1
|
Zorzella Fontana ME, Caiel da Silva R, Duarte Dos Santos I, Neu JP, Wouters RD, Babinski PJ, Hoffmann JF, Rossi RC, Essi L, Pizzutti IR. Comprehensive assessment of clean-up strategies for optimizing an analytical multi-method to determine pesticides and mycotoxins in Brazilian medicinal herbs using QuEChERS-LC-TQ-MS/MS. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5082-5104. [PMID: 38990094 DOI: 10.1039/d4ay00599f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
The use of medicinal herbs has increased significantly. However, the presence of pesticide residues and mycotoxins in medicinal herbs has generated constant discussion and concern among regulatory agencies. Developing and validating an analytical method for determining pesticides and mycotoxins in medicinal plants is challenging due to the naturally occurring substances in these plants. The purpose of this work was to develop and to optimize a sensitive, accurate, precise, effective QuEChERS method for simultaneous determination of over 160 pesticide and mycotoxin residues in complex medicinal plant matrices using LC-TQ-MS/MS. A comprehensive comparison of clean-up procedures and other parameters was conducted to achieve this goal. The validation procedure was performed according to SANTE 11312/2021. More polar analytes, such as acephate, methamidophos and omethoate, presented a higher negative matrix effect in both Melissa officinalis L. and Malva sylvestris L. However, other molecules, such as spirodiclofen, showed a 24% signal enhancement in M. officinalis and a 46% signal suppression in M. sylvestris, indicating that a representative matrix-matched calibration would lead to inaccurate quantification of the analyte. Accuracy and precision were satisfactory according to SANTE 11312/2021 for 157 pesticide residues and mycotoxins in M. officinalis and for 152 molecules in M. sylvestris. LOQs at 10 µg kg-1 were achieved for 117 pesticides in M. officinalis and 99 pesticides in M. sylvestris. Among the mycotoxins, all four aflatoxins (B1, B2, G1 and G2) presented LOQs of 5 µg kg-1, and ochratoxin A had an LOQ of 10 µg kg-1 in M. officinalis. The same LOQ values were shown for these mycotoxins in M. sylvestris, except for aflatoxin B2 and ochratoxin A, which had LOQs of 20 µg kg-1. Moreover, in Southern Brazil, there has been no previous study on mycotoxin and pesticide contamination in medicinal herbs. Therefore, the application of this method was assessed through the analysis of forty-two real samples. Imidacloprid was found in M. officinalis, and methyl pirimiphos was found in M. sylvestris. The proposed method not only serves as a helpful tool for routine monitoring but also offers a basis for further research on risk assessment and control in food safety.
Collapse
Affiliation(s)
- Marlos Eduardo Zorzella Fontana
- UFSM - Federal University of Santa Maria, Chemistry Department, Center of Research and Analysis of Residues and Contaminants (CEPARC), 97105-900, Santa Maria/RS, Brazil.
| | - Rosselei Caiel da Silva
- UFSM - Federal University of Santa Maria, Chemistry Department, Center of Research and Analysis of Residues and Contaminants (CEPARC), 97105-900, Santa Maria/RS, Brazil.
| | - Ingrid Duarte Dos Santos
- UFSM - Federal University of Santa Maria, Chemistry Department, Center of Research and Analysis of Residues and Contaminants (CEPARC), 97105-900, Santa Maria/RS, Brazil.
- UFSM - Federal University of Santa Maria, Food Science and Technology Department, 97105-900, Santa Maria/RS, Brazil
| | - Júlia Paula Neu
- UFSM - Federal University of Santa Maria, Chemistry Department, Center of Research and Analysis of Residues and Contaminants (CEPARC), 97105-900, Santa Maria/RS, Brazil.
| | - Robson Dias Wouters
- UFSM - Federal University of Santa Maria, Chemistry Department, Center of Research and Analysis of Residues and Contaminants (CEPARC), 97105-900, Santa Maria/RS, Brazil.
| | - Paola Jennifer Babinski
- UFSM - Federal University of Santa Maria, Chemistry Department, Center of Research and Analysis of Residues and Contaminants (CEPARC), 97105-900, Santa Maria/RS, Brazil.
| | - Jessica Fernanda Hoffmann
- UNISINOS - University of Vale do Rio dos Sinos, Health School - Professional Master's in Food, Nutrition and Health, 93022-000, São Leopoldo/RS, Brazil
| | - Rochele Cassanta Rossi
- UNISINOS - University of Vale do Rio dos Sinos, Health School - Professional Master's in Food, Nutrition and Health, 93022-000, São Leopoldo/RS, Brazil
| | - Liliana Essi
- UFSM - Federal University of Santa Maria, Biology Department, 97105-900, Santa Maria/RS, Brazil
| | - Ionara Regina Pizzutti
- UFSM - Federal University of Santa Maria, Chemistry Department, Center of Research and Analysis of Residues and Contaminants (CEPARC), 97105-900, Santa Maria/RS, Brazil.
| |
Collapse
|
2
|
Sodkrathok P, Karuwan C, Kamsong W, Tuantranont A, Amatatongchai M. Patulin-imprinted origami 3D-ePAD based on graphene screen-printed electrode modified with Mn-ZnS quantum dot coated with a molecularly imprinted polymer. Talanta 2023; 262:124695. [PMID: 37229813 DOI: 10.1016/j.talanta.2023.124695] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/27/2023] [Accepted: 05/19/2023] [Indexed: 05/27/2023]
Abstract
We developed a novel, compact, three-dimensional electrochemical paper-based analytical device (3D-ePAD) for patulin (PT) determination. The selective and sensitive PT-imprinted Origami 3D-ePAD was constructed based on a graphene screen-printed electrode modified with manganese-zinc sulfide quantum dots coated with patulin imprinted polymer (Mn-ZnS QDs@PT-MIP/GSPE). The Mn-ZnS QDs@PT-MIP was synthesized using 2-oxindole as the template, methacrylic acid (MAA) as a monomer, N,N'-(1,2-dihydroxyethylene) bis (acrylamide) (DHEBA) as cross-linker and 2,2'-azobis (2-methylpropionitrile) (AIBN) as initiator, respectively. The Origami 3D-ePAD was designed with hydrophobic barrier layers formed on filter paper to provide three-dimensional circular reservoirs and assembled electrodes. The synthesized Mn-ZnS QDs@PT-MIP was quickly loaded on the electrode surface by mixing with graphene ink and then screen-printing on the paper. The PT-imprinted sensor provides the greatest enhancement in redox response and electrocatalytic activity, which we attributed to synergetic effects. This arose from an excellent electrocatalytic activity and good electrical conductivity of Mn-ZnS QDs@PT-MIP, which improved electron transfer between PT and the electrode surface. Under the optimized DPV conditions, a well-defined PT oxidation peak appears at +0.15 V (vs Ag/AgCl) using 0.1 M of phosphate buffer (pH 6.5) containing 5 mM K3Fe(CN)6 as the supporting electrolyte. Our developed PT imprinted Origami 3D-ePAD revealed excellent linear dynamic ranges of 0.001-25 μM, with a detection limit of 0.2 nM. Detection performance indicated that our Origami 3D-ePAD possesses outstanding detection performance from fruits and CRM in terms of high accuracy (%Error for inter-day is 1.11%) and precision (%RSD less than 4.1%). Therefore, the proposed method is well-suited as an alternative platform for ready-to-use sensors in food safety. The imprinted Origami 3D-ePAD is an excellent disposable device with a simple, cost-effective, and fast analysis, and it is ready to use for determining patulin in actual samples.
Collapse
Affiliation(s)
- Porntip Sodkrathok
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Chanpen Karuwan
- Graphene and Printed Electronics for Dual-Use Applications Research Division (GPERD), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Wichayaporn Kamsong
- Graphene and Printed Electronics for Dual-Use Applications Research Division (GPERD), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Adisorn Tuantranont
- Graphene and Printed Electronics for Dual-Use Applications Research Division (GPERD), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Maliwan Amatatongchai
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand.
| |
Collapse
|
3
|
Bacha SAS, Li Y, Nie J, Xu G, Han L, Farooq S. Comprehensive review on patulin and Alternaria toxins in fruit and derived products. FRONTIERS IN PLANT SCIENCE 2023; 14:1139757. [PMID: 37077634 PMCID: PMC10108681 DOI: 10.3389/fpls.2023.1139757] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/17/2023] [Indexed: 05/03/2023]
Abstract
Mycotoxins are toxic secondary metabolites produced by certain fungi, which can contaminate various food commodities, including fruits and their derived products. Patulin and Alternaria toxins are among the most commonly encountered mycotoxins in fruit and their derived products. In this review, the sources, toxicity, and regulations related to these mycotoxins, as well as their detection and mitigation strategies are widely discussed. Patulin is a mycotoxin produced mainly by the fungal genera Penicillium, Aspergillus, and Byssochlamys. Alternaria toxins, produced by fungi in the Alternaria genus, are another common group of mycotoxins found in fruits and fruit products. The most prevalent Alternaria toxins are alternariol (AOH) and alternariol monomethyl ether (AME). These mycotoxins are of concern due to their potential negative effects on human health. Ingesting fruits contaminated with these mycotoxins can cause acute and chronic health problems. Detection of patulin and Alternaria toxins in fruit and their derived products can be challenging due to their low concentrations and the complexity of the food matrices. Common analytical methods, good agricultural practices, and contamination monitoring of these mycotoxins are important for safe consumption of fruits and derived products. And Future research will continue to explore new methods for detecting and managing these mycotoxins, with the ultimate goal of ensuring the safety and quality of fruits and derived product supply.
Collapse
Affiliation(s)
- Syed Asim Shah Bacha
- Laboratory of Quality & Safety Risk Assessment for Fruit, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| | - Yinping Li
- Laboratory of Quality & Safety Risk Assessment for Fruit, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
- *Correspondence: Jiyun Nie, ; Yinping Li,
| | - Jiyun Nie
- College of Horticulture, Qingdao Agricultural University/Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, China
- *Correspondence: Jiyun Nie, ; Yinping Li,
| | - Guofeng Xu
- Laboratory of Quality & Safety Risk Assessment for Fruit, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| | - Lingxi Han
- College of Horticulture, Qingdao Agricultural University/Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, China
| | - Saqib Farooq
- Laboratory of Quality & Safety Risk Assessment for Fruit, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| |
Collapse
|
4
|
Cioates Negut C, Stefan-van Staden RI, van Staden J(KF. Minireview: Current Trends and Future Challenges for the Determination of Patulin in Food Products. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2083146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Catalina Cioates Negut
- Laboratory of Electrochemistry and PATLAB - Bucharest, National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania
| | - Raluca-Ioana Stefan-van Staden
- Laboratory of Electrochemistry and PATLAB - Bucharest, National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania
| | - Jacobus (Koos) Frederick van Staden
- Laboratory of Electrochemistry and PATLAB - Bucharest, National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania
| |
Collapse
|
5
|
Afzali Z, Mohadesi A, Ali Karimi M, Fathirad F. A highly selective and sensitive electrochemical sensor based on graphene oxide and molecularly imprinted polymer magnetic nanocomposite for patulin determination. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Dos Santos ID, Fontana MEZ, Klein B, Ribeiro SR, Stefanello A, Thewes FR, Schmidt SFP, Copetti MV, Brackmann A, Pizzutti IR, Wagner R. Fungal growth, patulin accumulation and volatile profile in 'Fuji Mishima' apples under controlled atmosphere and dynamic controlled atmosphere. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2021; 39:170-184. [PMID: 34702141 DOI: 10.1080/19440049.2021.1987533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The objective of this study was to evaluate fungal and patulin contamination, together with its correlation with the volatile compounds (VCs), in 'Fuji Mishima' apples (up to 25% decayed) under controlled atmosphere (CA) and dynamic controlled atmosphere with respiratory quotient (DCA-RQ) of 1.3 combined with different partial pressures of carbon dioxide (0.8, 1.2, 1.6 and 2.0 pCO2). Fruits were stored under the above conditions for 8 months at 0.5 °C plus 7 days shelf life at 20 °C. Toxigenic fungi and patulin accumulation were found in apples from all treatments. Penicillium expansum was the most prevalent species. For all storage conditions, patulin concentrations were above the maximum level allowed in Brazil (50 μg kg-1) with an exception of DCA-RQ1.3 + 0.8 kPa CO2. This condition, with lower pCO2, showed the lowest patulin accumulation, below the legal limit. The CA provided the highest patulin concentration (166 μg kg-1). It was observed that fungal growth could also contribute to changes in the volatile composition. Styrene and 3-methyl-1-butanol are considered P. expansum markers in some apple cultivars and were detected in the samples. However, it was not possible to identify volatile organic compounds (VOCs) that are biomarkers from P. expansum, because there were other fungi species present in all samples. In this study, styrene, n-decanoic acid, toluene, phenol and alpha-farnesene were the compounds that showed the most positive correlation with patulin accumulation. On the other hand, a negative correlation of patulin with acids has been shown, indicating that in treatments with a higher patulin concentration there were less acidic compounds.
Collapse
Affiliation(s)
- Ingrid D Dos Santos
- Department of Food Science and Technology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Marlos E Z Fontana
- Department of Chemistry, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, Brazil
| | - Bruna Klein
- Department of Food Science and Technology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Stephanie R Ribeiro
- Department of Food Science and Technology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Andrieli Stefanello
- Department of Food Science and Technology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Fabio R Thewes
- Plant Science Department, Postharvest Research Center, Federal University of Santa Maria, Santa Maria, Brazil
| | - Suele F P Schmidt
- Plant Science Department, Postharvest Research Center, Federal University of Santa Maria, Santa Maria, Brazil
| | - Marina V Copetti
- Department of Food Science and Technology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Auri Brackmann
- Plant Science Department, Postharvest Research Center, Federal University of Santa Maria, Santa Maria, Brazil
| | - Ionara R Pizzutti
- Department of Chemistry, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, Brazil
| | - Roger Wagner
- Department of Food Science and Technology, Federal University of Santa Maria, Santa Maria, Brazil
| |
Collapse
|
7
|
Dos Santos ID, Pizzutti IR, Dias JV, Fontana MEZ, Souza DM, Cardoso CD. Mycotoxins in wheat flour: occurrence and co-occurrence assessment in samples from Southern Brazil. FOOD ADDITIVES & CONTAMINANTS PART B-SURVEILLANCE 2021; 14:151-161. [PMID: 34114946 DOI: 10.1080/19393210.2021.1920053] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The goal of this survey was to evaluate the presence and concentration as well as the co-occurrence of legislated and non-legislated mycotoxins in wheat flour samples from Brazil. A total of 200 wheat flour samples were analysed by a validated multi-mycotoxins method. DON was the mycotoxin with the highest occurrence, being present in 100% of the analysed samples and showing contamination in both years and regions (53-2905 μg kg-1). ZEN was detected in 51% (<LOQ-50 μg kg-1) of the samples, while T-2 (not legislated in Brazil) was detected in 13.5% (<LOQ-1506 μg kg-1) of all samples. Regarding co-occurrence, all samples were contaminated with two to three mycotoxins.
Collapse
Affiliation(s)
- Ingrid Duarte Dos Santos
- Department of Technology and Food Science, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - Ionara Regina Pizzutti
- Department of Chemistry, Center of Natural and Exact Sciences, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - Jonatan Vinicius Dias
- Wageningen Food Safety Research (WFSR), Wageningen University and Research, National Reference Laboratory for Pesticide Residues in Food and Feed, Wageningen
| | - Marlos Eduardo Zorzella Fontana
- Department of Chemistry, Center of Natural and Exact Sciences, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - Darliana Mello Souza
- Department of Chemistry, Center of Natural and Exact Sciences, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - Carmem Dickow Cardoso
- Department of Chemistry, Center of Natural and Exact Sciences, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| |
Collapse
|
8
|
Bochetto A, Merino N, Kaplan M, Guiñez M, Cerutti S. Design of a combined microextraction and back-extraction technique for the analysis of mycotoxins in amaranth seeds. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Sohrabi H, Arbabzadeh O, Khaaki P, Khataee A, Majidi MR, Orooji Y. Patulin and Trichothecene: characteristics, occurrence, toxic effects and detection capabilities via clinical, analytical and nanostructured electrochemical sensing/biosensing assays in foodstuffs. Crit Rev Food Sci Nutr 2021; 62:5540-5568. [PMID: 33624529 DOI: 10.1080/10408398.2021.1887077] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Patulin and Trichothecene as the main groups of mycotoxins in significant quantities can cause health risks from allergic reactions to death on both humans and animals. Accordingly, rapid and highly sensitive determination of these toxics agents is of great importance. This review starts with a comprehensive outlook regarding the characteristics, occurrence and toxic effects of Patulin and Trichothecene. In the following, numerous clinical and analytical approaches have been extensively discussed. The main emphasis of this review is placed on the utilization of novel nanomaterial based electrochemical sensing/biosensing tools for highly sensitive determination of Patulin and Trichothecene. Furthermore, a detailed and comprehensive comparison has been performed between clinical, analytical and sensing methods. Subsequently, the nanomaterial based electrochemical sensing platforms have been approved as reliable tools for on-site analysis of Patulin and Trichothecene in food processing and manufacturing industries. Different nanomaterials in improving the performance of detecting assays were investigated and have various benefits toward clinical and analytical methods. This paper would address the limitations in the current developments as well as the future challenges involved in the successful construction of sensing approaches with the functionalized nanomaterials and also allow exploring into core-research works regarding this area.
Collapse
Affiliation(s)
- Hessamaddin Sohrabi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Omid Arbabzadeh
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, Iran
| | - Pegah Khaaki
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.,Рeoples' Friendship University of Russia (RUDN University), Moscow, Russian Federation
| | - Mir Reza Majidi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Yasin Orooji
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
10
|
Development and validation of a liquid chromatographic tandem mass spectrometric method for the analysis of patulin in apple and apple juice. Mycotoxin Res 2021; 37:119-127. [PMID: 33619699 DOI: 10.1007/s12550-021-00422-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 01/29/2021] [Accepted: 02/04/2021] [Indexed: 10/22/2022]
Abstract
This study reports a robust and sensitive method for rapid testing of patulin in apple and apple juice. The method involved extraction of homogenised samples (10 g) with ethyl acetate (10 mL) and clean up by dispersive-solid phase extraction using primary secondary amine (25 mg/mL). Prior to the LC-MS/MS analysis, the cleaned extract was reconstituted in methanol/water (2:8). The optimised LC-MS condition provided a symmetric peak of patulin within a short LC-runtime of 5 min. The recoveries at the limit of quantification (0.005 mg/kg) and higher levels were satisfactory (> 80%), with the precision-RSDr (< 11%). In an inter-laboratory comparison study involving 13 accredited laboratories, the reproducibility-RSDR and HorRat values ranged between 4.80 and 6.08% and between 0.18 and 0.23 respectively, indicating a satisfactory method-precision. The z-scores of the participating laboratories were within ± 2. When the method was applied to incurred samples, the contamination range was 0.008-0.225 mg/kg and 0.018-0.034 mg/kg for apple and juice respectively, demonstrating a satisfactory performance in terms of precision. Based on the solvent standard, matrix-matched standard and standard-addition approaches, the calibration graphs provided similar quantitative performances. Because of its reliability, robustness and time-effectiveness, the method can be recommended for regulatory testing purposes.
Collapse
|
11
|
Current role of modern chromatography and mass spectrometry in the analysis of mycotoxins in food. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116156] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
12
|
Ouakhssase A, Ait Addi E. Mycotoxins in food: a review on liquid chromatographic methods coupled to mass spectrometry and their experimental designs. Crit Rev Food Sci Nutr 2020; 62:2606-2626. [PMID: 33287555 DOI: 10.1080/10408398.2020.1856034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The development of a multi-mycotoxins method using LC-MS/MS is necessary and it is clear that the development of such method involves many compromises in the choice of the different parameters. This review summarizes applications using conventional experimental designs and some recent studies using response surface methodology (RSM) as a mathematical modeling tool for the optimization of extraction procedures. The authors also discuss pros and cons of the different procedures. To our knowledge, it is the first review on experimental design for the development of multi-mycotoxin methods. This review could be useful in the development and optimization of LC-MS/MS methods with the aim of describing experimental design and variables (factors) that are likely to affect sensitivity and specificity.
Collapse
Affiliation(s)
- Abdallah Ouakhssase
- Research group: Génie des procédés et Ingénierie Chimique, Ecole Supérieure de Technologie d'Agadir, Université Ibn Zohr, Agadir, Morocco
| | - Elhabib Ait Addi
- Research group: Génie des procédés et Ingénierie Chimique, Ecole Supérieure de Technologie d'Agadir, Université Ibn Zohr, Agadir, Morocco
| |
Collapse
|
13
|
|