1
|
Sathish Kumar P, Shobana B, Prakash P. Light harvesting enhancement through band structure engineering in graphite carbon nitride / polydopamine nanocomposite photocatalyst: Addressing persistent organophosphorus pesticide pollution in water systems. CHEMOSPHERE 2024; 354:141708. [PMID: 38521104 DOI: 10.1016/j.chemosphere.2024.141708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/03/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024]
Abstract
Organophosphorus pesticides, particularly profenofos (PF), pose a significant threat to the food supply and human health due to their persistence, toxicity, and resistance to natural breakdown processes. An urgent need exists for an environmentally friendly solution, and photocatalysis emerges as a practical, cost-effective option. However, challenges like poor light responsiveness and difficulties in material separation and reusability persist. To address these issues, we developed a nanocomposite consisting of graphite carbon nitride (g-C3N4) doped with polydopamine (pDA) through a hydrothermal synthesis method. This innovative nanocomposite was employed as a photocatalyst to degrade PF. Various analytical techniques, including UV-DRS, FT-IR, XRD, HR-TEM, and EDAX, were utilized to characterize the synthesized nanocomposite. The strategically modulated band gaps of the nanocomposite enable efficient absorption of UV light, facilitating the robust photocatalytic degradation of PF (96.4%). Our study explored photodegradation using different g-C3N4/pDA catalyst dosages, varied PF concentrations, and pH levels (3, 5, 9, and 11) under UV light. Our findings promise applications in wastewater management, offering an efficient catalyst for PF degradation. This marks a significant stride in addressing challenges related to pesticide pollution in the environment.
Collapse
Affiliation(s)
- Ponnaiah Sathish Kumar
- PG & Research Department of Chemistry, Thiagarajar College, Madurai-09, Affiliated to Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Babu Shobana
- PG & Research Department of Chemistry, Thiagarajar College, Madurai-09, Affiliated to Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Periakaruppan Prakash
- PG & Research Department of Chemistry, Thiagarajar College, Madurai-09, Affiliated to Madurai Kamaraj University, Madurai, Tamil Nadu, India.
| |
Collapse
|
2
|
Kori AH, Jagirani MS, Soylak M. Graphene-Based Nanomaterials: A Sustainable Material for Solid-Phase Microextraction (SPME) for Environmental Applications. ANAL LETT 2023. [DOI: 10.1080/00032719.2023.2173221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Abdul Hameed Kori
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkey
- National Center of Excellence in Analytical Chemistry, University of Sindh, Sindh, Pakistan
| | - Muhammad Saqaf Jagirani
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkey
- National Center of Excellence in Analytical Chemistry, University of Sindh, Sindh, Pakistan
| | - Mustafa Soylak
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkey
- Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkey
- Turkish Academy of Sciences (TUBA), Cankaya, Ankara, Turkey
| |
Collapse
|
3
|
Ultrasound assisted dispersive solid-phase extraction coupled with high-performance liquid chromatography-diode array detector for determination of caffeine and carbamazepine in environmental samples using exfoliated graphite/chitosan hydrogel. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02328-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Colorimetric and fluorescent probes for the rapid detection of profenofos in farmland system. Food Chem 2022; 393:133321. [PMID: 35653988 DOI: 10.1016/j.foodchem.2022.133321] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/14/2022] [Accepted: 05/24/2022] [Indexed: 11/21/2022]
Abstract
Colorimetric and fluorescent sensors were developed for the detection of profenofos. The colorimetric assay relied on the aggregation of cysteine modified gold nanoparticles (Au-cys) composite caused by the hydrogen bond and Au-S bond between profenofos and Au-cys. The further addition of S, N-doped carbon quantum dots (CDs) (fluorescence quantum yield up to 98%) into the Au-cys system depended on the change of fluorescence intensity of Au-cys-CDs owing to the inner filter effect between Au-cys and CDs. Under the optimal conditions, the sensor exhibits good linearity within 0.2-1.2 mg L-1 and 20-320 μg L-1, and limit of detection of 21.7 μg L-1 and 5.5 μg L-1 in colorimetry and fluorescence mode, respectively. The developed sensor did not only possess favorable selectivity and sensitivity, but also feasibility of usage in the actual detection of profenofos in farmland system samples.
Collapse
|
5
|
Tamandani M, Hashemi H. Central Composite Design (CCD) and Box-Behnken Design (BBD) for the Optimization of a Molecularly Imprinted Polymer (MIP) Based Pipette Tip Micro-Solid Phase Extraction (SPE) for the Spectrophotometric Determination of Chlorpyrifos in Food and Juice. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2056192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Mahsa Tamandani
- Department of Marine Chemistry, Faculty of Marine Science, Chabahar Maritime University, Chabahar, Iran
| | - Hossain Hashemi
- Department of Marine Chemistry, Faculty of Marine Science, Chabahar Maritime University, Chabahar, Iran
| |
Collapse
|
6
|
Tamandani M, Hashemi SH, Kaykhaii M, Jamali Keikha A, Nasiriyan A. Determination of profenofos in seawater and foodstuff samples after its molecularly imprinted polymer pipette-tip micro solid phase extraction optimized by response surface methodology. BMC Chem 2022; 16:12. [PMID: 35292077 PMCID: PMC8922791 DOI: 10.1186/s13065-022-00807-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 03/07/2022] [Indexed: 11/20/2022] Open
Abstract
Background In this research, a molecularly imprinted polymer (MIP) was synthesized and employed as a sorbent for pipette-tip micro solid phase extraction of profenofos insecticide in seawater, rice, and fish samples. The instrument employed for quantitation was spectrophotometry. Results Various factors affecting the microextraction protocol, including type and volume of the elution solvent, weight of MIP, pH and volume of sample solution, and number of cycles of loading and desorption were considered and optimized using one-factor-at-a-time, central composite design and Box-Behnken design. Factors optimized at: pH 4.0, amount of sorbent 2.5 mg, volume of methanol:acetic (9:1) acid as eluent 250 µL, both the number of extraction and elution cycles 5, and volume of sample 8.0 mL. At optimized conditions, an enrichment factor of 31 was achieved and the linearity range of the method was between 1.0 and 1000.0 µg/L. A good detection limit of 0.33 µg/L with a reproducibility better than 5.6% (as RSD) was observed. Conclusion The technique showed good analytical features for determination of profenofos in seawater, rice, and fish samples. Simplicity of operation of spectrophotometry and lack of using expensive HPLC grade solvents are other points of strengths of this method. The total analysis time was about 10 min, which is far less than techniques such as HPLC. Comparison between optimization with central composite design and Box–Behnken design showed better performance of the former. Supplementary Information The online version contains supplementary material available at 10.1186/s13065-022-00807-z.
Collapse
Affiliation(s)
- Mahsa Tamandani
- Department of Marine Chemistry, Faculty of Marine Science, Chabahar Maritime University, Chabahar, Iran
| | - Sayyed Hossein Hashemi
- Department of Marine Chemistry, Faculty of Marine Science, Chabahar Maritime University, Chabahar, Iran
| | - Massoud Kaykhaii
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233, Gdansk, Poland.
| | - Ahmad Jamali Keikha
- Department of Mechanical Engineering, Faculty of Marine Engineering, Chabahar Maritime University, Chabahar, Iran
| | - Ali Nasiriyan
- Mechanical Engineering Department, Faculty of Engineering, University of Sistan and Baluchestan, Zahedan, Iran
| |
Collapse
|
7
|
Bagheri AR, Aramesh N, Gong Z, Cerda V, Lee HK. Two-dimensional materials as a platform in extraction methods: A review. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
8
|
Serbest H, Bakırdere S, Keyf S. Determination of gold at trace levels in gold plating wastewater samples by vortex-assisted amidosulfonic acid-coated magnetic nanoparticle-based solid-phase microextraction method prior to slotted quartz tube flame atomic absorption spectrometric measurements. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02089-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
9
|
Pouramjad AA, Khojasteh H, Amiri O, Khoobi A, Salavati-Niasari M. Preparation of magnetic Co3O4/TiO2 nanocomposite as solid-phase microextraction fiber coupled with chromatography for detection of aromatic compounds in environmental samples. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
10
|
Erarpat S, Bodur S, Bakırdere S. Nanoparticles Based Extraction Strategies for Accurate and Sensitive Determination of Different Pesticides. Crit Rev Anal Chem 2021; 52:1370-1385. [PMID: 33576246 DOI: 10.1080/10408347.2021.1876552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Sample preparation methods have become indispensable steps in analytical measurements not only to lower the detection limit but also to eliminate the matrix effect although more sophisticated instruments are being commonly used in routine analyses. Solid phase extraction (SPE) is one of the main extraction/preconcentration methods used to extract and purify target analytes along with simple and rapid procedures but some limitations have led to seek for an easy, sensitive and fast extraction methods with analyte-selective sorbents. Nanoparticles with different modifications have been used as spotlight to enhance extraction efficiency of target pesticides from complicated matrices. Carbon-based, metal and metal oxides, silica and polymer-based nanoparticles have been explored as promising sorbents for pesticide extraction. In this review, different types of nanoparticles used in the preconcentration of pesticides in various samples are outlined and examined. Latest studies in the literature are discussed in terms of their instrumental detection, sample matrix and limit of detection values. Novel strategies and future directions of nanoparticles used in the extraction and preconcentration of pesticides are also discussed.
Collapse
Affiliation(s)
- Sezin Erarpat
- Department of Chemistry, Faculty of Art and Science, Yıldız Technical University, İstanbul, Turkey
| | - Süleyman Bodur
- Department of Chemistry, Faculty of Art and Science, Yıldız Technical University, İstanbul, Turkey
| | - Sezgin Bakırdere
- Department of Chemistry, Faculty of Art and Science, Yıldız Technical University, İstanbul, Turkey.,Turkish Academy of Sciences (TÜBA), Ankara, Turkey
| |
Collapse
|
11
|
Jagirani MS, Soylak M. Review: Microextraction Technique Based New Trends in Food Analysis. Crit Rev Anal Chem 2020; 52:968-999. [PMID: 33253048 DOI: 10.1080/10408347.2020.1846491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Food chemistry is the study and classification of the quality and origin of foods. The identification of definite biomarkers and the determination of residue contaminants such as toxins, pesticides, metals, human and veterinary drugs, which are a very common source of food-borne diseases. The food analysis is continuously demanding the improvement of more robust, sensitive, highly efficient, and economically beneficial analytical approaches to promise the traceability, safety, and quality of foods in the acquiescence with the consumers and legislation demands. The traditional methods have been used at the starting of the 20th century based on wet chemical methods. Now it existing the powerful analytical techniques used in food analysis and safety. This development has led to substantial enhancements in the analytical accuracy, precision, sensitivity, selectivity, thereby mounting the applied range of food applications. In the present decade, microextraction (micro-scale extraction) pays more attention due to its futures such as low consumption of solvent and sample, throughput analysis easy to operate, greener, robotics, and miniaturization, different adsorbents have been used in the microextraction process with unique nature recognized with wide range applications.
Collapse
Affiliation(s)
- Muhammed Saqaf Jagirani
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkey.,National Center of Excellence in Analytical Chemistry, University of Sindh, Sindh, Pakistan
| | - Mustafa Soylak
- Faculty of Sciences, Department of Chemistry, Erciyes University, Kayseri, Turkey.,Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkey
| |
Collapse
|
12
|
Bodur S, Erarpat S, Balçık U, Bakırdere S. A rapid, sensitive and accurate determination of cobalamin with double monitoring system: HPLC-UV and HPLC-ICP-OES. Food Chem 2020; 340:127945. [PMID: 32889200 DOI: 10.1016/j.foodchem.2020.127945] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/16/2020] [Accepted: 08/24/2020] [Indexed: 11/15/2022]
Abstract
This study proposed a novel analytical method for the separation and determination of cobalamin and cobalt in kefir samples by high performance liquid chromatography-inductively coupled plasma-optical emission spectrometry (HPLC-ICP-OES) in addition to determination of cobalamin in HPLC system. Chromatographic parameters such as column type, buffer solution, mobile phase flow rate and sample injection volume were individually studied and optimized. In addition, cobalamin was simultaneously determined by high performance liquid chromatography with ultraviolet detection (HPLC-UV). LOD values of cobalt in cobalamin and cobalt for HPLC-ICP-OES system were calculated as 0.07 mg/kg (as Co) and 0.06 mg/kg, respectively. Recovery studies were conducted to evaluate the accuracy/applicability of the method. Recovery results for cobalt in cobalamin and cobalt detected by the HPLC-ICP-OES system were calculated in the range of 87.4-100.1 and 98.8-115.0%, respectively while recovery results for cobalamin were found to be between 89.2 and 98.3% for HPLC-UV system.
Collapse
Affiliation(s)
- Süleyman Bodur
- Yıldız Technical University, Faculty of Art and Science, Department of Chemistry, 34220 Davutpasa, Esenler, İstanbul, Turkey
| | - Sezin Erarpat
- Yıldız Technical University, Faculty of Art and Science, Department of Chemistry, 34220 Davutpasa, Esenler, İstanbul, Turkey
| | - Utku Balçık
- Yıldız Technical University, Faculty of Art and Science, Department of Chemistry, 34220 Davutpasa, Esenler, İstanbul, Turkey
| | - Sezgin Bakırdere
- Yıldız Technical University, Faculty of Art and Science, Department of Chemistry, 34220 Davutpasa, Esenler, İstanbul, Turkey; Turkish Academy of Sciences (TÜBA), Piyade Sokak No: 27, Çankaya, 06690 Ankara, Turkey.
| |
Collapse
|