1
|
Miao Q, Nguyen W, Zhu J, Liu G, van Oers MM, Tang B, Yan K, Larcher T, Suhrbier A, Pijlman GP. A getah virus-like-particle vaccine provides complete protection from viremia and arthritis in wild-type mice. Vaccine 2024; 42:126136. [PMID: 39004524 DOI: 10.1016/j.vaccine.2024.07.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
Getah virus (GETV) is an emerging mosquito-borne virus with economic impact on the livestock industry in East Asia. In this study, we successfully produced GETV virus-like particles (VLPs) in insect cells using the baculovirus expression vector system. We show that the GETV envelope glycoproteins were successfully expressed at the surface of the insect cell and were glycosylated. VLPs were isolated from the culture fluid as enveloped particles of 60-80 nm in diameter. Two 1 µg vaccinations with this GETV VLP vaccine, without adjuvant, generated neutralizing antibody responses and protected wild-type C57/BL6 mice against GETV viremia and arthritic disease. The GETV VLP vaccine may find application as a horse and/or pig vaccine in the future.
Collapse
Affiliation(s)
- Qiuhong Miao
- Laboratory of Virology, Wageningen University & Research, Wageningen, The Netherlands; Shanghai Veterinary Research Institute Chinese Academy of Agricultural Sciences, China.
| | - Wilson Nguyen
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia.
| | - Jie Zhu
- Shanghai Veterinary Research Institute Chinese Academy of Agricultural Sciences, China.
| | - Guangqing Liu
- Shanghai Veterinary Research Institute Chinese Academy of Agricultural Sciences, China.
| | - Monique M van Oers
- Laboratory of Virology, Wageningen University & Research, Wageningen, The Netherlands.
| | - Bing Tang
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia.
| | - Kexin Yan
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia.
| | | | - Andreas Suhrbier
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia; GVN Centre of Excellence, Australian Infectious Disease Research Centre, Brisbane, Queensland, Australia.
| | - Gorben P Pijlman
- Laboratory of Virology, Wageningen University & Research, Wageningen, The Netherlands.
| |
Collapse
|
2
|
de Vries EM, Cogan NOI, Gubala AJ, Rodoni BC, Lynch SE. Fine-scale genomic tracking of Ross River virus using nanopore sequencing. Parasit Vectors 2023; 16:186. [PMID: 37280650 PMCID: PMC10243270 DOI: 10.1186/s13071-023-05734-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/11/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Ross River virus (RRV) is Australia's most common and widespread mosquito-transmitted arbovirus and is of significant public health concern. With increasing anthropogenic impacts on wildlife and mosquito populations, it is important that we understand how RRV circulates in its endemic hotspots to determine where public health efforts should be directed. Current surveillance methods are effective in locating the virus but do not provide data on the circulation of the virus and its strains within the environment. This study examined the ability to identify single nucleotide polymorphisms (SNPs) within the variable E2/E3 region by generating full-length haplotypes from a range of mosquito trap-derived samples. METHODS A novel tiled primer amplification workflow for amplifying RRV was developed with analysis using Oxford Nanopore Technology's MinION and a custom ARTIC/InterARTIC bioinformatic protocol. By creating a range of amplicons across the whole genome, fine-scale SNP analysis was enabled by specifically targeting the variable region that was amplified as a single fragment and established haplotypes that informed spatial-temporal variation of RRV in the study site in Victoria. RESULTS A bioinformatic and laboratory pipeline was successfully designed and implemented on mosquito whole trap homogenates. Resulting data showed that genotyping could be conducted in real time and that whole trap consensus of the viruses (with major SNPs) could be determined in a timely manner. Minor variants were successfully detected from the variable E2/E3 region of RRV, which allowed haplotype determination within complex mosquito homogenate samples. CONCLUSIONS The novel bioinformatic and wet laboratory methods developed here will enable fast detection and characterisation of RRV isolates. The concepts presented in this body of work are transferable to other viruses that exist as quasispecies in samples. The ability to detect minor SNPs, and thus haplotype strains, is critically important for understanding the epidemiology of viruses their natural environment.
Collapse
Affiliation(s)
- Ellen M. de Vries
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083 Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083 Australia
| | - Noel O. I. Cogan
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083 Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083 Australia
| | - Aneta J. Gubala
- Sensors and Effectors Division, Defence Science & Technology Group, Fishermans Bend, VIC 3207 Australia
| | - Brendan C. Rodoni
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083 Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083 Australia
| | - Stacey E. Lynch
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083 Australia
| |
Collapse
|
3
|
Harvey AM, Ramp D, Mellor DJ. Review of the Foundational Knowledge Required for Assessing Horse Welfare. Animals (Basel) 2022; 12:3385. [PMID: 36496906 PMCID: PMC9736110 DOI: 10.3390/ani12233385] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/18/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022] Open
Abstract
A detailed understanding of what is usual for a species under optimal conditions is critical for identifying and interpreting different features of body function that have known impacts on animal welfare and its assessment. When applying the Five Domains Model to assess animal welfare, the key starting point is therefore to acquire extensive species-specific knowledge relevant to each of the four physical/functional Domains of the Model. These Domains, 1 to 4, address areas where objective information is evaluated and collated. They are: (1) Nutrition; (2) Physical environment; (3) Health; and (4) Behavioural interactions. It is on the basis of this detailed knowledge that cautious inferences can then be made about welfare-relevant mental experiences animals may have, aligned with Domain 5, Mental State. However, this review is focused entirely on the first four Domains in order to provide a novel holistic framework to collate the multidisciplinary knowledge of horses required for undertaking comprehensive welfare assessments. Thus, inferring the potential mental experiences aligned with Domain 5, the final step in model-based welfare assessments, is not considered here. Finally, providing extensive information on free-roaming horses enables a better understanding of the impacts of human interventions on the welfare of horses in both free-roaming and domestic situations.
Collapse
Affiliation(s)
- Andrea M. Harvey
- Centre for Compassionate Conservation, TD School, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Daniel Ramp
- Centre for Compassionate Conservation, TD School, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - David J. Mellor
- Animal Welfare Science and Bioethics Centre, School of Veterinary Science, Massey University, Palmerston North 4442, New Zealand
| |
Collapse
|
4
|
Knox A, Beddoe T. Isothermal Nucleic Acid Amplification Technologies for the Detection of Equine Viral Pathogens. Animals (Basel) 2021; 11:ani11072150. [PMID: 34359278 PMCID: PMC8300645 DOI: 10.3390/ani11072150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/17/2021] [Accepted: 07/18/2021] [Indexed: 01/25/2023] Open
Abstract
Simple Summary Equine viral diseases remain a prominent concern for human and equine health globally. Many of these viruses are of primary biosecurity concern to countries that import equines where these viruses are not present. In addition, several equine viruses are zoonotic, which can have a significant impact on human health. Current diagnostic techniques are both time consuming and laboratory-based. The ability to accurately detect diseases will lead to better management, treatment strategies, and health outcomes. This review outlines the current modern isothermal techniques for diagnostics, such as loop-mediated isothermal amplification and insulated isothermal polymerase chain reaction, and their application as point-of-care diagnostics for the equine industry. Abstract The global equine industry provides significant economic contributions worldwide, producing approximately USD $300 billion annually. However, with the continuous national and international movement and importation of horses, there is an ongoing threat of a viral outbreak causing large epidemics and subsequent significant economic losses. Additionally, horses serve as a host for several zoonotic diseases that could cause significant human health problems. The ability to rapidly diagnose equine viral diseases early could lead to better management, treatment, and biosecurity strategies. Current serological and molecular methods cannot be field-deployable and are not suitable for resource-poor laboratories due to the requirement of expensive equipment and trained personnel. Recently, isothermal nucleic acid amplification technologies, such as loop-mediated isothermal amplification (LAMP) and insulated isothermal polymerase chain reaction (iiPCR), have been developed to be utilized in-field, and provide rapid results within an hour. We will review current isothermal diagnostic techniques available to diagnose equine viruses of biosecurity and zoonotic concern and provide insight into their potential for in-field deployment.
Collapse
|
5
|
Ross River Virus Infection: A Cross-Disciplinary Review with a Veterinary Perspective. Pathogens 2021; 10:pathogens10030357. [PMID: 33802851 PMCID: PMC8002670 DOI: 10.3390/pathogens10030357] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 02/06/2023] Open
Abstract
Ross River virus (RRV) has recently been suggested to be a potential emerging infectious disease worldwide. RRV infection remains the most common human arboviral disease in Australia, with a yearly estimated economic cost of $4.3 billion. Infection in humans and horses can cause chronic, long-term debilitating arthritogenic illnesses. However, current knowledge of immunopathogenesis remains to be elucidated and is mainly inferred from a murine model that only partially resembles clinical signs and pathology in human and horses. The epidemiology of RRV transmission is complex and multifactorial and is further complicated by climate change, making predictive models difficult to design. Establishing an equine model for RRV may allow better characterization of RRV disease pathogenesis and immunology in humans and horses, and could potentially be used for other infectious diseases. While there are no approved therapeutics or registered vaccines to treat or prevent RRV infection, clinical trials of various potential drugs and vaccines are currently underway. In the future, the RRV disease dynamic is likely to shift into temperate areas of Australia with longer active months of infection. Here, we (1) review the current knowledge of RRV infection, epidemiology, diagnostics, and therapeutics in both humans and horses; (2) identify and discuss major research gaps that warrant further research.
Collapse
|
6
|
Ong OTW, Skinner EB, Johnson BJ, Old JM. Mosquito-Borne Viruses and Non-Human Vertebrates in Australia: A Review. Viruses 2021; 13:265. [PMID: 33572234 PMCID: PMC7915788 DOI: 10.3390/v13020265] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 01/02/2023] Open
Abstract
Mosquito-borne viruses are well recognized as a global public health burden amongst humans, but the effects on non-human vertebrates is rarely reported. Australia, houses a number of endemic mosquito-borne viruses, such as Ross River virus, Barmah Forest virus, and Murray Valley encephalitis virus. In this review, we synthesize the current state of mosquito-borne viruses impacting non-human vertebrates in Australia, including diseases that could be introduced due to local mosquito distribution. Given the unique island biogeography of Australia and the endemism of vertebrate species (including macropods and monotremes), Australia is highly susceptible to foreign mosquito species becoming established, and mosquito-borne viruses becoming endemic alongside novel reservoirs. For each virus, we summarize the known geographic distribution, mosquito vectors, vertebrate hosts, clinical signs and treatments, and highlight the importance of including non-human vertebrates in the assessment of future disease outbreaks. The mosquito-borne viruses discussed can impact wildlife, livestock, and companion animals, causing significant changes to Australian ecology and economy. The complex nature of mosquito-borne disease, and challenges in assessing the impacts to non-human vertebrate species, makes this an important topic to periodically review.
Collapse
Affiliation(s)
- Oselyne T. W. Ong
- Children’s Medical Research Institute, Westmead, NSW 2145, Australia;
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia;
| | - Eloise B. Skinner
- Environmental Futures Research Institute, Griffith University, Gold Coast, QLD 4222, Australia;
- Biology Department, Stanford University, Stanford, CA 94305, USA
| | - Brian J. Johnson
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia;
| | - Julie M. Old
- School of Science, Western Sydney University, Hawkesbury, Locked bag 1797, Penrith, NSW 2751, Australia
| |
Collapse
|
7
|
Rawle DJ, Nguyen W, Dumenil T, Parry R, Warrilow D, Tang B, Le TT, Slonchak A, Khromykh AA, Lutzky VP, Yan K, Suhrbier A. Sequencing of Historical Isolates, K-mer Mining and High Serological Cross-Reactivity with Ross River Virus Argue against the Presence of Getah Virus in Australia. Pathogens 2020; 9:pathogens9100848. [PMID: 33081269 PMCID: PMC7650646 DOI: 10.3390/pathogens9100848] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 12/19/2022] Open
Abstract
Getah virus (GETV) is a mosquito-transmitted alphavirus primarily associated with disease in horses and pigs in Asia. GETV was also reported to have been isolated from mosquitoes in Australia in 1961; however, retrieval and sequencing of the original isolates (N544 and N554), illustrated that these viruses were virtually identical to the 1955 GETVMM2021 isolate from Malaysia. K-mer mining of the >40,000 terabases of sequence data in the Sequence Read Archive followed by BLASTn confirmation identified multiple GETV sequences in biosamples from Asia (often as contaminants), but not in biosamples from Australia. In contrast, sequence reads aligning to the Australian Ross River virus (RRV) were readily identified in Australian biosamples. To explore the serological relationship between GETV and other alphaviruses, an adult wild-type mouse model of GETV was established. High levels of cross-reactivity and cross-protection were evident for convalescent sera from mice infected with GETV or RRV, highlighting the difficulties associated with the interpretation of early serosurveys reporting GETV antibodies in Australian cattle and pigs. The evidence that GETV circulates in Australia is thus not compelling.
Collapse
Affiliation(s)
- Daniel J. Rawle
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (D.J.R.); (W.N.); (T.D.); (B.T.); (T.T.L.); (V.P.L.); (K.Y.)
| | - Wilson Nguyen
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (D.J.R.); (W.N.); (T.D.); (B.T.); (T.T.L.); (V.P.L.); (K.Y.)
| | - Troy Dumenil
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (D.J.R.); (W.N.); (T.D.); (B.T.); (T.T.L.); (V.P.L.); (K.Y.)
| | - Rhys Parry
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia; (R.P.); (A.S.); (A.A.K.)
| | - David Warrilow
- Public Health Virology Laboratory, Department of Health, Queensland Government, Brisbane, QLD 4108, Australia;
| | - Bing Tang
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (D.J.R.); (W.N.); (T.D.); (B.T.); (T.T.L.); (V.P.L.); (K.Y.)
| | - Thuy T. Le
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (D.J.R.); (W.N.); (T.D.); (B.T.); (T.T.L.); (V.P.L.); (K.Y.)
| | - Andrii Slonchak
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia; (R.P.); (A.S.); (A.A.K.)
| | - Alexander A. Khromykh
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia; (R.P.); (A.S.); (A.A.K.)
- GVN Center of Excellence, Australian Infectious Diseases Research Centre, Brisbane, QLD 4006 and 4072, Australia
| | - Viviana P. Lutzky
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (D.J.R.); (W.N.); (T.D.); (B.T.); (T.T.L.); (V.P.L.); (K.Y.)
| | - Kexin Yan
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (D.J.R.); (W.N.); (T.D.); (B.T.); (T.T.L.); (V.P.L.); (K.Y.)
| | - Andreas Suhrbier
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (D.J.R.); (W.N.); (T.D.); (B.T.); (T.T.L.); (V.P.L.); (K.Y.)
- GVN Center of Excellence, Australian Infectious Diseases Research Centre, Brisbane, QLD 4006 and 4072, Australia
- Correspondence:
| |
Collapse
|