Wang G, Ma C, Hu T, Wang T. Ceramic 3D Printing via Dye-Sensitized Photopolymerization Under Green LED.
3D PRINTING AND ADDITIVE MANUFACTURING 2023;
10:310-317. [PMID:
37123521 PMCID:
PMC10133979 DOI:
10.1089/3dp.2021.0204]
[Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Photopolymerization-based ceramic 3D printing shows unmatched superiority in fabricating high-performance ceramic parts compared with the conventional preparation technology. Nevertheless, it remains challenging to achieve efficient 3D printing due to the light scattering in photosensitive ceramic slurries, increasing the width of solidification and reducing the curing depth during photocuring. Herein, we report an efficient ceramic 3D printing approach based on curcuminoid dye-sensitized photopolymerization under green light-emitting diode (LED). For deep penetration and minimal light scattering, ceramic bodies with good performance can be produced from a ceramic slurry with curcuminoid dye by using a green LED-digital light processing (DLP) 3D printer. Curcuminoid dye was found to provide the ability to transfer electrons to photoinitiator and play a role in improving the accuracy of the entire 3D printing process. The proposed approach here provides a viable solution toward efficient ceramic additive manufacturing by green LED-DLP-3D printing.
Collapse