microsistemi (CNR-IMM), Ottava Strada n.5, I-95121 Catania, Italy
| | - Sebania Libertino
- Consiglio Nazionale delle Ricerche—Istituto per la Microelettronica e Microsistemi (CNR-IMM), Ottava Strada n.5, I-95121 Catania, Italy
| | - Clelia Galati
- STMicroelectronics, Stradale Primosole 5, I-95121 Catania, Italy
| | - Antonio Terrasi
- Dipartimento di Fisica e Astronomia, Università degli Studi di Catania, Via S. Sofia 64, I-95123 Catania, Italy
- Consiglio Nazionale delle Ricerche—Istituto per la Microelettronica e Microsistemi (CNR-IMM), sede di Catania—Università, Via S. Sofia 64, I-95123 Catania, Italy
| | - Silvia Scalese
- Consiglio Nazionale delle Ricerche—Istituto per la Microelettronica e Microsistemi (CNR-IMM), Ottava Strada n.5, I-95121 Catania, Italy
| |
Collapse
|
33
|
Cai H, Wang J, Du Z, Zhao Z, Gu Y, Guo Z, Huang Y, Tang C, Chen G, Fang Y. Construction of novel ternary MoSe2/ZnO/p-BN photocatalyst for efficient ofloxacin degradation under visible light. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
34
|
Jia T, Sun C, Shi N, Yu D, Long F, Hu J, Wang J, Dong B, Li J, Fu F, Hu S, Lee JH. Efficient Oxygen Vacancy Defect Engineering for Enhancing Visible-Light Photocatalytic Performance over SnO 2-x Ultrafine Nanocrystals. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3342. [PMID: 36234469 PMCID: PMC9565659 DOI: 10.3390/nano12193342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/16/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Regardless of its good electron-transfer ability and chemical stability, pure Zn2SnO4 (ZSO) still has intrinsic deficiencies of a narrow spectral response region, poor absorption ability, and high photo-activated carrier recombination rate. Aiming to overcome the deficiencies above-mentioned, we designed a facile hydrothermal route for etching ZSO nanoparticles in a dilute acetic acid solution, through which efficient oxygen vacancy defect engineering was accomplished and SnO2-x nanocrystals were obtained with an ultrafine particle size. In comparison with the untreated ZSO nanoparticles, the specific surface area of SnO2-x nanocrystals was substantially enlarged, subsequently leading to the notable augmentation of active sites for the photo-degradation reaction. Aside from the above, it is worth noting that SnO2-x nanocrystals were endowed with a broad spectral response, enhancing light absorption capacity and the photo-activated carrier transfer rate with the aid of oxygen vacancy defect engineering. Accordingly, SnO2-x nanocrystals exhibited significantly enhanced photoactivity toward the degradation of the organic dye rhodamine B (RhB), which could be imputed to the synergistic effect of increasing active sites, intensified visible-light harvesting, and the separation rate of the photo-activated charge carrier caused by the oxygen vacancy defect engineering. In addition, these findings will inspire us to open up a novel pathway to design and prepare oxide compound photocatalysts modified by oxygen vacancy defects in pursuing excellent visible-light photoactivity.
Collapse
Affiliation(s)
- Tiekun Jia
- Henan Province International Joint Laboratory of Materials for Solar Energy Conversion and Lithium Sodium Based Battery, Luoyang Institute of Science and Technology, Luoyang 471023, China
| | - Chenxi Sun
- School of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Nianfeng Shi
- Henan Province Engineering Research Center of Industrial Intelligent Vision, Luoyang Institute of Science and Technology, Luoyang 471023, China
| | - Dongsheng Yu
- Henan Province International Joint Laboratory of Materials for Solar Energy Conversion and Lithium Sodium Based Battery, Luoyang Institute of Science and Technology, Luoyang 471023, China
| | - Fei Long
- School of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Ji Hu
- Henan Province International Joint Laboratory of Materials for Solar Energy Conversion and Lithium Sodium Based Battery, Luoyang Institute of Science and Technology, Luoyang 471023, China
| | - Jilin Wang
- School of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Binbin Dong
- Henan Province International Joint Laboratory of Materials for Solar Energy Conversion and Lithium Sodium Based Battery, Luoyang Institute of Science and Technology, Luoyang 471023, China
| | - Jili Li
- Henan Province International Joint Laboratory of Materials for Solar Energy Conversion and Lithium Sodium Based Battery, Luoyang Institute of Science and Technology, Luoyang 471023, China
| | - Fang Fu
- Henan Province International Joint Laboratory of Materials for Solar Energy Conversion and Lithium Sodium Based Battery, Luoyang Institute of Science and Technology, Luoyang 471023, China
| | - Shujing Hu
- School of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Joong Hee Lee
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 54896, Korea
| |
Collapse
|
35
|
Bulyga DV, Evstropiev SK, Nashchekin AV. Structural engineering of ZnO–MgO intermediates for functional ceramics. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04836-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
36
|
Zhang B, Wang J, Wei Q, Yu P, Zhang S, Xu Y, Dong Y, Ni Y, Ao J, Xia Y. Visible Light-Induced Room-Temperature Formaldehyde Gas Sensor Based on Porous Three-Dimensional ZnO Nanorod Clusters with Rich Oxygen Vacancies. ACS OMEGA 2022; 7:22861-22871. [PMID: 35811897 PMCID: PMC9260931 DOI: 10.1021/acsomega.2c02613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Oxygen vacancy (VO) is a kind of primary point defect that extensively exists in semiconductor metal oxides (SMOs). Owing to some of its inherent qualities, an artificial manipulation of VO content in one material has evolved into a hot research field, which is deemed to be capable of modulating band structures and surface characteristics of SMOs. Specific to the gas-sensing area, VO engineering of sensing materials has become an effective means in enhancing sensor response and inducing light-enhanced sensing. In this work, a high-efficiency microwave hydrothermal treatment was utilized to prepare a VO-rich ZnO sample without additional reagents. The X-ray photoelectron spectroscopy test revealed a significant increase in VO proportion, which was from 9.21% in commercial ZnO to 36.27% in synthesized VO-rich ZnO possessing three-dimensional and air-permeable microstructures. The subsequent UV-vis-NIR absorption and photoluminescence spectroscopy indicated an extension absorption in the visible region and band gap reduction of VO-rich ZnO. It turned out that the VO-rich ZnO-based sensor exhibited a considerable response of 63% toward 1 ppm HCHO at room temperature (RT, 25 °C) under visible light irradiation. Particularly, the response/recovery time was only 32/20 s for 1 ppm HCHO and further shortened to 10/5 s for 10 ppm HCHO, which was an excellent performance and comparable to most sensors working at high temperatures. The results in this work strongly suggested the availability of VO engineering and also provided a meaningful candidate for researchers to develop high-performance RT sensors detecting volatile organic compounds.
Collapse
Affiliation(s)
- Bo Zhang
- Engineering
Research Center of IoT Technology Applications (Ministry of Education),
Department of Electronic Engineering, Institute of Advanced Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Jing Wang
- Key
Laboratory of Synthetic and Biological Colloids (Ministry of Education),
School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Qufu Wei
- Key
Laboratory of Eco-Textiles (Ministry of Education), Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Pingping Yu
- Engineering
Research Center of IoT Technology Applications (Ministry of Education),
Department of Electronic Engineering, Institute of Advanced Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Shuai Zhang
- Engineering
Research Center of IoT Technology Applications (Ministry of Education),
Department of Electronic Engineering, Institute of Advanced Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Yin Xu
- Engineering
Research Center of IoT Technology Applications (Ministry of Education),
Department of Electronic Engineering, Institute of Advanced Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Yue Dong
- Engineering
Research Center of IoT Technology Applications (Ministry of Education),
Department of Electronic Engineering, Institute of Advanced Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Yi Ni
- Engineering
Research Center of IoT Technology Applications (Ministry of Education),
Department of Electronic Engineering, Institute of Advanced Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Jinping Ao
- Engineering
Research Center of IoT Technology Applications (Ministry of Education),
Department of Electronic Engineering, Institute of Advanced Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Yi Xia
- Research
Center for Analysis and Measurement, Kunming
University of Science and Technology, and Analytic & Testing Research
Center of Yunnan, Kunming 650093, China
| |
Collapse
|
37
|
Liu HQ, Yao CB. Composition engineering of AZO films for controlled photon-electron conversion and ultrafast nonlinear optical behavior. NANOSCALE 2022; 14:9169-9191. [PMID: 35723899 DOI: 10.1039/d2nr02279f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Exploring micro-nano photonic crystals as nonlinear optical switching and optical limiting devices for Gaussian light fields with ultrashort pulse widths has attracted extensive research, mainly originating from its controllable modulation of the third/fifth-order nonlinear optical behavior and ultrafast carrier dynamics. In this work, Al-doped ZnO (AZO) films with controllable and excellent third-order nonlinear optical behavior have been uniformly deposited on quartz substrates by a single-step co-sputtering method. Al dopant-dependent ultrafast carrier dynamics and nonlinear optical properties in hexagonal ZnO films are discussed. The bonding mode of Al atoms in the ZnO lattice changed from substitutional to substitutional-decoration, which has been controllably achieved at different DC sputtering powers. The strain, crystallinity, grain size, dislocation density, and texture coefficient of the sample were quantitatively calculated by XRD and Raman spectroscopy, which confirmed that the phase parameters can be regulated by the sputtering power. In addition, Hall test and photoluminescence spectra showed the contribution of the donor level on the band structure and the electron transfer characteristics, which will provide a strategy for understanding multi-type carrier dynamics under strong light fields. The finite-difference time-domain method was used to simulate the linear optical absorption/transmittance of the sample under a plane-wave optical field, which proved that the light-matter interaction failed to be significantly suppressed by shading and scattering effects. The carrier relaxation process and nonlinear absorption/refractive effects were controllably optimized by dopant Al atoms, which were confirmed by Z-scan and transient absorption spectroscopy. Compared with pure ZnO films, the third-order nonlinear refraction and absorption coefficients of AZO-power films can reach -8.926 × 10-15 m2 W-1 and -0.634 × 10-7 m W-1, respectively. AZO films with ultrafast carrier dynamics and controllable excellent third-order nonlinear optical coefficients can be used as all-optical switches and optical limiting devices, which provide a reference for advanced micro-nano optical materials.
Collapse
Affiliation(s)
- Hai-Quan Liu
- Key Laboratory of Photonic and electric Bandgap materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, Heilongjiang Province, China.
| | - Cheng-Bao Yao
- Key Laboratory of Photonic and electric Bandgap materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, Heilongjiang Province, China.
| |
Collapse
|
38
|
Dias Fernandes C, Meneghetti Ferrer M, Wienke Raubach C, Ceretta Moreira E, Timm Gularte L, da Silva Cava S, Lovato Gomes Jardim P, Dadalto Carvalho R, Longo E, Moreira ML. Low recombination rates and improving charge transfer as decisive conditions for high current densities and fill factors in ZnS complex systems. Phys Chem Chem Phys 2022; 24:15556-15564. [PMID: 35718876 DOI: 10.1039/d2cp00328g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The growth of ZnS photoelectrodes on ZnO particles identified as ZnO/ZnS(ZC + TAA) by the microwave-assisted hydrothermal method showed excellent photovoltaic parameters of JSC = 1.2 mA cm-2 and FF = 0.66, even compared to ZnS(ZC + TAA) used as a reference sample with JSC = 0.15 mA cm-2 and FF = 0.52. A careful analysis indicates that the better charge transfer and the higher resistance to recombination present in the ZnO/ZnS(ZC + TAA) samples were the origin of the best photovoltaic behavior. These assertions are supported by a set of samples synthesized from different precursors resulting in different crystal structures, which can be directly associated with current densities and fill factors. All aspects about synthesis and optical/electronic parameters associated with structural features will be available in this article.
Collapse
Affiliation(s)
| | | | | | | | - Luciano Timm Gularte
- CCAF, IFM/CDTec-PPGCEM, Federal University of Pelotas, CEP: 96010-610, Pelotas, RS, Brazil. .,Federal Institute of Sul-rio-grandense, CEP: 96015-360, Pelotas, RS, Brazil
| | - Sérgio da Silva Cava
- CCAF, IFM/CDTec-PPGCEM, Federal University of Pelotas, CEP: 96010-610, Pelotas, RS, Brazil. .,IFM/PPGFis, Federal University of Pelotas, CEP: 96160-000, Capão do Leão, RS, Brazil
| | | | | | - Elson Longo
- CDMF-UFSCar, State University of São Carlos, P.O. Box 676, São Carlos, SP 13565-905, Brazil
| | - Mario Lucio Moreira
- CCAF, IFM/CDTec-PPGCEM, Federal University of Pelotas, CEP: 96010-610, Pelotas, RS, Brazil. .,IFM/PPGFis, Federal University of Pelotas, CEP: 96160-000, Capão do Leão, RS, Brazil
| |
Collapse
|
39
|
Oxygen Vacancy-Dependent Chemiluminescence: A Facile Approach for Quantifying Oxygen Defects in ZnO. Anal Chem 2022; 94:8642-8650. [PMID: 35679593 DOI: 10.1021/acs.analchem.2c00359] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Defect engineering is an effective strategy to improve the catalytic activity of metal oxides, and quantitative characterization of surface defects is thus vital to the understanding and application of metal oxide catalysts. Herein, we found that ZnO nanoparticles with oxygen vacancy could trigger the luminol-H2O2 system to emit a strong chemiluminescence (CL), and the CL intensity was strongly dependent on the oxygen vacancy of the ZnO nanoparticles. The mechanism of this CL reaction was discussed by means of the electron-spin resonance spectrum, X-ray photoelectron spectrum (XPS), and CL spectrum. The oxygen vacancy-dependent CL was attributed to the ability of the oxygen vacancy to readily adsorb and further dissociate H2O2 into active •OH radicals. Taking advantage of this oxygen vacancy-dependent CL, we presented one method for quantifying the oxygen defects in ZnO. Compared with the current evaluation techniques (XPS and Raman spectroscopy), this CL method is rapid, low-cost, and easy to operate. This work introduces the CL technique into the field of material structure-property evaluation, and provides a new approach for exploring the defect function in ZnO defect engineering.
Collapse
|
40
|
Yao J, Chen Z, Zhang H, Gao N, Zhang Z, Jiang W. New insight into the regulation mechanism of visible light in naproxen degradation via activation of peroxymonosulfate by MOF derived BiFeO 3. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128513. [PMID: 35219060 DOI: 10.1016/j.jhazmat.2022.128513] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/08/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
BiFeO3 (BFO) nanocage prepared by metal-organic-framework derivatization (MOF-d) was adopted as activator to first investigate the effect mechanism of visible-light on naproxen-degradation via peroxymonosulfate (PMS) activation. MOF-d BFO expressed more excellent PMS activation ability than hydrothermal-synthetic BFO, due to highly ordered mesopores. A 3.0 times higher pseudo-first-order degradation rate constant was achieved after visible-light introduced. The quenching experiments indicated that the contribution of ROS in naproxen degradation followed the order of SO4•->1O2 ≈ •OH in MOF-d BFO/PMS/dark system, while changed into h+>1O2 > >O2•-≈SO4•-> •OH after visible-light introduced. EPR tests first revealed that visible-light promoted 1O2 yield (non-radical pathway) but suppressed •OH and SO4•- generation (free-radical pathways). N2-purging experiments further proved that 1O2 primarily originates from the reaction between h+ and PMS, equivalently to that between O2 and e--h+ in MOF-d BFO/PMS/vis system. Under visible-light, PMS activation via Fe (III) might be hindered by e- filling on Fe 3d orbital and anion PMS preferred to approach h+ rather than e-, resulting in the decrease of •OH and SO4•- yields. Moreover, PMS faces competition from adsorbed-O2 and oxygen-vacancies for e- capture. The degradation-pathways for naproxen in dark and under visible light were both proposed in MOF-d BFO/PMS system.
Collapse
Affiliation(s)
- Juanjuan Yao
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 40045, China.
| | - Zihan Chen
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 40045, China
| | - Huiying Zhang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 40045, China
| | - Naiyun Gao
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China
| | - Zhi Zhang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 40045, China
| | - Wenchao Jiang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 40045, China
| |
Collapse
|
41
|
UV-Activated NO2 Gas Sensing by Nanocrystalline ZnO: Mechanistic Insights from Mass Spectrometry Investigations. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10040147] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this work, the photostimulated processes of O2 and NO2 molecules with the surface of ZnO under UV radiation were studied by in situ mass spectrometry in the temperature range of 30–100 ∘C. Nanocrystalline needle-like ZnO was synthesized by decomposition of basic zinc carbonate at 300 ∘C, and the surface concentration of oxygen vacancies in it were controlled by reductive post-annealing in an inert gas at 170 ∘C. The synthesized materials were characterized by XRD, SEM, low-temperature nitrogen adsorption (BET), XPS, Raman spectroscopy, and PL spectroscopy. Irradiation of samples with UV light causes the photoabsorption of both O2 and NO2. The photoadsorption properties of ZnO are compared with its defective structure and gas-sensitive properties to NO2. A model of the sensor response of ZnO to NO2 under UV photoactivation is proposed.
Collapse
|
42
|
Simultaneously improving the electrical properties and long-term stability of ZnO varistor ceramics by reversely manipulating intrinsic point defects. Ann Ital Chir 2022. [DOI: 10.1016/j.jeurceramsoc.2021.09.062] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
43
|
Zhang YH, Li YY, Yang XY, Gong FL, Chen JL, Xie KF, Zhang HL, Fang SM. Ultra-sensitive H 2S sensor based on sunflower-like In-doped ZnO with enriched oxygen vacancies. Phys Chem Chem Phys 2022; 24:28530-28539. [DOI: 10.1039/d2cp02539f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In–ZnO with oxygen vacancies exhibits a higher sensing response and a shorter recovery time for H2S compared to ZnO.
Collapse
Affiliation(s)
- Yong-Hui Zhang
- College of Materials and Chemical Engineering, Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China
| | - Ying-Ying Li
- College of Materials and Chemical Engineering, Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China
| | - Xuan-Yu Yang
- College of Materials and Chemical Engineering, Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China
| | - Fei-Long Gong
- College of Materials and Chemical Engineering, Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China
| | - Jun-Li Chen
- College of Materials and Chemical Engineering, Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China
| | - Ke-Feng Xie
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, P. R. China
| | - Hao-Li Zhang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC); Key Laboratory of Special Function Materials and Structure Design (MOE); College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Shao-Ming Fang
- College of Materials and Chemical Engineering, Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China
| |
Collapse
|
44
|
Esmati M, Zeynizadeh B. Introducing rGO@Fe
3
O
4
@Ni as an efficient magnetic nanocatalyst for the synthesis of tetrahydrobenzopyranes via multicomponent coupling reactions of dimedone, malononitrile, and aromatic aldehydes. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
45
|
Study of High-Temperature Behaviour of ZnO by Ab Initio Molecular Dynamics Simulations and X-ray Absorption Spectroscopy. MATERIALS 2021; 14:ma14185206. [PMID: 34576434 PMCID: PMC8472823 DOI: 10.3390/ma14185206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 11/17/2022]
Abstract
Wurtzite-type zinc oxide (w-ZnO) is a widely used material with a pronounced structural anisotropy along the c axis, which affects its lattice dynamics and represents a difficulty for its accurate description using classical models of interatomic interactions. In this study, ab initio molecular dynamics (AIMD) was employed to simulate a bulk w-ZnO phase in the NpT ensemble in the high-temperature range from 300 K to 1200 K. The results of the simulations were validated by comparison with the experimental Zn K-edge extended X-ray absorption fine structure (EXAFS) spectra and known diffraction data. AIMD NpT simulations reproduced well the thermal expansion of the lattice, and the pronounced anharmonicity of Zn-O bonding was observed above 600 K. The values of mean-square relative displacements and mean-square displacements for Zn-O and Zn-Zn atom pairs were obtained as a function of interatomic distance and temperature. They were used to calculate the characteristic Einstein temperatures. The temperature dependences of the O-Zn-O and Zn-O-Zn bond angle distributions were also determined.
Collapse
|
46
|
Que M, Lin C, Sun J, Chen L, Sun X, Sun Y. Progress in ZnO Nanosensors. SENSORS 2021; 21:s21165502. [PMID: 34450944 PMCID: PMC8401939 DOI: 10.3390/s21165502] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/05/2021] [Accepted: 08/12/2021] [Indexed: 12/28/2022]
Abstract
Developing various nanosensors with superior performance for accurate and sensitive detection of some physical signals is essential for advances in electronic systems. Zinc oxide (ZnO) is a unique semiconductor material with wide bandgap (3.37 eV) and high exciton binding energy (60 meV) at room temperature. ZnO nanostructures have been investigated extensively for possible use as high-performance sensors, due to their excellent optical, piezoelectric and electrochemical properties, as well as the large surface area. In this review, we primarily introduce the morphology and major synthetic methods of ZnO nanomaterials, with a brief discussion of the advantages and weaknesses of each method. Then, we mainly focus on the recent progress in ZnO nanosensors according to the functional classification, including pressure sensor, gas sensor, photoelectric sensor, biosensor and temperature sensor. We provide a comprehensive analysis of the research status and constraints for the development of ZnO nanosensor in each category. Finally, the challenges and future research directions of nanosensors based on ZnO are prospected and summarized. It is of profound significance to research ZnO nanosensors in depth, which will promote the development of artificial intelligence, medical and health, as well as industrial, production.
Collapse
Affiliation(s)
- Miaoling Que
- College of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; (M.Q.); (J.S.); (L.C.); (X.S.)
| | - Chong Lin
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, China;
| | - Jiawei Sun
- College of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; (M.Q.); (J.S.); (L.C.); (X.S.)
| | - Lixiang Chen
- College of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; (M.Q.); (J.S.); (L.C.); (X.S.)
| | - Xiaohong Sun
- College of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; (M.Q.); (J.S.); (L.C.); (X.S.)
| | - Yunfei Sun
- College of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; (M.Q.); (J.S.); (L.C.); (X.S.)
- Correspondence:
| |
Collapse
|