1
|
Bergman PJ. Cancer Immunotherapy. Vet Clin North Am Small Anim Pract 2024; 54:441-468. [PMID: 38158304 DOI: 10.1016/j.cvsm.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The enhanced understanding of immunology experienced over the last 5 decades afforded through the tools of molecular biology has recently translated into cancer immunotherapy becoming one of the most exciting and rapidly expanding fields. Human cancer immunotherapy is now recognized as one of the pillars of treatment alongside surgery, radiation, and chemotherapy. The field of veterinary cancer immunotherapy has also rapidly advanced in the last decade with a handful of commercially available products and a plethora of investigational cancer immunotherapies, which will hopefully expand our veterinary oncology treatment toolkit over time.
Collapse
Affiliation(s)
- Philip J Bergman
- Clinical Studies, VCA; Katonah Bedford Veterinary Center, Bedford Hills, NY, USA; Memorial Sloan-Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
2
|
Equine Melanocytic Tumors: A Narrative Review. Animals (Basel) 2023; 13:ani13020247. [PMID: 36670786 PMCID: PMC9855132 DOI: 10.3390/ani13020247] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/04/2023] [Accepted: 01/08/2023] [Indexed: 01/12/2023] Open
Abstract
Adult grey horses have a high incidence of melanocytic tumors. This article narratively reviews the role of some genetic features related to melanoma formation in horses, such as STX17 mutation, ASIP or MITF alterations, and the link between the graying process and the development of these tumors. A clear system of clinical and pathological classification of melanocytic tumors in naevus, dermal melanoma, dermal melanomatosis and anaplastic malignant melanoma is provided. Clinical and laboratorial methods of diagnosing are listed, with fine needle aspiration and histopathology being the most relevant. Relevance is given to immunohistochemistry, describing potentially important diagnostic biomarkers such as RACK1 and PNL2. Different therapeutical options available for equine practitioners are mentioned, with surgery, chemotherapy and electroporation being the most common. This article also elucidatesnew fields of research, perspectives, and new therapeutic targets, such as CD47, PD-1 and COX-2 biomarkers.
Collapse
|
3
|
Pellin MA. The Use of Oncept Melanoma Vaccine in Veterinary Patients: A Review of the Literature. Vet Sci 2022; 9:597. [PMID: 36356074 PMCID: PMC9693055 DOI: 10.3390/vetsci9110597] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 04/28/2024] Open
Abstract
The Oncept melanoma vaccine is xenogeneic DNA vaccine targeting tyrosinase. It is USDA approved for treatment of stage II to III canine oral melanoma and is also used off-label for melanomas arising in other locations and in other species. While the vaccine appears safe, the published data is mixed as to whether it provides a survival benefit, and the use of the vaccine is somewhat controversial in the veterinary oncology community. In this paper, the published literature describing the use of Oncept is reviewed and evaluated.
Collapse
Affiliation(s)
- MacKenzie A Pellin
- School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, USA
| |
Collapse
|
4
|
Halliwell E, Carslake H, Malalana F. Vaccination with human tyrosinase
DNA
as a therapy for equine intraocular melanoma—4 cases: 2016–2021. EQUINE VET EDUC 2022. [DOI: 10.1111/eve.13685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Elizabeth Halliwell
- Philip Leverhulme Equine Hospital University of Liverpool Neston, Cheshire UK
| | - Harry Carslake
- Philip Leverhulme Equine Hospital University of Liverpool Neston, Cheshire UK
| | - Fernando Malalana
- Philip Leverhulme Equine Hospital University of Liverpool Neston, Cheshire UK
| |
Collapse
|
5
|
Abstract
The enhanced understanding of immunology experienced over the last 4 decades afforded through the tools of molecular biology has recently translated into cancer immunotherapy becoming one of the most exciting and rapidly expanding fields. Human cancer immunotherapy is now recognized as one of the pillars of treatment alongside surgery, radiation, and chemotherapy. The field of veterinary cancer immunotherapy has also rapidly advanced in the last decade with a handful of commercially available products and a plethora of investigational cancer immunotherapies that will hopefully expand the veterinary oncology treatment toolkit over time.
Collapse
|
6
|
Leoni G, Lyness A, Ginty P, Schutte R, Pillai G, Sharma G, Kemp P, Mount N, Sharpe M. Preclinical development of an automated injection device for intradermal delivery of a cell-based therapy. Drug Deliv Transl Res 2018; 7:695-708. [PMID: 28812281 PMCID: PMC5574955 DOI: 10.1007/s13346-017-0418-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Current methods for intradermal delivery of therapeutic products in clinical use include manual injection via the Mantoux technique and the use of injection devices, primarily developed for the delivery of vaccines and small molecules. A novel automated injection device is presented specifically designed for accurate delivery of multiple doses of product through a number of adjustable injection parameters, including injection depth, dose volume and needle insertion speed. The device was originally conceived for the delivery of a cell-based therapy to patients with skin wounds caused by epidermolysis bullosa. A series of preclinical studies was conducted (i) to evaluate the performance of the pre-production model (PreCTCDV01) and optimise the final design, (ii) to confirm that a cell therapy product can be effectively delivered through the injection system and (iii) to test whether the device can be safely and effectively operated by potential end-users. Results from these studies confirmed that the device is able to consistently deliver repeated doses of a liquid to the intradermal layer in an ex vivo skin model. In addition, the device can support delivery of a cell therapy product through a customised microbore tubing without compromising cell viability. Finally, the device was shown to be safe and easy to use as evidenced by usability testing. The clinical device has since been granted European market access and plans for clinical use are currently underway. The device is expected to find use in the emerging area of cell therapies and a broad spectrum of traditional parenteral drug delivery applications.
Collapse
Affiliation(s)
- Giulia Leoni
- Cell and Gene Therapy Catapult, 12th Floor Tower Wing, Guys Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Alex Lyness
- Centre for Biological Engineering, Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Leicestershire, LE11 3TU, UK
| | - Patrick Ginty
- Cell and Gene Therapy Catapult, 12th Floor Tower Wing, Guys Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Rindi Schutte
- Cell and Gene Therapy Catapult, 12th Floor Tower Wing, Guys Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Gopalan Pillai
- Cell and Gene Therapy Catapult, 12th Floor Tower Wing, Guys Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Gayatri Sharma
- Cell and Gene Therapy Catapult, 12th Floor Tower Wing, Guys Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Paul Kemp
- Intercytex Ltd, 5 Vale Road, Stockport, SK6 3LE, UK
| | - Natalie Mount
- Cell and Gene Therapy Catapult, 12th Floor Tower Wing, Guys Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Michaela Sharpe
- Cell and Gene Therapy Catapult, 12th Floor Tower Wing, Guys Hospital, Great Maze Pond, London, SE1 9RT, UK.
| |
Collapse
|
7
|
|
8
|
Chen K, Pan M, Liu T. Design and Analysis of a Continuous Split Typed Needle-Free Injection System for Animal Vaccination. Open Biomed Eng J 2017; 11:59-71. [PMID: 28761560 PMCID: PMC5510567 DOI: 10.2174/1874120701711010059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 03/18/2017] [Accepted: 05/23/2017] [Indexed: 11/23/2022] Open
Abstract
Background: Liquid needle-free injection devices (NFIDs) employ a high-velocity liquid jet to deliver drugs and vaccine through transdermal injection. NFIDs for animal vaccination are more complicated than those used for human beings for their much larger and more flexible power sources, as well as rapid, repetitive and continuous injection features. Method: In the paper, spring-powered NFID is designed for animal vaccine injection. For convenience, the device is a split into a power source and handheld injector. A mathematical model is proposed to calculate the injection pressure, taking into the account pressure loss and the strain energy loss in the bendable tube due to elastic deformation. An experimental apparatus was build to verify the calculation results. Results and Conclusion: Under the same system conditions, the calculation results of the dynamic injection pressure match the experimental results. It is found that the bendable tube of the split typed NFID has significant impact on the profile of the injection pressure. The initial peak pressure is less than the initial peak pressure of NFID without bendable tube, and there is occurrence time lag of the peak pressure. The mathematical model is the first attempt to reveal the relationship between the injection pressure and the system variables of split typed NFID.
Collapse
Affiliation(s)
- Kai Chen
- School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Min Pan
- School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Tingting Liu
- School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou, China
| |
Collapse
|
9
|
Sarbu L, Kitchell BE, Bergman PJ. Safety of administering the canine melanoma DNA vaccine (Oncept) to cats with malignant melanoma - a retrospective study. J Feline Med Surg 2017; 19:224-230. [PMID: 26685147 PMCID: PMC10816569 DOI: 10.1177/1098612x15623319] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Objectives A xenogeneic human tyrosinase DNA vaccine was developed for treatment of dogs with oral malignant melanoma (Oncept; Merial). No studies have evaluated the safety or efficacy of this vaccine in cats. The purpose of this study was to evaluate the safety of the canine melanoma vaccine in cats diagnosed with melanoma. Methods Medical records were reviewed from cats diagnosed with malignant melanoma and treated with the canine melanoma DNA vaccine (Oncept). Data regarding signalment, melanoma location, treatments received, vaccine adverse effects and cause of death were collected. Results A total of 114 melanoma vaccines were administered to 24 cats. Seven cats (11.4%) had clinical adverse effects from a total of 13 vaccines classified as grade 1 or 2 based on the Veterinary Cooperative Oncology Group's common terminology criteria for adverse events v1.1. These included pain on vaccine administration, brief muscle fasciculation, transient inappetence, depression, nausea and mild increase in pigmentation at the injection site. Nineteen cats were deceased at study close. The most common cause of death was melanoma (14 cats). Hematological and biochemical changes were observed in six cats, five of which had concurrent disease or treatments that likely caused or greatly contributed to the laboratory abnormalities found. Therefore, these adverse events were considered unlikely to be caused by the melanoma vaccine. One cat had transient grade 1 hypoalbuminemia, which was possibly caused by the vaccination but not thoroughly evaluated. Conclusions and relevance The canine melanoma DNA vaccine can be safely administered to cats, with minimal risk of adverse effects.
Collapse
|
10
|
Schnabel CL, Steinig P, Koy M, Schuberth HJ, Juhls C, Oswald D, Wittig B, Willenbrock S, Murua Escobar H, Pfarrer C, Wagner B, Jaehnig P, Moritz A, Feige K, Cavalleri JMV. Immune response of healthy horses to DNA constructs formulated with a cationic lipid transfection reagent. BMC Vet Res 2015; 11:140. [PMID: 26100265 PMCID: PMC4476236 DOI: 10.1186/s12917-015-0452-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 06/09/2015] [Indexed: 01/08/2023] Open
Abstract
Background Deoxyribonucleic acid (DNA) vaccines are used for experimental immunotherapy of equine melanoma. The injection of complexed linear DNA encoding interleukin (IL)-12/IL-18 induced partial tumour remission in a clinical study including 27 grey horses. To date, the detailed mechanism of the anti-tumour effect of this treatment is unknown. Results In the present study, the clinical and cellular responses of 24 healthy horses were monitored over 72 h after simultaneous intradermal and intramuscular application of equine IL-12/IL-18 DNA (complexed with a transfection reagent) or comparative substances (transfection reagent only, nonsense DNA, nonsense DNA depleted of CG). Although the strongest effect was observed in horses treated with expressing DNA, horses in all groups treated with DNA showed systemic responses. In these horses treated with DNA, rectal temperatures were elevated after treatment and serum amyloid A increased. Total leukocyte and neutrophil counts increased, while lymphocyte numbers decreased. The secretion of tumour necrosis factor alpha (TNFα) and interferon gamma (IFNγ) from peripheral mononuclear blood cells ex vivo increased after treatments with DNA, while IL-10 secretion decreased. Horses treated with DNA had significantly higher myeloid cell numbers and chemokine (C-X-C motif) ligand (CXCL)-10 expression in skin samples at the intradermal injection sites compared to horses treated with transfection reagent only, suggesting an inflammatory response to DNA treatment. In horses treated with expressing DNA, however, local CXCL-10 expression was highest and immunohistochemistry revealed more intradermal IL-12-positive cells when compared to the other treatment groups. In contrast to non-grey horses, grey horses showed fewer effects of DNA treatments on blood lymphocyte counts, TNFα secretion and myeloid cell infiltration in the dermis. Conclusion Treatment with complexed linear DNA constructs induced an inflammatory response independent of the coding sequence and of CG motif content. Expressing IL-12/IL-18 DNA locally induces expression of the downstream mediator CXCL-10. The grey horses included appeared to display an attenuated immune response to DNA treatment, although grey horses bearing melanoma responded to this treatment with moderate tumour remission in a preceding study. Whether the different immunological reactivity compared to other horses may contributes to the melanoma susceptibility of grey horses remains to be elucidated. Electronic supplementary material The online version of this article (doi:10.1186/s12917-015-0452-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christiane L Schnabel
- University of Veterinary Medicine Hannover, Clinic for Horses, Buenteweg 9, 30559, Hannover, Germany.
| | - P Steinig
- University of Veterinary Medicine Hannover, Clinic for Horses, Buenteweg 9, 30559, Hannover, Germany.
| | - M Koy
- University of Veterinary Medicine Hannover, Immunology Unit, Bischofsholer Damm 15, 30173, Hannover, Germany.
| | - H-J Schuberth
- University of Veterinary Medicine Hannover, Immunology Unit, Bischofsholer Damm 15, 30173, Hannover, Germany.
| | - C Juhls
- Mologen AG, Fabeckstrasse 30, 14195, Berlin, Germany. .,Foundation Institute Molecular Biology and Bioinformatics, Freie Universitaet Berlin, Berlin, Germany.
| | - D Oswald
- Mologen AG, Fabeckstrasse 30, 14195, Berlin, Germany. .,Foundation Institute Molecular Biology and Bioinformatics, Freie Universitaet Berlin, Berlin, Germany.
| | - B Wittig
- Foundation Institute Molecular Biology and Bioinformatics, Freie Universitaet Berlin, Berlin, Germany.
| | - S Willenbrock
- University of Veterinary Medicine Hannover, Small Animal Clinic, Buenteweg 9, 30559, Hannover, Germany.
| | - H Murua Escobar
- University of Veterinary Medicine Hannover, Small Animal Clinic, Buenteweg 9, 30559, Hannover, Germany. .,Division of Medicine, Clinic III, Haematology, Oncology and Palliative Medicine, University of Rostock, 18057, Rostock, Germany.
| | - C Pfarrer
- University of Veterinary Medicine Hannover, Institute of Anatomy, Bischofsholer Damm 15, 30173, Hannover, Germany.
| | - B Wagner
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell Universit, 240 Farrier Rd, Ithaca, NY, 14853, USA.
| | - P Jaehnig
- pj statistics, Niedstrasse 16, 12159, Berlin, Germany.
| | - A Moritz
- Department of Veterinary Medicine, Clinical Sciences, Clinical Pathology and Clinical Pathophysiology, Justus-Liebig-Universitaet, Frankfurter Strasse 126, 35392, Giessen, Germany.
| | - K Feige
- University of Veterinary Medicine Hannover, Clinic for Horses, Buenteweg 9, 30559, Hannover, Germany.
| | - J-M V Cavalleri
- University of Veterinary Medicine Hannover, Clinic for Horses, Buenteweg 9, 30559, Hannover, Germany.
| |
Collapse
|
11
|
Mählmann K, Feige K, Juhls C, Endmann A, Schuberth HJ, Oswald D, Hellige M, Doherr M, Cavalleri JMV. Local and systemic effect of transfection-reagent formulated DNA vectors on equine melanoma. BMC Vet Res 2015; 11:132. [PMID: 26063232 PMCID: PMC4464139 DOI: 10.1186/s12917-015-0422-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 04/15/2015] [Indexed: 11/23/2022] Open
Abstract
Background Equine melanoma has a high incidence in grey horses. Xenogenic DNA vaccination may represent a promising therapeutic approach against equine melanoma as it successfully induced an immunological response in other species suffering from melanoma and in healthy horses. In a clinical study, twenty-seven, grey, melanoma-bearing, horses were assigned to three groups (n = 9) and vaccinated on days 1, 22, and 78 with DNA vectors encoding for equine (eq) IL-12 and IL-18 alone or in combination with either human glycoprotein (hgp) 100 or human tyrosinase (htyr). Horses were vaccinated intramuscularly, and one selected melanoma was locally treated by intradermal peritumoral injection. Prior to each injection and on day 120, the sizes of up to nine melanoma lesions per horse were measured by caliper and ultrasound. Specific serum antibodies against hgp100 and htyr were measured using cell based flow-cytometric assays. An Analysis of Variance (ANOVA) for repeated measurements was performed to identify statistically significant influences on the relative tumor volume. For post-hoc testing a Tukey-Kramer Multiple-Comparison Test was performed to compare the relative volumes on the different examination days. An ANOVA for repeated measurements was performed to analyse changes in body temperature over time. A one-way ANOVA was used to evaluate differences in body temperature between the groups. A p–value < 0.05 was considered significant for all statistical tests applied. Results In all groups, the relative tumor volume decreased significantly to 79.1 ± 26.91% by day 120 (p < 0.0001, Tukey-Kramer Multiple-Comparison Test). Affiliation to treatment group, local treatment and examination modality had no significant influence on the results (ANOVA for repeated measurements). Neither a cellular nor a humoral immune response directed against htyr or hgp100 was detected. Horses had an increased body temperature on the day after vaccination. Conclusions This is the first clinical report on a systemic effect against equine melanoma following treatment with DNA vectors encoding eqIL12 and eqIL18 and formulated with a transfection reagent. Addition of DNA vectors encoding hgp100 respectively htyr did not potentiate this effect. Electronic supplementary material The online version of this article (doi:10.1186/s12917-015-0422-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kathrin Mählmann
- Clinic for Horses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany.
| | - Karsten Feige
- Clinic for Horses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany.
| | | | | | - Hans-Joachim Schuberth
- Immunology Unit, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany.
| | | | - Maren Hellige
- Clinic for Horses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany.
| | - Marcus Doherr
- Institute for Veterinary Epidemiology and Biostatistics, Free University of Berlin, Berlin, Germany.
| | - Jessika-M V Cavalleri
- Clinic for Horses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany.
| |
Collapse
|
12
|
Mählmann K, Feige K, Juhls C, Endmann A, Schuberth HJ, Oswald D, Hellige M, Doherr M, Cavalleri JMV. Local and systemic effect of transfection-reagent formulated DNA vectors on equine melanoma. BMC Vet Res 2015; 11:107. [PMID: 25967290 PMCID: PMC4429833 DOI: 10.1186/s12917-015-0414-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 04/15/2015] [Indexed: 01/13/2023] Open
Abstract
Background Equine melanoma has a high incidence in grey horses. Xenogenic DNA vaccination may represent a promising therapeutic approach against equine melanoma as it successfully induced an immunological response in other species suffering from melanoma and in healthy horses. In a clinical study, twenty-seven, grey, melanoma-bearing, horses were assigned to three groups (n = 9) and vaccinated on days 1, 22, and 78 with DNA vectors encoding for equine (eq) IL-12 and IL-18 alone or in combination with either human glycoprotein (hgp) 100 or human tyrosinase (htyr). Horses were vaccinated intramuscularly, and one selected melanoma was locally treated by intradermal peritumoral injection. Prior to each injection and on day 120, the sizes of up to nine melanoma lesions per horse were measured by caliper and ultrasound. Specific serum antibodies against hgp100 and htyr were measured using cell based flow-cytometric assays. An Analysis of Variance (ANOVA) for repeated measurements was performed to identify statistically significant influences on the relative tumor volume. For post-hoc testing a Tukey-Kramer Multiple-Comparison Test was performed to compare the relative volumes on the different examination days. An ANOVA for repeated measurements was performed to analyse changes in body temperature over time. A one-way ANOVA was used to evaluate differences in body temperature between the groups. A p–value < 0.05 was considered significant for all statistical tests applied. Results In all groups, the relative tumor volume decreased significantly to 79.1 ± 26.91% by day 120 (p < 0.0001, Tukey-Kramer Multiple-Comparison Test). Affiliation to treatment group, local treatment and examination modality had no significant influence on the results (ANOVA for repeated measurements). Neither a cellular nor a humoral immune response directed against htyr or hgp100 was detected. Horses had an increased body temperature on the day after vaccination. Conclusions This is the first clinical report on a systemic effect against equine melanoma following treatment with DNA vectors encoding eqIL12 and eqIL18 and formulated with a transfection reagent. Addition of DNA vectors encoding hgp100 respectively htyr did not potentiate this effect. Electronic supplementary material The online version of this article (doi:10.1186/s12917-015-0414-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kathrin Mählmann
- Clinic for Horses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany.
| | - Karsten Feige
- Clinic for Horses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany.
| | | | | | - Hans-Joachim Schuberth
- Immunology Unit, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany.
| | | | - Mareu Hellige
- Clinic for Horses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany.
| | - Marcus Doherr
- Institute for Veterinary Epidemiology and Biostatistics, Free University of Berlin, Berlin, Germany.
| | - Jessika-M V Cavalleri
- Clinic for Horses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany.
| |
Collapse
|
13
|
Abstract
Tumor immunology and immunotherapy is one of the most exciting and rapidly expanding fields. The immune system is divided into 2 primary components: the innate immune response and the highly specific, but more slowly developing, adaptive or acquired immune response. Immune responses are separated by whether they are induced by exposure to a foreign antigen (active response) or transferred through serum or lymphocytes from an immunized individual (passive response). The ideal cancer immunotherapy agent should discriminate between cancer and normal cells (specificity), be potent enough to kill small or large numbers of tumor cells (sensitivity), and prevent recurrence of a tumor (durability).
Collapse
Affiliation(s)
- Philip J Bergman
- Clinical Studies, VCA, 546 Bedford Road, Bedford Hills, New York, NY 10507, USA; Department of Molecular Pharmacology & Chemistry, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
14
|
Abstract
Melanomas are among the most common skin tumors in horses, with prevalence rates reaching as high as 80% in adult gray horses. Most melanocytic tumors are benign at initial presentation; however, if left untreated, up to two-thirds can progress to overt malignant behavior. Standard local treatment options can be used to treat solitary early-stage lesions but do not address the underlying risk of recurrent tumor formation or the transformation to a malignant phenotype. An understanding of the specific molecular genetic factors associated with tumor formation should lead to targeted therapies that can be used to treat or ideally prevent disease.
Collapse
Affiliation(s)
- Jeffrey C Phillips
- College of Veterinary Medicine, Lincoln Memorial University, 6965 Cumberland Gap Parkway, Harrogate, TN 37752, USA.
| | | |
Collapse
|