1
|
Chen T, Xue Y, Li C, Zhao Y, Huang H, Feng Y, Xiang H, Chen S. Identification of Key Volatile Compounds in Tilapia during Air Frying Process by Quantitative Gas Chromatography-Ion Mobility Spectrometry. Molecules 2024; 29:4516. [PMID: 39339511 PMCID: PMC11434510 DOI: 10.3390/molecules29184516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Air frying as a new roasting technology has potential for roasted fish production. In this study, the changes in volatile compounds (VCs) during air frying of tilapia were studied by quantitative gas chromatography-ion mobility spectrometry, followed by the identification of key VCs based on their odor activity value (OAV). There were 34 verified VCs, of which 16 VCs were identified as the key VCs with OAV ≥ 1. Most of the VCs were improved by air frying and peaked at 20 min. During the air frying, the total sulfhydryl content markedly decreased, while the protein carbonyl and MDA content significantly increased, suggesting the enhancement in the oxidation of lipids and proteins. The correlation network among the chemical properties and key VCs was constructed. The change in total sulfhydryl, protein carbonyl, and MDA showed significant correlation with most of the key VCs, especially 2-methyl butanal, ethyl acetate, and propanal. The results indicated that the oxidation of lipids and proteins contributed the most to the flavor improvement in air-fried tilapia. This study provides a crucial reference for the volatile flavor improvement and pre-cooked product development of roasted tilapia.
Collapse
Affiliation(s)
- Tianyu Chen
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Key Lab of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, National Research and Development Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Yong Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Chunsheng Li
- Key Lab of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, National Research and Development Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Yongqiang Zhao
- Key Lab of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, National Research and Development Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Hui Huang
- Key Lab of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, National Research and Development Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Yang Feng
- Key Lab of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, National Research and Development Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Huan Xiang
- Key Lab of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, National Research and Development Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Shengjun Chen
- Key Lab of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, National Research and Development Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| |
Collapse
|
2
|
Mozzon M, Foligni R, Mannozzi C, Galdenzi F, Laurita R, Tappi S, Dalla Rosa M. Effect of plasma-activated water (PAW) soaking on the lipid oxidation of sardine (Sardina pilchardus) fillets. Food Res Int 2024; 176:113823. [PMID: 38163686 DOI: 10.1016/j.foodres.2023.113823] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/25/2023] [Accepted: 12/02/2023] [Indexed: 01/03/2024]
Abstract
The efficacy of plasma-activated water (PAW) as a chemical-free and environmentally friendly preservative has been documented for a variety of foods, but the onset of lipid oxidation induced by plasma-reactive species has been less extensively studied. In this work, global indices (peroxide value, UV specific absorbance) and direct analytical determinations of volatile and non-volatile oxidation products were performed on sardine lipids extracted from fish fillets immersed in PAW (treatments) and distilled water (controls) for 10-30 min. Evidence of PAW-induced lipid oxidation was provided by higher UV specific absorbances and higher levels of C5-C9 secondary volatile oxidation products in the treated samples. However, the degree of fatty acid oxidation was not sufficient to cause a significant reduction in nutritionally valuable eicosapentaenoic acid and docosahexaenoic acid. Twelve cholesterol oxidation products (COPs) were identified in the sardine lipids, but no significant differences in total COPs content were found between PAW processed and control samples.
Collapse
Affiliation(s)
- Massimo Mozzon
- Department of Agricultural, Food and Environmental Sciences (D3A), Università Politecnica delle Marche, Via Brecce Bianche 10, 60131 Ancona, Italy.
| | - Roberta Foligni
- Department of Agricultural, Food and Environmental Sciences (D3A), Università Politecnica delle Marche, Via Brecce Bianche 10, 60131 Ancona, Italy.
| | - Cinzia Mannozzi
- Scuola di Scienze del Farmaco e dei Prodotti della Salute, Università degli Studi di Camerino, Via Madonna delle Carceri, 9, 62032 Camerino, MC, Italy.
| | - Filippo Galdenzi
- Department of Agricultural, Food and Environmental Sciences (D3A), Università Politecnica delle Marche, Via Brecce Bianche 10, 60131 Ancona, Italy.
| | - Romolo Laurita
- Department of Industrial Engineering (DIN), University of Bologna, Via Terracini 24, 40131 Bologna, Italy; Interdepartmental Centre for Industrial Research Health Sciences and Technologies, University of Bologna, Via Zamboni 33, 40136 Bologna, Italy.
| | - Silvia Tappi
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; Interdepartmental Centre for Industrial Agrofood Research (CIRI Agrofood), University of Bologna, Via Quinto Bucci 336, 47521 Cesena, Italy.
| | - Marco Dalla Rosa
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; Interdepartmental Centre for Industrial Agrofood Research (CIRI Agrofood), University of Bologna, Via Quinto Bucci 336, 47521 Cesena, Italy.
| |
Collapse
|
3
|
Gouvêa FDJ, de Oliveira VS, Mariano BJ, Takenaka NAR, Gamallo OD, da Silva Ferreira M, Saldanha T. Natural antioxidants as strategy to minimize the presence of lipid oxidation products in canned fish: Research progress, current trends and future perspectives. Food Res Int 2023; 173:113314. [PMID: 37803625 DOI: 10.1016/j.foodres.2023.113314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 10/08/2023]
Abstract
Canned fish is one of the most popular forms of fish consumption due to its high nutritional value, availability, and practicality. However, canning may induce lipid oxidation. Thus, this study provides in-depth information on the impact of high temperatures applied during canning on fish lipids. The thermo-oxidation is evidenced, for example, by the high levels of both primary and secondary oxidation products determined in fish after canning, as well as the presence of harmful compounds such as cholesterol oxides. Given the role of lipid oxidation in canned fish, this study also presents a comprehensive review on using natural antioxidants to control it. The antioxidant properties of common liquid mediums (vegetable oils and sauces) are highlighted. Moreover, adding algae extracts, spices, and condiments to the liquid medium to enhance its antioxidant potential has been considered, while the exploitation of by-products and wastes from the food industry also emerges as a suitable strategy. Besides the promising results, these practices may promote positive impacts on other quality parameters (e.g. water and oil holding capacities, texture, microbiological growth). However, further studies are needed, including research on aspects related to safety, effective concentrations and application methods, without ignoring consumers' sensory acceptance.
Collapse
Affiliation(s)
- Fernanda de Jorge Gouvêa
- Department of Food Technology, Institute of Technology, Federal Rural University of Rio de Janeiro, Rodovia Br 465, Seropédica, RJ 23890-000, Brazil
| | - Vanessa Sales de Oliveira
- Department of Food Technology, Institute of Technology, Federal Rural University of Rio de Janeiro, Rodovia Br 465, Seropédica, RJ 23890-000, Brazil
| | - Barbara Jardim Mariano
- Department of Food Technology, Institute of Technology, Federal Rural University of Rio de Janeiro, Rodovia Br 465, Seropédica, RJ 23890-000, Brazil
| | - Nayara Ayumi Rocha Takenaka
- Department of Food Technology, Institute of Technology, Federal Rural University of Rio de Janeiro, Rodovia Br 465, Seropédica, RJ 23890-000, Brazil
| | - Ormindo Domingues Gamallo
- Department of Food Technology, Institute of Technology, Federal Rural University of Rio de Janeiro, Rodovia Br 465, Seropédica, RJ 23890-000, Brazil
| | - Micheli da Silva Ferreira
- Department of Food Technology, Faculty of Veterinary, Federal Fluminense University, UFF, Niterói, RJ, Brazil
| | - Tatiana Saldanha
- Department of Food Technology, Institute of Technology, Federal Rural University of Rio de Janeiro, Rodovia Br 465, Seropédica, RJ 23890-000, Brazil.
| |
Collapse
|
4
|
Barreira CFT, de Oliveira VS, Chávez DWH, Gamallo OD, Castro RN, Júnior PCD, Sawaya ACHF, da Silva Ferreira M, Sampaio GR, Torres EAFDS, Saldanha T. The impacts of pink pepper (Schinus terebinthifolius Raddi) on fatty acids and cholesterol oxides formation in canned sardines during thermal processing. Food Chem 2023; 403:134347. [DOI: 10.1016/j.foodchem.2022.134347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 09/08/2022] [Accepted: 09/17/2022] [Indexed: 12/01/2022]
|
5
|
Phenolic composition and insights into the use of pink pepper (Schinus terebentifolius Raddi) fruit against lipid oxidation in food systems. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
6
|
Parsley (Petroselinum crispum Mill.): A source of bioactive compounds as a domestic strategy to minimize cholesterol oxidation during the thermal preparation of omelets. Food Res Int 2022; 156:111199. [DOI: 10.1016/j.foodres.2022.111199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/25/2022] [Accepted: 03/27/2022] [Indexed: 12/23/2022]
|
7
|
Goh KM, Low SS, Nyam KL. The changes of chemical composition of microencapsulated roselle (
Hibiscus sabdariffa
L.) seed oil by co‐extrusion during accelerated storage. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kok Ming Goh
- Department of Food Science and Nutrition Faculty of Applied Sciences UCSI University Kuala Lumpur 56000 Malaysia
| | - Soo San Low
- Department of Food Science and Nutrition Faculty of Applied Sciences UCSI University Kuala Lumpur 56000 Malaysia
| | - Kar Lin Nyam
- Department of Food Science and Nutrition Faculty of Applied Sciences UCSI University Kuala Lumpur 56000 Malaysia
| |
Collapse
|