1
|
Shim WY, Kim S, Won J, Park CH, Chung TD. Quantitative Electrochemical Analysis Method for Cu Impurities in Nickel-Cobalt-Manganese Cathode Materials. JACS AU 2025; 5:1060-1068. [PMID: 40017782 PMCID: PMC11862923 DOI: 10.1021/jacsau.4c01159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 03/01/2025]
Abstract
Lithium-ion batteries are among the most important energy-storage devices. In this regard, nickel-cobalt-manganese (NCM) cathodes are widely used because of their high energy density and stability. Cu on NCM can enhance the overall performance by aiding lithium-ion transport through cation mixing; however, it leads to issues, such as internal short circuits. The precipitation pH of Cu is high, making its chemical separation from the NCM challenging. Given the impacts and the challenge of separation, an accurate quantification of the residual Cu content in the NCM cathode is essential. Inductively coupled plasma methods struggle with the accurate quantification of trace impurities in NCM owing to the high contents of material elements, leading to instrument malfunction and time-consuming labor. In this study, the introduction of electrochemical methods significantly weakened the matrix effect and facilitated the pretreatment of the solution. In particular, a thin-film electrode (TFE) made of Rh allowed quantification of the Cu present in commercial NCM powder. Cyclic voltammetry and an electrochemical quartz crystal microbalance were used to confirm the formation of two types of underpotential deposition (UPD) Cu on the Rh TFE. Square-wave voltammetry was used to analyze the kinetic differences in Cuupd and quantify trace amounts of Cu with high sensitivity. The results included a relative standard deviation of 2.54%, linear range of 13-450 ppb, and limit of detection of 3.9 ppb. The method was successfully applied to commercial NCM products, where the standard addition method determined Cu content in the range 40-60 ppb. This method provides standardized guidelines for both laboratory and industry for evaluating the effects of impurities across various NCM cathodes.
Collapse
Affiliation(s)
- Woo Yeoul Shim
- Department
of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Sangwoo Kim
- Analytical
Sciences Center, LG Energy Solution R&D
Campus Daejeon, Daejeon 34122, Republic of Korea
| | - JungHye Won
- Analytical
Sciences Center, LG Energy Solution R&D
Campus Daejeon, Daejeon 34122, Republic of Korea
| | - Cheol-Hee Park
- Analytical
Sciences Center, LG Energy Solution R&D
Campus Daejeon, Daejeon 34122, Republic of Korea
| | - Taek Dong Chung
- Department
of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
- Advanced
Institutes of Convergence Technology, Suwon-si 16229, Gyeonggi-do, Republic of Korea
| |
Collapse
|
2
|
Soomro WA, Khuhawar MY, Jahangir TM, Lanjwani MF, Bhatti ZA, Brohi RUZ, Rind IK. Development of a dispersive liquid-liquid microextraction technique for ultra-sensitive detection of gold in environmental samples using atomic absorption spectrometry. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:235. [PMID: 39903366 DOI: 10.1007/s10661-025-13684-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 01/24/2025] [Indexed: 02/06/2025]
Abstract
The work examines the determination of gold from environmental samples by dispersive liquid-liquid microextraction (DLLME) method. The method was developed for the separation and determination of Au (III) ions after chelating with bis (salicylaldehyde) ethylenediimine (H2SA2en) Schiff-base as derivatizing reagent. Flame atomic absorption spectrometry (FAAS) and inductively coupled plasma-optical emission spectrometry (ICP-OES) techniques were used for quantitation of Au (III). These techniques are sensitive and rapid for the determination of gold concentrations in ore, water and sediment samples. The influence of factors such as pH, reagent concentration, solvents (extracting) (disperser) and solvent volumes on extraction efficiency of Au (III) ions were studied and optimized by univariate and multivariate techniques. The linearity of the method was in the range of 2 to 12 µg/L with R2 = 0.997. The limit of detection was 1 µg/L, and the limit of quantification was 3 µg/L. The preconcentration factor and enrichment factor values were 44 and 47. The repeatability (the intra-day) and reproducibility (the inter-day) precisions (n = 3) were found to be 0.417-3.56%. The proposed method was successfully applied for the determination of gold in sediment samples of the Indus River, Kori Barrage, goldsmith water, acidic solution of goldsmith and ornament samples collected from Goldsmith Labs and shops. The results found from FAAS were compared with those obtained from ICP-OES technique, and a good correlation with comparable selectivity and sensitivity was specified.
Collapse
Affiliation(s)
- Waheed Ali Soomro
- Institute of Advanced Research Studies Chemical Sciences, University of Sindh, Jamshoro, Sindh, Pakistan.
| | - Muhammad Yar Khuhawar
- Institute of Advanced Research Studies Chemical Sciences, University of Sindh, Jamshoro, Sindh, Pakistan
| | - Taj Muhammad Jahangir
- Institute of Advanced Research Studies Chemical Sciences, University of Sindh, Jamshoro, Sindh, Pakistan
| | | | - Zulfiqar Ali Bhatti
- Department of Chemical Engineering, Mehran University of Engineering and Technology, Jamshoro, Sindh, Pakistan
| | - Rafi-U-Zaman Brohi
- Institute of Advanced Research Studies Chemical Sciences, University of Sindh, Jamshoro, Sindh, Pakistan
| | - Imran Khan Rind
- National Centre for Excellent in Analytical Chemistry University of Sindh, Jamshoro, Sindh, Pakistan
| |
Collapse
|
3
|
Peng Y, Shakil S, Yuan D, Li M. Photoelectrochemical conversion for ion-selective electrodes based on CdS semiconductor film. Anal Chim Acta 2024; 1318:342921. [PMID: 39067913 DOI: 10.1016/j.aca.2024.342921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND This study presents a novel photoelectrochemical (PEC) conversion method for ion-selective electrodes (ISEs) based on CdS semiconductor film. The motivation stems from the need to enhance the sensitivity and precision of ISEs for various analytical applications. RESULTS We synthesized CdS film on FTO conductive glass via a hydrothermal method and utilized this electrode as the working electrode. Under visible light irradiation, CdS generated photocurrent that is proportional to its applied voltage within a large potential window of ∼0.80 V. Ascorbic acid (AA) effectively inhibited electron-hole complexation, enhancing photocurrent stability. Potential modulation from ISEs acting as the reference electrode further regulated photocurrent generation, demonstrating excellent sensitivity and linearity for a wide range of ion concentrations. The method was validated by detecting serum calcium levels, showing agreement with traditional ISEs potentiometry and ICP-OES methods. SIGNIFICANCE This photoelectrochemical conversion strategy offers a promising approach for sensitive and accurate ion detection, with potential applications in clinical diagnostics and environmental monitoring.
Collapse
Affiliation(s)
- Ye Peng
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, PR China
| | - Shihzad Shakil
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, PR China
| | - Dajing Yuan
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, PR China.
| | - Maoguo Li
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, PR China.
| |
Collapse
|
4
|
Bao H, Ye J, Zhang Y. A Multichannel Screen-Printed Carbon Electrode Based on Fluorinated Poly(3-octylthiophene-2,5-diyl) and Purified Mesoporous Carbon Black Simultaneously Detects Na +, K +, Ca 2+, and NO 2. ACS OMEGA 2024; 9:18238-18248. [PMID: 38680364 PMCID: PMC11044230 DOI: 10.1021/acsomega.3c10471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 05/01/2024]
Abstract
Preparation of nanocomposites based on fluorinated poly(3-octylthiophene-2,5-diyl) (POTF) and purified mesoporous carbon black (PMCB) as the solid-contact layer of a screen-printed carbon electrode (SPCE) is proposed. POTF is used as a dispersant for PMCB. The obtained nanocomposites possess unique characteristics including high conductivity, capacitance, and stability. The SPCE based on POTF and PMCB is characterized by electrochemical impedance spectroscopy and chronopotentiometry, demonstrating simultaneous detection of Na+, K+, Ca2+, and NO2- ions with detection limits of 10-6.5, 10-6.4, 10-6.7, and 10-6.3 M, respectively. Water layer and anti-interference tests revealed that the electrode has high hydrophobicity, and the static contact angle is >140°. The electrode shows excellent selectivity, repeatability, reproducibility, and stability and is not easily affected by light, O2, or CO2.
Collapse
Affiliation(s)
- Hui Bao
- College
of Information Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Jin Ye
- College
of Information Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
- Academy
of National Food and Strategic Reserves Administration, Beijing 102600, China
| | - Yuan Zhang
- College
of Information Science and Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| |
Collapse
|
5
|
Morawska K, Wardak C. Application of ionic liquids in ion-selective electrodes and reference electrodes: A review. Chemphyschem 2024; 25:e202300818. [PMID: 38252078 DOI: 10.1002/cphc.202300818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/21/2023] [Accepted: 01/19/2024] [Indexed: 01/23/2024]
Abstract
Ionic liquids (ILs) are organic chemical compounds that are composed only of ions, a large organic cation and a smaller inorganic or organic anion. These are salts whose melting point is lower than the boiling point of water. ILs have many interesting properties, thanks to which they find great practical applications in analytics, electrochemistry, separation techniques, catalysis and others. One of the many areas of application of ionic liquids is sensors especially electrochemical sensors including ion-selective electrodes. In this case, the properties of ILs that are particularly useful include very good electrical conductivity, high electrochemical stability, good extraction properties, hydrophobic character and compatibility with other materials, e. g. polyvinyl chloride plasticizers or carbon nanomaterials. ILs were used as components of ion-selective membranes, both polymeric ones based on PVC and membranes in carbon paste electrodes. ILs performed various functions in these membranes, including lipophilic ionic additive, ionophore/ion exchanger, plasticizer, transducer media and matrix. They were also used as a component of the intermediate layer in solid contact ISEs. The last chapter presents examples of the use of ILs in reference electrodes. This review discusses the use of ionic liquids in ion-selective electrodes (ISEs) and reference electrodes over the last ten years.
Collapse
Affiliation(s)
- Klaudia Morawska
- Department of Analytical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Sq. 3, 20-031, Lublin, Poland
| | - Cecylia Wardak
- Department of Analytical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Sq. 3, 20-031, Lublin, Poland
| |
Collapse
|
6
|
Wardak C, Pietrzak K, Morawska K, Grabarczyk M. Ion-Selective Electrodes with Solid Contact Based on Composite Materials: A Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:5839. [PMID: 37447689 DOI: 10.3390/s23135839] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023]
Abstract
Potentiometric sensors are the largest and most commonly used group of electrochemical sensors. Among them, ion-selective electrodes hold a prominent place. Since the end of the last century, their re-development has been observed, which is a consequence of the introduction of solid contact constructions, i.e., electrodes without an internal electrolyte solution. Research carried out in the field of potentiometric sensors primarily focuses on developing new variants of solid contact in order to obtain devices with better analytical parameters, and at the same time cheaper and easier to use, which has been made possible thanks to the achievements of material engineering. This paper presents an overview of new materials used as a solid contact in ion-selective electrodes over the past several years. These are primarily composite and hybrid materials that are a combination of carbon nanomaterials and polymers, as well as those obtained from carbon and polymer nanomaterials in combination with others, such as metal nanoparticles, metal oxides, ionic liquids and many others. Composite materials often have better mechanical, thermal, electrical, optical and chemical properties than the original components. With regard to their use in the construction of ion-selective electrodes, it is particularly important to increase the capacitance and surface area of the material, which makes them more effective in the process of charge transfer between the polymer membrane and the substrate material. This allows to obtain sensors with better analytical and operational parameters. Brief characteristics of electrodes with solid contact, their advantages and disadvantages, as well as research methods used to assess their parameters and analytical usefulness were presented. The work was divided into chapters according to the type of composite material, while the data in the table were arranged according to the type of ion. Selected basic analytical parameters of the obtained electrodes have been collected and summarized in order to better illustrate and compare the achievements that have been described till now in this field of analytical chemistry, which is potentiometry. This comprehensive review is a compendium of knowledge in the research area of functional composite materials and state-of-the-art SC-ISE construction technologies.
Collapse
Affiliation(s)
- Cecylia Wardak
- Department of Analytical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Square. 3, 20-031 Lublin, Poland
| | - Karolina Pietrzak
- Department of Food and Nutrition, Medical University of Lublin, 4a Chodzki Str., 20-093 Lublin, Poland
| | - Klaudia Morawska
- Department of Analytical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Square. 3, 20-031 Lublin, Poland
| | - Malgorzata Grabarczyk
- Department of Analytical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Square. 3, 20-031 Lublin, Poland
| |
Collapse
|
7
|
Wardak C, Morawska K, Paczosa-Bator B, Grabarczyk M. Improved Lead Sensing Using a Solid-Contact Ion-Selective Electrode with Polymeric Membrane Modified with Carbon Nanofibers and Ionic Liquid Nanocomposite. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16031003. [PMID: 36770010 PMCID: PMC9918137 DOI: 10.3390/ma16031003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/03/2023] [Accepted: 01/18/2023] [Indexed: 06/01/2023]
Abstract
A new solid-contact ion-selective electrode (ISE) sensitive to lead (II) ions, obtained by modifying a polymer membrane with a nanocomposite of carbon nanofibers and an ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate, is presented. Electrodes with a different amount of nanocomposite in the membrane (0-9% w/w), in which a platinum wire or a glassy carbon electrode was used as an internal electrode, were tested. Potentiometric and electrochemical impedance spectroscopy measurements were carried out to determine the effect of the ion-sensitive membrane modification on the analytical and electrical parameters of the ion-selective electrode. It was found that the addition of the nanocomposite causes beneficial changes in the properties of the membrane, i.e., a decrease in resistance and an increase in capacitance and hydrophobicity. As a result, the electrodes with the modified membrane were characterized by a lower limit of detection, a wider measuring range and better selectivity compared to the unmodified electrode. Moreover, a significant improvement in the stability and reversibility of the electrode potential was observed, and additionally, they were resistant to changes in the redox potential of the sample. The best parameters were shown by the electrode obtained with the use of a platinum wire as the inner electrode with a membrane containing 6% of the nanocomposite. The electrode exhibited a Nernstian response to lead ions over a wide concentration range, 1.0 × 10-8-1.0 × 10-2 mol L-1, with a slope of 31.5 mV/decade and detection limit of 6.0 × 10-9 mol L-1. In addition, the proposed sensor showed very good long term stability and worked properly 4 months after its preparation without essential changes in the E0 or slope values. It was used to analyze a real sample and correct results of lead content determination were obtained.
Collapse
Affiliation(s)
- Cecylia Wardak
- Department of Analytical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland
| | - Klaudia Morawska
- Department of Analytical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland
| | - Beata Paczosa-Bator
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland
| | - Malgorzata Grabarczyk
- Department of Analytical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland
| |
Collapse
|
8
|
Review on new ionophore species for membrane ion selective electrodes. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-022-02708-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Neo ZH, Seah GEKK, Ng SH, Safanama D, Seng DHL, Goh SS. Solution-Printable PEDOT Solid-Contact for Nitrate-Selective Electrodes: Enhanced Selectivity from Anion Dopant Exchange. Anal Chem 2022; 94:15956-15963. [DOI: 10.1021/acs.analchem.2c02119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhi Hao Neo
- Institute of Material Research and Engineering, A*STAR (Agency for Science, Technology and Research) Research Entities, 2 Fusionopolis Way, Innovis #08-03, Singapore138634, Singapore
| | - Georgina E. K. K. Seah
- Institute of Material Research and Engineering, A*STAR (Agency for Science, Technology and Research) Research Entities, 2 Fusionopolis Way, Innovis #08-03, Singapore138634, Singapore
| | - Shi Hoe Ng
- Institute of Material Research and Engineering, A*STAR (Agency for Science, Technology and Research) Research Entities, 2 Fusionopolis Way, Innovis #08-03, Singapore138634, Singapore
| | - Dorsasadat Safanama
- Institute of Material Research and Engineering, A*STAR (Agency for Science, Technology and Research) Research Entities, 2 Fusionopolis Way, Innovis #08-03, Singapore138634, Singapore
| | - Debbie H. L. Seng
- Institute of Material Research and Engineering, A*STAR (Agency for Science, Technology and Research) Research Entities, 2 Fusionopolis Way, Innovis #08-03, Singapore138634, Singapore
| | - Shermin S. Goh
- Institute of Material Research and Engineering, A*STAR (Agency for Science, Technology and Research) Research Entities, 2 Fusionopolis Way, Innovis #08-03, Singapore138634, Singapore
| |
Collapse
|
10
|
Ferreira BL, Granato D, Nunes IL. Uses of ionic liquids to obtain bioactive compounds: insights from the main international regulations for technological applications. Crit Rev Food Sci Nutr 2022; 63:9217-9232. [PMID: 35467994 DOI: 10.1080/10408398.2022.2067115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Ionic liquids (IL) are innovative alternative solvents to recover bioactive compounds from plant-based sources to replace toxic volatile organic solvents (VOS). ILs are tailored-made solvents with chemical and thermal stabilities, nonvolatile and noninflammable. Although ILs are versatile, cost-effective, and sustainable solutions, the European Commission (EC) has no current regulation to approve extracts obtained with ILs to be applied in foods. Herein, this paper aims to assess the overview of ILs, regulamentation, applications, and its toxic effects, to be used as solvents for extract different bioactive compounds. Studies have suggested novel applications for ILs, such as 1-butyl-3-methylimidazolium bromide, 1-butyl-3-methylimidazolium chloride, 1-butyl-3-methylimidazolium tetrafluoroborate and others, to obtain bioactive compounds, for instance phenolic compounds, lignans, alkaloids, carotenoids, polysaccharides, using modern approaches as ultrasound and microwave-assisted extraction. New IL methods increase the efficiency of recovering target compounds and decrease the extraction time and VOS consumption regarding the traditional techniques. Furthermore, to promote the large-scale use of IL in foods, it is essential to investigate individually the toxicity of each IL used in the extraction processes, aiming to obtain a GRAS stamp, due to the currently lack of regulamentation.
Collapse
Affiliation(s)
- Bruno L Ferreira
- Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Daniel Granato
- Department of Biological Sciences, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland
| | - Itaciara L Nunes
- Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| |
Collapse
|
11
|
Electrochemical determination of Pb2+ and Cd2+ with a poly(pyrrole-1-carboxylic acid) modified electrode. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116221] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
12
|
Huang S, Wang W, Cheng J, Zhou X, Xie M, Luo Q, Yang D, Zhou Y, Wen H, Xue W. Amino-functional carbon quantum dots as a rational nanosensor for Cu2+. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105494] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
13
|
Polyurethane-doped platinum nanoparticles modified carbon paste electrode for the sensitive and selective voltammetric determination of free copper ions in biological samples. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104765] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Adhami K, Asadollahzadeh H, Ghazizadeh M. Preconcentration and determination of nickel (II) and copper (II) ions, in vegetable oils by [TBP] [PO4] IL-based dispersive liquid–liquid microextraction technique, and flame atomic absorption spectrophotometry. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2020.103457] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
15
|
Li Z, Yang K, Lv Y, Wang Q, Li C, Wu L, He Y. A rapid pretreatment of PVC products for high-throughput and visual detection of trace heavy metals. MONATSHEFTE FUR CHEMIE 2019. [DOI: 10.1007/s00706-019-02506-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
E Amr AEG, Al-Omar MA, H Kamel A, A Elsayed E. Single-Piece Solid Contact Cu 2+-Selective Electrodes Based on a Synthesized Macrocyclic Calix[4]arene Derivative as a Neutral Carrier Ionophore. Molecules 2019; 24:molecules24050920. [PMID: 30845715 PMCID: PMC6429070 DOI: 10.3390/molecules24050920] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/12/2019] [Accepted: 02/20/2019] [Indexed: 11/16/2022] Open
Abstract
Herein, a facile route leading to good single-walled carbon nanotubes (SWCNT) dispersion or poly (3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT/PSS) based single-piece nanocomposite membrane is proposed for trace determination of Cu2+ ions. The single-piece solid contact Cu2+-selective electrodes were prepared after drop casting the membrane mixture on the glassy-carbon substrates. The prepared potentiometric sensors revealed a Nernstian response slope of 27.8 ± 0.3 and 28.1 ± 0.4 mV/decade over the linearity range 1.0 × 10-3 to 2.0 × 10-9 and 1.0 × 10-3 to 1.0 × 10-9 M with detection limits of 5.4 × 10-10 and 5.0 × 10-10 M for sensors based on SWCNTs and PEDOT/PSS, respectively. Excellent long-term potential stability and high hydrophobicity of the nanocomposite membrane are recorded for the prepared sensors due to the inherent high capacitance of SWCNT used as a solid contact material. The sensors exhibited high selectivity for Cu2+ ions at pH 4.5 over other common ions. The sensors were applied for Cu2+ assessment in tap water and different tea samples. The proposed sensors were robust, reliable and considered as appealing sensors for copper (II) detection in different complex matrices.
Collapse
Affiliation(s)
- Abd El-Galil E Amr
- Pharmaceutical Chemistry Department, Drug Exploration & Development Chair (DEDC), College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
- Applied Organic Chemistry Department, National Research Centre, Dokki, Cairo 12622, Egypt.
| | - Mohamed A Al-Omar
- Pharmaceutical Chemistry Department, Drug Exploration & Development Chair (DEDC), College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Ayman H Kamel
- Chemistry Department, Faculty of Science, Ain Shams University, Abbasia, Cairo 11566, Egypt.
| | - Elsayed A Elsayed
- Zoology Department, Bioproducts Research Chair, Faculty of Science, King Saud University, Riyadh 11451, Saudi Arabia.
- Chemistry of Natural and Microbial Products Department, National Research Centre, Dokki, Cairo 12622, Egypt.
| |
Collapse
|
17
|
Determination of copper(II) by flame atomic absorption spectrometry after its perconcentration by a highly selective and environmentally friendly dispersive liquid–liquid microextraction technique. J Anal Sci Technol 2019. [DOI: 10.1186/s40543-019-0164-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
18
|
Padnya PL, Porfireva AV, Evtugyn GA, Stoikov II. Solid Contact Potentiometric Sensors Based on a New Class of Ionic Liquids on Thiacalixarene Platform. Front Chem 2018; 6:594. [PMID: 30538984 PMCID: PMC6277689 DOI: 10.3389/fchem.2018.00594] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/13/2018] [Indexed: 11/18/2022] Open
Abstract
New solid-contact potentiometric sensors have been developed for hydrogen phosphate recognition on the basis of ionic liquids containing tetrasubstituted derivatives of thiacalix[4]arene in cone and 1,3-alternate conformations with trimethyl- and triethylammonium fragments at the lower rim substituents. The recognition of selected anions including carbonate, hydrogen phosphate, perchlorate, oxalate, picrate, and EDTA was conducted using electrochemical impedance spectroscopy with ferricyanide redox probe. For the potentiometric sensor assembling, the ionic liquids were stabilized by multiwalled carbon nanotubes and carbon black deposited on the glassy carbon electrode. The influence of support, steric factors and modification conditions on the sensor performance has been investigated. As was shown, potentiometric sensors developed make it possible to selectively determine hydrogen phosphate anion within the concentration range from 1 × 10−2 to 1 × 10−6 M and limit of detection of 2 × 10−7−1 × 10−6 M with unbiased selectivity coefficients varied from 1.2 × 10−1 to 1.0 × 10−8 (carbonate, acetate, oxalate, succinate, glutharate, glycolate, and malonate anions).
Collapse
Affiliation(s)
- Pavel L Padnya
- Department of Organic Chemistry, A. M. Butlerov' Chemistry Institute, Kazan Federal University, Kazan, Russia
| | - Anna V Porfireva
- Department of Analytical Chemistry, A. M. Butlerov' Chemistry Institute, Kazan Federal University, Kazan, Russia
| | - Gennady A Evtugyn
- Department of Analytical Chemistry, A. M. Butlerov' Chemistry Institute, Kazan Federal University, Kazan, Russia
| | - Ivan I Stoikov
- Department of Organic Chemistry, A. M. Butlerov' Chemistry Institute, Kazan Federal University, Kazan, Russia
| |
Collapse
|
19
|
Exploring Protein-Inorganic Hybrid Nanoflowers and Immune Magnetic Nanobeads to Detect Salmonella Typhimurium. NANOMATERIALS 2018; 8:nano8121006. [PMID: 30518091 PMCID: PMC6316584 DOI: 10.3390/nano8121006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 01/17/2023]
Abstract
Early screening of pathogenic bacteria is key to preventing and controlling outbreaks of foodborne diseases. In this study, protein-inorganic hybrid nanoflowers were synthesized for signal amplification and used with a calcium ion selective electrode (Ca-ISE) to establish a new enzyme-free assay for rapid and sensitive detection of Salmonella. Calcium hydrophosphate crystals were first conjugated with polyclonal antibodies against Salmonella to synthesize immune calcium nanoflowers (CaNFs), and streptavidin modified magnetic nanobeads (MNBs) were conjugated with biotinylated monoclonal antibodies against Salmonella to form immune MNBs. After target bacteria were separated using immune MNBs to form magnetic bacteria, immune CaNFs were conjugated with magnetic bacteria to form nanoflower conjugated bacteria. Then, hydrogen chloride was used to release calcium ions from nanoflower conjugated bacteria. After magnetic separation, the supernatant was finally injected as a continuous-flow to fluidic chip with Ca-ISE for specific detection of calcium ions. The supernatant's potential had a good linear relationship with bacteria concentration, and this assay was able to detect the S. Typhimurium cells as low as 28 colony forming units/mL within two hours. The mean recovery of target bacteria in spiked chicken samples was 95.0%. This proposed assay shows the potential for rapid, sensitive, and on-line detection of foodborne pathogens.
Collapse
|