1
|
Martinez-Velasco JD, Filomena-Ambrosio A, Garzón-Castro CL. Technological tools for the measurement of sensory characteristics in food: A review. F1000Res 2024; 12:340. [PMID: 38322308 PMCID: PMC10844804 DOI: 10.12688/f1000research.131914.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/24/2023] [Indexed: 02/08/2024] Open
Abstract
The use of technological tools, in the food industry, has allowed a quick and reliable identification and measurement of the sensory characteristics of food matrices is of great importance, since they emulate the functioning of the five senses (smell, taste, sight, touch, and hearing). Therefore, industry and academia have been conducting research focused on developing and using these instruments which is evidenced in various studies that have been reported in the scientific literature. In this review, several of these technological tools are documented, such as the e-nose, e-tongue, colorimeter, artificial vision systems, and instruments that allow texture measurement (texture analyzer, electromyography, others). These allow us to carry out processes of analysis, review, and evaluation of food to determine essential characteristics such as quality, composition, maturity, authenticity, and origin. The determination of these characteristics allows the standardization of food matrices, achieving the improvement of existing foods and encouraging the development of new products that satisfy the sensory experiences of the consumer, driving growth in the food sector. However, the tools discussed have some limitations such as acquisition cost, calibration and maintenance cost, and in some cases, they are designed to work with a specific food matrix.
Collapse
Affiliation(s)
- José D Martinez-Velasco
- Engineering Faculty - Research Group CAPSAB, Universidad de La Sabana, Campus del Puente del Común, Km 7 Autopista Norte de Bogotá, Chia, Cundinamarca, 250001, Colombia
| | - Annamaria Filomena-Ambrosio
- International School of Economics and Administrative Science - Research Group Alimentación, Gestión de Procesos y Servicio de la Universidad de La Sabana Research Group, Universidad de La Sabana, Campus del Puente del Común, Km 7 Autopista Norte de Bogotá, Chía, Cundinamarca, 250001, Colombia
| | - Claudia L Garzón-Castro
- Engineering Faculty - Research Group CAPSAB, Universidad de La Sabana, Campus del Puente del Común, Km 7 Autopista Norte de Bogotá, Chia, Cundinamarca, 250001, Colombia
| |
Collapse
|
2
|
Abi-Rizk H, Jouan-Rimbaud Bouveresse D, Chamberland J, Cordella CBY. Recent developments of e-sensing devices coupled to data processing techniques in food quality evaluation: a critical review. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5410-5440. [PMID: 37818969 DOI: 10.1039/d3ay01132a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
A greater demand for high-quality food is being driven by the growth of economic and technological advancements. In this context, consumers are currently paying special attention to organoleptic characteristics such as smell, taste, and appearance. Motivated to mimic human senses, scientists developed electronic devices such as e-noses, e-tongues, and e-eyes, to spot signals relative to different chemical substances prevalent in food systems. To interpret the information provided by the sensors' responses, multiple chemometric approaches are used depending on the aim of the study. This review based on the Web of Science database, endeavored to scrutinize three e-sensing systems coupled to chemometric approaches for food quality evaluation. A total of 122 eligible articles pertaining to the e-nose, e-tongue and e-eye devices were selected to conduct this review. Most of the performed studies used exploratory analysis based on linear factorial methods, while classification and regression techniques came in the second position. Although their applications have been less common in food science, it is to be noted that nonlinear approaches based on artificial intelligence and machine learning deployed in a big-data context have generally yielded better results for classification and regression purposes, providing new perspectives for future studies.
Collapse
Affiliation(s)
- Hala Abi-Rizk
- LAboratoire de Recherche et de Traitement de l'Information Chimiosensorielle - LARTIC, Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC, G1V 0A6, Canada.
| | | | - Julien Chamberland
- Department of Food Sciences, STELA Dairy Research Center, Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC, G1V 0A6, Canada
| | - Christophe B Y Cordella
- LAboratoire de Recherche et de Traitement de l'Information Chimiosensorielle - LARTIC, Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC, G1V 0A6, Canada.
| |
Collapse
|
3
|
Hassanein MM, Abdel-Razek AG, Al-Amrousi EF, Badr AN. Application of lime peel oil composite nanoemulsion to prevent toxigenic fungi in nuts. Heliyon 2023; 9:e18620. [PMID: 37554840 PMCID: PMC10404952 DOI: 10.1016/j.heliyon.2023.e18620] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 08/10/2023] Open
Abstract
Food byproduct oils may have antimicrobial impacts when used in coating and preservation. Nuts are known to suffer from toxigenic fungi and their related mycotoxins. The present study utilized lime oil emulsion to minimize fungal infection and reduce aflatoxin B1 (AFB1). Besides, it evaluated lime oil's impact on nuts' protection against oxidation and deterioration during storage. Lime oil was extracted using hydrodistillation, and gas chromatography (GC-MS) evaluated volatile constituents. Oil was loaded into a composite emulsion of whey protein, Arabic gum, gelatin, and carboxymethyl cellulose. The antimicrobial and antifungal properties of the nut-coating emulsion were evaluated. A simulated Aspergillus flavus infection experiment evaluated composite resistance for fungal infection and AFB1 production. Oxidation and acidity changes in nuts oil composition were evaluated by proximate analysis, fatty acid composition, and induction period. The oil majority was recorded for terpenes and monoterpenes, including limonene (44.69 ± 2.11%). The emulsion was characterized by zeta potential (-21.16 ± 1.28 mV), stability (99.61 ± 0.02%), and polydispersity index (0.41 ± 0.05). Antimicrobial properties recorded a high antibacterial inhibition zone (up to 28.37 ± 0.11 mm) and anti-mycotoxigenic fungi (up to 37.61 ± 0.24 mm). For the simulated experiment, fungal growth reduction ranged between 78.02% for filmed-peanut and 84.5% for filmed-almond, while AFB1 was not detected in filmed hazelnut and almond. During the one-year storage of samples, there was a slight change in nut oil composition and oxidation progress in filmed nuts, while there was a significant change in non-filmed nuts. The result recommended lime-composite as an edible nut coating that prevents aflatoxigenic contamination, oxidation changes, and improved shelf life.
Collapse
Affiliation(s)
| | - Adel G. Abdel-Razek
- Fats and Oils Department, National Research Center, Dokki 12622, Cairo, Egypt
| | - Eman F. Al-Amrousi
- Fats and Oils Department, National Research Center, Dokki 12622, Cairo, Egypt
| | - Ahmed N. Badr
- Food Toxicology and Contaminants Department, National Research Centre, Dokki 12622, Cairo, Egypt
| |
Collapse
|
4
|
Ma P, Zhang Z, Jia X, Peng X, Zhang Z, Tarwa K, Wei CI, Liu F, Wang Q. Neural network in food analytics. Crit Rev Food Sci Nutr 2022; 64:4059-4077. [PMID: 36322538 DOI: 10.1080/10408398.2022.2139217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Neural network (i.e. deep learning, NN)-based data analysis techniques have been listed as a pivotal opportunity to protect the integrity and safety of the global food supply chain and forecast $11.2 billion in agriculture markets. As a general-purpose data analytic tool, NN has been applied in several areas of food science, such as food recognition, food supply chain security and omics analysis, and so on. Therefore, given the rapid emergence of NN applications in food safety, this review aims to provide a comprehensive overview of the NN application in food analysis for the first time, focusing on domain-specific applications in food analysis by introducing fundamental methodology, reviewing recent and notable progress, and discussing challenges and potential pitfalls. NN demonstrated that it has a bright future through effective collaboration between food specialist and the broader community in the food field, for example, superiority in food recognition, sensory evaluation, pattern recognition of spectroscopy and chromatography. However, major challenges impeded NN extension including void in the food scientist-friendly interface software package, incomprehensible model behavior, multi-source heterogeneous data, and so on. The breakthrough from other fields proved NN has the potential to offer a revolution in the immediate future.
Collapse
Affiliation(s)
- Peihua Ma
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, Maryland, USA
| | - Zhikun Zhang
- CISPA Helmholtz Center for Information Security, Saarbrucken, Germany
| | - Xiaoxue Jia
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, Maryland, USA
| | - Xiaoke Peng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Zhi Zhang
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, Maryland, USA
| | - Kevin Tarwa
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, Maryland, USA
| | - Cheng-I Wei
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, Maryland, USA
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Qin Wang
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
5
|
Belugina R, Senchikhina A, Volkov S, Fedorov A, Legin A, Kirsanov D. Quantification of phosphatides in sunflower oils using a potentiometric e-tongue. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3064-3070. [PMID: 35938623 DOI: 10.1039/d2ay00736c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Consisting of two fatty acyl groups, phospholipids are a vital part of vegetable oils and the source of essential fatty acids. Moreover, phospholipids influence oxidative and flavor stability and color evolution of vegetable oils, and their quantification has a significant role in the quality assessment of oils. In this study, we proposed a new highly efficient, affordable, environmentally friendly, and simple approach for the evaluation of phospholipid concentrations based on potentiometric multisensor systems coupled with chemometric data processing. Support vector machines, partial least squares, and multiple linear regressions were used to predict phosphatide concentrations based on potentiometric multisensor system responses. Application of multivariate regression tools yielded the following root mean square errors of prediction: 0.005 mg/100 g of oil in the range 0.0-59.4 mg/100 g for refined oils; 0.008 mg/100 g in the range 0.0-100 mg/100 g for low phosphatide oils and 0.24 mg/100 g in the range 100-2270 mg/100 g for high phosphatide oils. This approach can be considered as a rapid and straightforward method to quantify the phosphatides in sunflower oils.
Collapse
Affiliation(s)
| | | | - Sergey Volkov
- All-Russian Research Institute of Fats (ARRIF), St Petersburg, Russia
| | - Alexander Fedorov
- ITMO University, St Petersburg, Russia.
- All-Russian Research Institute of Fats (ARRIF), St Petersburg, Russia
| | - Andrey Legin
- ITMO University, St Petersburg, Russia.
- Institute of Chemistry, Saint Petersburg State University, St Petersburg, Russia
| | - Dmitry Kirsanov
- ITMO University, St Petersburg, Russia.
- Institute of Chemistry, Saint Petersburg State University, St Petersburg, Russia
| |
Collapse
|
6
|
E-Senses, Panel Tests and Wearable Sensors: A Teamwork for Food Quality Assessment and Prediction of Consumer’s Choices. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10070244] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
At present, food quality is of utmost importance, not only to comply with commercial regulations, but also to meet the expectations of consumers; this aspect includes sensory features capable of triggering emotions through the citizen’s perception. To date, key parameters for food quality assessment have been sought through analytical methods alone or in combination with a panel test, but the evaluation of panelists’ reactions via psychophysiological markers is now becoming increasingly popular. As such, the present review investigates recent applications of traditional and novel methods to the specific field. These include electronic senses (e-nose, e-tongue, and e-eye), sensory analysis, and wearables for emotion recognition. Given the advantages and limitations highlighted throughout the review for each approach (both traditional and innovative ones), it was possible to conclude that a synergy between traditional and innovative approaches could be the best way to optimally manage the trade-off between the accuracy of the information and feasibility of the investigation. This evidence could help in better planning future investigations in the field of food sciences, providing more reliable, objective, and unbiased results, but it also has important implications in the field of neuromarketing related to edible compounds.
Collapse
|
7
|
Rifna EJ, Pandiselvam R, Kothakota A, Subba Rao KV, Dwivedi M, Kumar M, Thirumdas R, Ramesh SV. Advanced process analytical tools for identification of adulterants in edible oils - A review. Food Chem 2022; 369:130898. [PMID: 34455326 DOI: 10.1016/j.foodchem.2021.130898] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/16/2021] [Accepted: 08/16/2021] [Indexed: 12/16/2022]
Abstract
This review summarizes the use of spectroscopic processes-based analytical tools coupled with chemometric techniques for the identification of adulterants in edible oil. Investigational approaches of process analytical tools such asspectroscopy techniques, nuclear magnetic resonance (NMR), hyperspectral imaging (HSI), e-tongue and e-nose combined with chemometrics were used to monitor quality of edible oils. Owing to the variety and intricacy of edible oil properties along with the alterations in attributes of the PAT tools, the reliability of the tool used and the operating factors are the crucial components which require attention to enhance the efficiency in identification of adulterants. The combination of process analytical tools with chemometrics offers a robust technique with immense chemotaxonomic potential. These involves identification of adulterants, quality control, geographical origin evaluation, process evaluation, and product categorization.
Collapse
Affiliation(s)
- E J Rifna
- Department of Food Process Engineering, National Institute of Technology, Rourkela 769008, Odisha, India
| | - R Pandiselvam
- Physiology, Biochemistry and Post-Harvest Technology Division, ICAR - Central Plantation Crops Research Institute, Kasaragod 671 124, Kerala, India.
| | - Anjineyulu Kothakota
- Agro-Processing & Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695 019, Kerala, India.
| | - K V Subba Rao
- Agricultural and Food Engineering Department, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Madhuresh Dwivedi
- Department of Food Process Engineering, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Matunga, Mumbai 400019, India
| | - Rohit Thirumdas
- Department of Food Process Technology, College of Food Science and Technology, PJTSAU, Telangana, India
| | - S V Ramesh
- Physiology, Biochemistry and Post-Harvest Technology Division, ICAR - Central Plantation Crops Research Institute, Kasaragod 671 124, Kerala, India
| |
Collapse
|
8
|
Ramirez-Montes S, Santos EM, Galan-Vidal CA, Tavizon-Pozos JA, Rodriguez JA. Classification of Edible Vegetable Oil Degradation Using Multivariate Data Analysis From Electrochemical Techniques. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02083-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Evaluation of Olive Oil Quality with Electrochemical Sensors and Biosensors: A Review. Int J Mol Sci 2021; 22:ijms222312708. [PMID: 34884509 PMCID: PMC8657724 DOI: 10.3390/ijms222312708] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 01/11/2023] Open
Abstract
Electrochemical sensors, sensor arrays and biosensors, alongside chemometric instruments, have progressed remarkably of late, being used on a wide scale in the qualitative and quantitative evaluation of olive oil. Olive oil is a natural product of significant importance, since it is a rich source of bioactive compounds with nutritional and therapeutic properties, and its quality is important both for consumers and for distributors. This review aims at analysing the progress reported in the literature regarding the use of devices based on electrochemical (bio)sensors to evaluate the bioactive compounds in olive oil. The main advantages and limitations of these approaches on construction technique, analysed compounds, calculus models, as well as results obtained, are discussed in view of estimation of future progress related to achieving a portable, practical and rapid miniature device for analysing the quality of virgin olive oil (VOO) at different stages in the manufacturing process.
Collapse
|
10
|
Duan D, Huang Y, Zou Y, He B, Tang R, Yang L, Zhang Z, Su S, Wang G, Zhang D, Zhou C, Li J, Deng M. Discrimination of Camellia seed oils extracted by supercritical CO 2 using electronic tongue technology. Food Sci Biotechnol 2021; 30:1303-1312. [PMID: 34691803 DOI: 10.1007/s10068-021-00973-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 07/19/2021] [Accepted: 08/10/2021] [Indexed: 12/01/2022] Open
Abstract
Analytical method which combines electronic tongue technique and chemometrics analysis is developed to discriminate oil types and predict oil quality. All the studied Camellia oil samples from pressing, n-hexane extraction and supercritical CO2 extraction (SCCE), were successfully identified by principal component analysis (PCA) and hierarchical cluster analysis (HCA). Furthermore, multi factor linear regression model (MLRM) was established to predict oil quality, which are indicated by acid value (AV) and peroxide value (POV). The practical potential of e-tongue for the discrimination and assessment of Camellia oils has shown promising application in the characterization of Camellia oils in the oil quality evaluation. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-021-00973-1.
Collapse
Affiliation(s)
- Di Duan
- Center of Guangdong Higher Education for Engineering and Technological Development of Specialty Condiments, Department of Food and Biological Engineering, Guangdong Industry Technical College, Guangzhou, 510300 China
| | - Yong Huang
- Center of Guangdong Higher Education for Engineering and Technological Development of Specialty Condiments, Department of Food and Biological Engineering, Guangdong Industry Technical College, Guangzhou, 510300 China
| | - Ying Zou
- Center of Guangdong Higher Education for Engineering and Technological Development of Specialty Condiments, Department of Food and Biological Engineering, Guangdong Industry Technical College, Guangzhou, 510300 China
| | - Bingju He
- Center of Guangdong Higher Education for Engineering and Technological Development of Specialty Condiments, Department of Food and Biological Engineering, Guangdong Industry Technical College, Guangzhou, 510300 China
| | - Ruihui Tang
- Center of Guangdong Higher Education for Engineering and Technological Development of Specialty Condiments, Department of Food and Biological Engineering, Guangdong Industry Technical College, Guangzhou, 510300 China
| | - Liuxia Yang
- Center of Guangdong Higher Education for Engineering and Technological Development of Specialty Condiments, Department of Food and Biological Engineering, Guangdong Industry Technical College, Guangzhou, 510300 China
| | - Zecao Zhang
- Center of Guangdong Higher Education for Engineering and Technological Development of Specialty Condiments, Department of Food and Biological Engineering, Guangdong Industry Technical College, Guangzhou, 510300 China
| | - Shucai Su
- Center of Guangdong Higher Education for Engineering and Technological Development of Specialty Condiments, Department of Food and Biological Engineering, Guangdong Industry Technical College, Guangzhou, 510300 China
| | - Guoping Wang
- Guangdong Fanlong Agricultural Technology Development Co., Ltd, Jieyang, 522000 China
| | - Deyi Zhang
- Guangdong Fanlong Agricultural Technology Development Co., Ltd, Jieyang, 522000 China
| | - Chunhui Zhou
- Center of Guangdong Higher Education for Engineering and Technological Development of Specialty Condiments, Department of Food and Biological Engineering, Guangdong Industry Technical College, Guangzhou, 510300 China
| | - Jing Li
- Center of Guangdong Higher Education for Engineering and Technological Development of Specialty Condiments, Department of Food and Biological Engineering, Guangdong Industry Technical College, Guangzhou, 510300 China
| | - Maocheng Deng
- Center of Guangdong Higher Education for Engineering and Technological Development of Specialty Condiments, Department of Food and Biological Engineering, Guangdong Industry Technical College, Guangzhou, 510300 China
| |
Collapse
|
11
|
Kiani H, Beheshti B, Borghei AM, Rahmati MH. Application of a voltammetric electronic tongue combined with chemometric approaches for the early classification of heavy metals in sunflower oil. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Hassan Kiani
- Department of Agriculture Machinery, Science and Research Branch Islamic Azad University Tehran Iran
| | - Babak Beheshti
- Department of Agriculture Machinery, Science and Research Branch Islamic Azad University Tehran Iran
| | - Ali Mohammad Borghei
- Department of Agriculture Machinery, Science and Research Branch Islamic Azad University Tehran Iran
| | - Mohammad Hashem Rahmati
- Department of Biosystem Mechanical Engineering Gorgan University of Agricultural Sciences and Natural Resources Gorgan Iran
| |
Collapse
|
12
|
Sudhakar A, Chakraborty SK, Mahanti NK, Varghese C. Advanced techniques in edible oil authentication: A systematic review and critical analysis. Crit Rev Food Sci Nutr 2021; 63:873-901. [PMID: 34347552 DOI: 10.1080/10408398.2021.1956424] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Adulteration of edible substances is a potent contemporary food safety issue. Perhaps the overt concern derives from the fact that adulterants pose serious ill effects on human health. Edible oils are one of the most adulterated food products. Perpetrators are adopting ways and means that effectively masks the presence of the adulterants from human organoleptic limits and traditional oil adulteration detection techniques. This review embodies a detailed account of chemical, biosensors, chromatography, spectroscopy, differential scanning calorimetry, non-thermal plasma, dielectric spectroscopy research carried out in the area of falsification assessment of edible oils for the past three decades and a collection of patented oil adulteration detection techniques. The detection techniques reviewed have some advantages and certain limitations, chemical tests are simple; biosensors and nuclear magnetic resonance are rapid but have a low sensitivity; chromatography and spectroscopy are highly accurate with a deterring price tag; dielectric spectroscopy is rapid can be portable and has on-line compatibility; however, the results are susceptible to variation of electric current frequency and intrinsic factors (moisture, temperature, structural composition). This review paper can be useful for scientists or for knowledge seekers eager to be abreast with edible oil adulteration detection techniques.
Collapse
Affiliation(s)
- Anjali Sudhakar
- Agro Produce Processing Division, ICAR-Central Institute of Agricultural Engineering, Bhopal, India
| | - Subir Kumar Chakraborty
- Agro Produce Processing Division, ICAR-Central Institute of Agricultural Engineering, Bhopal, India
| | - Naveen Kumar Mahanti
- Agro Produce Processing Division, ICAR-Central Institute of Agricultural Engineering, Bhopal, India
| | - Cinu Varghese
- Rural Development Centre, Indian Institute of Technology, Kharagpur, India
| |
Collapse
|
13
|
Rapid Detection of Adulteration in Mixing Sesame, Sunflower, and Canola Vegetable Oils by Mathematical Model. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-01980-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Zhang N, Li Y, Wen S, Sun Y, Chen J, Gao Y, Sagymbek A, Yu X. Analytical methods for determining the peroxide value of edible oils: A mini-review. Food Chem 2021; 358:129834. [PMID: 33933972 DOI: 10.1016/j.foodchem.2021.129834] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 01/06/2023]
Abstract
Edible oils are prone to oxidation during processing and storage that may negatively affect the oil quality and human health. Determining the peroxide value (PV) of edible oils is essential because PV is one of the most typically used quality parameters to monitor lipid oxidation and control oil quality. Many approaches have been developed to determine the PV of oils. Among them, iodometric titration is the commonly used method for PV determination. Considering the limitations related to titrimetric methods, such as time and environmental concerns, several instrumental techniques have been considered as reliable alternatives. The advantages and limitations of classical titration and instrumental methods are summarized in this review. The prospects and reformative aspects for the future applications of these approaches in PV determination are also discussed.
Collapse
Affiliation(s)
- Na Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road Yangling, 712100 Shaanxi, PR China
| | - Yonglin Li
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road Yangling, 712100 Shaanxi, PR China
| | - Shasha Wen
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road Yangling, 712100 Shaanxi, PR China
| | - Yiwen Sun
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road Yangling, 712100 Shaanxi, PR China
| | - Jia Chen
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road Yangling, 712100 Shaanxi, PR China
| | - Yuan Gao
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road Yangling, 712100 Shaanxi, PR China
| | - Altayuly Sagymbek
- S.Seifullin Kazakh Agro Technical University, 62 Zhenis Avenue, 010011, 14 Nur-Sultan, Kazakhstan
| | - Xiuzhu Yu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road Yangling, 712100 Shaanxi, PR China.
| |
Collapse
|
15
|
Zaukuu JLZ, Gillay Z, Kovacs Z. Standardized Extraction Techniques for Meat Analysis with the Electronic Tongue: A Case Study of Poultry and Red Meat Adulteration. SENSORS 2021; 21:s21020481. [PMID: 33445458 PMCID: PMC7827137 DOI: 10.3390/s21020481] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 12/26/2022]
Abstract
The electronic tongue (e-tongue) is an advanced sensor-based device capable of detecting low concentration differences in solutions. It could have unparalleled advantages for meat quality control, but the challenges of standardized meat extraction methods represent a backdrop that has led to its scanty application in the meat industry. This study aimed to determine the optimal dilution level of meat extract for e-tongue evaluations and also to develop three standardized meat extraction methods. For practicality, the developed methods were applied to detect low levels of meat adulteration using beef and pork mixtures and turkey and chicken mixtures as case studies. Dilution factor of 1% w/v of liquid meat extract was determined to be the optimum for discriminating 1% w/w, 3% w/w, 5% w/w, 10% w/w, and 20% w/w chicken in turkey and pork in beef with linear discriminant analysis accuracies (LDA) of 78.13% (recognition) and 64.73% (validation). Even higher LDA accuracies of 89.62% (recognition) and 68.77% (validation) were achieved for discriminating 1% w/w, 3% w/w, 5% w/w, 10% w/w, and 20% w/w of pork in beef. Partial least square models could predict both sets of meat mixtures with good accuracies. Extraction by cooking was the best method for discriminating meat mixtures and can be applied for meat quality evaluations with the e-tongue.
Collapse
|
16
|
Aouadi B, Zaukuu JLZ, Vitális F, Bodor Z, Fehér O, Gillay Z, Bazar G, Kovacs Z. Historical Evolution and Food Control Achievements of Near Infrared Spectroscopy, Electronic Nose, and Electronic Tongue-Critical Overview. SENSORS (BASEL, SWITZERLAND) 2020; 20:E5479. [PMID: 32987908 PMCID: PMC7583984 DOI: 10.3390/s20195479] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/15/2020] [Accepted: 09/21/2020] [Indexed: 01/28/2023]
Abstract
Amid today's stringent regulations and rising consumer awareness, failing to meet quality standards often results in health and financial compromises. In the lookout for solutions, the food industry has seen a surge in high-performing systems all along the production chain. By virtue of their wide-range designs, speed, and real-time data processing, the electronic tongue (E-tongue), electronic nose (E-nose), and near infrared (NIR) spectroscopy have been at the forefront of quality control technologies. The instruments have been used to fingerprint food properties and to control food production from farm-to-fork. Coupled with advanced chemometric tools, these high-throughput yet cost-effective tools have shifted the focus away from lengthy and laborious conventional methods. This special issue paper focuses on the historical overview of the instruments and their role in food quality measurements based on defined food matrices from the Codex General Standards. The instruments have been used to detect, classify, and predict adulteration of dairy products, sweeteners, beverages, fruits and vegetables, meat, and fish products. Multiple physico-chemical and sensory parameters of these foods have also been predicted with the instruments in combination with chemometrics. Their inherent potential for speedy, affordable, and reliable measurements makes them a perfect choice for food control. The high sensitivity of the instruments can sometimes be generally challenging due to the influence of environmental conditions, but mathematical correction techniques exist to combat these challenges.
Collapse
Affiliation(s)
- Balkis Aouadi
- Department of Measurement and Process Control, Faculty of Food Science, Szent István University, H-1118 Budapest, Hungary; (B.A.); (J.-L.Z.Z.); (F.V.); (Z.B.); (Z.G.)
| | - John-Lewis Zinia Zaukuu
- Department of Measurement and Process Control, Faculty of Food Science, Szent István University, H-1118 Budapest, Hungary; (B.A.); (J.-L.Z.Z.); (F.V.); (Z.B.); (Z.G.)
| | - Flora Vitális
- Department of Measurement and Process Control, Faculty of Food Science, Szent István University, H-1118 Budapest, Hungary; (B.A.); (J.-L.Z.Z.); (F.V.); (Z.B.); (Z.G.)
| | - Zsanett Bodor
- Department of Measurement and Process Control, Faculty of Food Science, Szent István University, H-1118 Budapest, Hungary; (B.A.); (J.-L.Z.Z.); (F.V.); (Z.B.); (Z.G.)
| | - Orsolya Fehér
- Institute of Agribusiness, Faculty of Economics and Social Sciences, Szent István University, H-2100 Gödöllő, Hungary;
| | - Zoltan Gillay
- Department of Measurement and Process Control, Faculty of Food Science, Szent István University, H-1118 Budapest, Hungary; (B.A.); (J.-L.Z.Z.); (F.V.); (Z.B.); (Z.G.)
| | - George Bazar
- Department of Nutritional Science and Production Technology, Faculty of Agricultural and Environmental Sciences, Szent István University, H-7400 Kaposvár, Hungary;
- ADEXGO Kft., H-8230 Balatonfüred, Hungary
| | - Zoltan Kovacs
- Department of Measurement and Process Control, Faculty of Food Science, Szent István University, H-1118 Budapest, Hungary; (B.A.); (J.-L.Z.Z.); (F.V.); (Z.B.); (Z.G.)
| |
Collapse
|
17
|
Oliinyk B, Isaieva K, Manilov AI, Nychyporuk T, Geloen A, Joffre F, Skryshevsky VA, Litvinenko SV, Lysenko V. Silicon-Based Optoelectronic Tongue for Label-Free and Nonspecific Recognition of Vegetable Oils. ACS OMEGA 2020; 5:5638-5642. [PMID: 32226839 PMCID: PMC7097904 DOI: 10.1021/acsomega.9b03196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 02/24/2020] [Indexed: 05/08/2023]
Abstract
A special electronic tongue system based on photoelectric measurements on Si-Si/SiN X sensitive structures is reported. The sensing approach is based on measuring of minority carrier lifetime in silicon-based substrates using microwave-detected photoconductance decay. This inexpensive and environmentally friendly combinatorial electronic sensing platform is able to create characteristic electronic fingerprints of liquids, detect, and recognize them. In particular, an application of the optoelectronic tongue for recognition of vegetable oils and their mixtures is described.
Collapse
Affiliation(s)
- Bohdan
V. Oliinyk
- Institute
of Analytical Sciences (ISA), UMR CNRS 5280,
UCBL, University of Lyon, 69100 Villeurbanne, France
- OlisensTech, 5, Place
Maréchal Lyautey, 69006 Lyon, France
| | - Karyna Isaieva
- IADI,
Université de Lorraine, INSERM U1254, Nancy F-54000, France
| | - Anton I. Manilov
- Institute
of High Technologies, Taras Shevchenko National
University of Kyiv, 01033 Kyiv, Ukraine
- Corporation
Science Park Taras Shevchenko University of Kyiv, 01033 Kyiv, Ukraine
| | - Tetyana Nychyporuk
- Nanotechnology
Institute of Lyon (INL), UMR CNRS 5270,
INSA de Lyon, University of Lyon, 69621 Lyon, France
| | - Alain Geloen
- CarMeN
Laboratory, INRA UMR1397, INSERM U1060,
INSA de Lyon, IMBL, University of Lyon, 69621 Lyon, France
| | | | - Valeriy A. Skryshevsky
- Institute
of High Technologies, Taras Shevchenko National
University of Kyiv, 01033 Kyiv, Ukraine
- Corporation
Science Park Taras Shevchenko University of Kyiv, 01033 Kyiv, Ukraine
| | - Sergii V. Litvinenko
- Institute
of High Technologies, Taras Shevchenko National
University of Kyiv, 01033 Kyiv, Ukraine
- Corporation
Science Park Taras Shevchenko University of Kyiv, 01033 Kyiv, Ukraine
| | - Vladimir Lysenko
- Light-Matter
Institute (ILM), UMR CNRS 5306, University
of Lyon (UCBL), 69622 Lyon, France
| |
Collapse
|
18
|
Monitoring the debittering of traditional stoned green table olives during the aqueous washing process using an electronic tongue. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.04.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Rodrigues N, Marx ÍMG, Casal S, Dias LG, Veloso ACA, Pereira JA, Peres AM. Application of an electronic tongue as a single-run tool for olive oils' physicochemical and sensory simultaneous assessment. Talanta 2019; 197:363-373. [PMID: 30771949 DOI: 10.1016/j.talanta.2019.01.055] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 01/08/2019] [Accepted: 01/14/2019] [Indexed: 10/27/2022]
Abstract
Olive oil is highly appreciated due to its nutritional and organoleptic characteristics. However, a huge compositional variation is observed between olive oils, requiring the use of diverse analytical techniques for its classification including titration, spectrophotometry and chromatography, as well as sensory analysis. Chemical analysis is usually time-consuming, expensive and require skilled technicians, while the sensorial ones are dependent upon individual subjective evaluations, even if performed by trained panellists. This work evaluated and demonstrated the feasibility of using a potentiometric electronic tongue, comprising non-specific lipid polymeric and cross-sensitive sensor membranes, coupled with chemometric tools based on different sub-sets of sensors (from 11 to 14 sensors), to predict key quality parameters of olive oils based on single-run assays. The multivariate linear models established for 23 centenarian olive trees from different cultivars allowed predicting peroxide value, oxidative stability, total phenols and tocopherols contents, CIELAB scale parameters (L*, a* and b* values), as well as 11 gustatory-retronasal positive attributes (green, sweet, bitter, pungent, tomato and tomato leaves, apple, banana, cabbage, fresh herbs and dry fruits) with satisfactory accuracy (0.90 ± 0.07 ≤ R2 ≤ 0.98 ± 0.02 for the repeated K-fold-CV procedure, which ensured that 25% of the data was used for internal-validation purposes). The electronic tongue device had an accuracy statistically similar to that achieved with standard analytical techniques, pointing out the versatility of the device for the fast and simultaneous chemical and sensory analysis of olive oil.
Collapse
Affiliation(s)
- Nuno Rodrigues
- Centro de Investigação de Montanha (CIMO), ESA, Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ítala M G Marx
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), ESA, Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal
| | - Susana Casal
- LAQV/REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Luís G Dias
- Centro de Investigação de Montanha (CIMO), ESA, Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ana C A Veloso
- Instituto Politécnico de Coimbra, ISEC, DEQB, Rua Pedro Nunes, Quinta da Nora, 3030-199 Coimbra, Portugal; CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - José A Pereira
- Centro de Investigação de Montanha (CIMO), ESA, Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal
| | - António M Peres
- Centro de Investigação de Montanha (CIMO), ESA, Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal; Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), ESA, Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal.
| |
Collapse
|
20
|
Electrochemical Sensor-Based Devices for Assessing Bioactive Compounds in Olive Oils: A Brief Review. ELECTRONICS 2018. [DOI: 10.3390/electronics7120387] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Electrochemical bioinspired sensor devices combined with chemometric tools have experienced great advances in the last years, being extensively used for food qualitative and quantitative evaluation, namely for olive oil analysis. Olive oil plays a key role in the Mediterranean diet, possessing unique and recognized nutritional and health properties as well as highly appreciated organoleptic characteristics. These positive attributes are mainly due to olive oil richness in bioactive compounds such as phenolic compounds. In addition, these compounds enhance their overall sensory quality, being mainly responsible for the usual olive oil pungency and bitterness. This review aims to compile and discuss the main research advances reported in the literature regarding the use of electrochemical sensor based-devices for assessing bioactive compounds in olive oil. The main advantages and limitations of these fast, accurate, bioinspired voltammetric, potentiometric and/or amperometric sensor green-approaches will be addressed, aiming to establish the future challenges for becoming a practical quality analytical tool for industrial and commercial applications.
Collapse
|