1
|
Muñoz-Jurado A, Escribano BM. Presence of melatonin in foods of daily consumption: The benefit of this hormone for health. Food Chem 2024; 458:140172. [PMID: 38943958 DOI: 10.1016/j.foodchem.2024.140172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/01/2024]
Abstract
Melatonin (MLT) is a hormone that exists in all living organisms, including bacteria, yeast, fungi, animals, and plants, many of which are ingested daily in the diet. However, the exact concentrations of melatonin in each of the foods and the effect on health of the intake of foods rich in MLT are not known. Therefore, the aim of this review was to gather the available information on the melatonin content of different foods and to evaluate the effect that this hormone has on different pathologies. The amount of MLT may vary depending on the variety, origin, heat treatment, processing, and analysis technique, among other factors. Dietary interventions with foods rich in MLT report health benefits, but there is no evidence that hormone is partially responsible for the clinical improvement. Therefore, it is necessary to evaluate the MLT content in more foods, as well as the effect that cooking/processing has on the amount of MLT, to estimate its total intake in a typical diet and better explore its potential impact on the health.
Collapse
Affiliation(s)
- Ana Muñoz-Jurado
- Department of Cell Biology, Physiology and Immunology, Faculty of Veterinary Medicine, University of Cordoba, Spain.; Maimonides Institute for Research in Biomedicine of Cordoba, (IMIBIC), Cordoba, Spain..
| | - Begoña M Escribano
- Department of Cell Biology, Physiology and Immunology, Faculty of Veterinary Medicine, University of Cordoba, Spain.; Maimonides Institute for Research in Biomedicine of Cordoba, (IMIBIC), Cordoba, Spain..
| |
Collapse
|
2
|
Blank-Landeshammer B, Schwarzinger B, Arnaut V, Gramatte T, Drotarova I, Feichtinger M, Röhrl C, Weghuber J. Targeted and untargeted screening of a plant extract library established from raw materials originating from Upper Austria. Food Chem 2024; 451:139419. [PMID: 38677134 DOI: 10.1016/j.foodchem.2024.139419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024]
Abstract
Plant extracts rich in phytochemicals are known for their health benefits. Plant extract library from edible plants obtained from the region of Upper Austria was prepared. Food grade extraction procedures were applied, and relevant physico-chemical parameters measured. A focus on polyphenolic compounds revealed a significant correlation between the total phenolic content (measured by a colorimetric assay) and the cumulated concentration of main individual polyphenols (measured by HPLC-DAD), demonstrating the comparability of these parameters. Targeted screening was performed by HPLC-FLD and -MS for the presence of phytomelatonin. 20 extracts were identified with concentrations of up to 1.4 µg/mL of this phytochemical, which attracts much attention from the food industry. Finally, chemometric methods were employed to cluster extracts based on their phenolic compound profile. This approach allows for an informed preselection of extracts without the need for comprehensive chemical analysis.
Collapse
Affiliation(s)
- Bernhard Blank-Landeshammer
- University of Applied Sciences Upper Austria, Center of Excellence Food Technology and Nutrition, Stelzhamerstraße 23, Wels 4600, Austria; FFoQSI GmbH - Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1D, Tulln 3430, Austria.
| | - Bettina Schwarzinger
- University of Applied Sciences Upper Austria, Center of Excellence Food Technology and Nutrition, Stelzhamerstraße 23, Wels 4600, Austria; FFoQSI GmbH - Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1D, Tulln 3430, Austria.
| | - Verena Arnaut
- University of Applied Sciences Upper Austria, Center of Excellence Food Technology and Nutrition, Stelzhamerstraße 23, Wels 4600, Austria.
| | - Theresa Gramatte
- University of Applied Sciences Upper Austria, Center of Excellence Food Technology and Nutrition, Stelzhamerstraße 23, Wels 4600, Austria.
| | - Ivana Drotarova
- University of Applied Sciences Upper Austria, Center of Excellence Food Technology and Nutrition, Stelzhamerstraße 23, Wels 4600, Austria.
| | - Michaela Feichtinger
- University of Applied Sciences Upper Austria, Center of Excellence Food Technology and Nutrition, Stelzhamerstraße 23, Wels 4600, Austria.
| | - Clemens Röhrl
- University of Applied Sciences Upper Austria, Center of Excellence Food Technology and Nutrition, Stelzhamerstraße 23, Wels 4600, Austria.
| | - Julian Weghuber
- University of Applied Sciences Upper Austria, Center of Excellence Food Technology and Nutrition, Stelzhamerstraße 23, Wels 4600, Austria; FFoQSI GmbH - Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1D, Tulln 3430, Austria.
| |
Collapse
|
3
|
Borisenkov MF, Popov SV, Smirnov VV, Martinson EA, Solovieva SV, Danilova LA, Gubin DG. The Association between Melatonin-Containing Foods Consumption and Students' Sleep-Wake Rhythm, Psychoemotional, and Anthropometric Characteristics: A Semi-Quantitative Analysis and Hypothetical Application. Nutrients 2023; 15:3302. [PMID: 37571240 PMCID: PMC10420797 DOI: 10.3390/nu15153302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Food is an important source of melatonin (MT), which belongs to a group known as chronobiotics, a class of substances that affect the circadian system. Currently, no studies have been conducted on how the consumption of foods containing MT (FMT) is associated with indicators characterizing the human circadian system. In this study, we tested the hypothesis that FMT consumption is associated with chronotype and social jetlag. A total of 1277 schoolchildren and university students aged M (SD) 19.9 (4.1) years (range: 16-25 years; girls: 72.8%) participated in a cross-sectional study. Each participant completed an online questionnaire with their personal data (sex, age, height, weight, waist circumference, and academic performance) and a sequence of tests to assess their sleep-wake rhythm (the Munich Chronotype Questionnaire), sleep quality (the Pittsburgh Sleep Quality Index), and depression level (the Zung Self-Rating Depression Scale). Study participants also completed a modified food frequency questionnaire that only included foods containing MT (FMT). They were asked how many foods containing MT (FMT) they had eaten for dinner, constituting their daily serving, in the past month. The consumption of foods containing MT (FMT) during the day (FMTday) and at dinner (FMTdinner) was assessed using this test. Multiple regression analyses were performed to assess the association between the studied indicators. We found that higher FMTday values were associated with early chronotype (β = -0.09) and less social jetlag (β = -0.07), better sleep quality (β = -0.06) and lower levels of depression (β = -0.11), as well as central adiposity (β = -0.08). Higher FMTdinner values were associated with a lower risk of central adiposity (β = -0.08). In conclusion, the data obtained confirm the hypothesis that the consumption of foods containing MT (FMT) is associated with chronotype and social jetlag in adolescents and young adults.
Collapse
Affiliation(s)
- Mikhail F. Borisenkov
- Department of Molecular Immunology and Biotechnology, Institute of Physiology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, Syktyvkar 167982, Russia; (S.V.P.); (V.V.S.)
| | - Sergey V. Popov
- Department of Molecular Immunology and Biotechnology, Institute of Physiology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, Syktyvkar 167982, Russia; (S.V.P.); (V.V.S.)
| | - Vasily V. Smirnov
- Department of Molecular Immunology and Biotechnology, Institute of Physiology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences, Syktyvkar 167982, Russia; (S.V.P.); (V.V.S.)
| | | | - Svetlana V. Solovieva
- Department of Biology, Tyumen Medical University, Tyumen 625023, Russia; (S.V.S.); (L.A.D.)
| | - Lina A. Danilova
- Department of Biology, Tyumen Medical University, Tyumen 625023, Russia; (S.V.S.); (L.A.D.)
| | - Denis G. Gubin
- Department of Biology, Tyumen Medical University, Tyumen 625023, Russia; (S.V.S.); (L.A.D.)
- Laboratory for Chronobiology and Chronomedicine, Research Institute of Biomedicine and Biomedical Technologies, Tyumen Medical University, Tyumen 625023, Russia
- Tyumen Cardiology Research Centre, Tomsk National Research Medical Center, Russian Academy of Science, Tyumen 119991, Russia
| |
Collapse
|
4
|
Grao-Cruces E, Calvo JR, Maldonado-Aibar MD, Millan-Linares MDC, Montserrat-de la Paz S. Mediterranean Diet and Melatonin: A Systematic Review. Antioxidants (Basel) 2023; 12:264. [PMID: 36829823 PMCID: PMC9951922 DOI: 10.3390/antiox12020264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
The Mediterranean diet (MD) has beneficial effects on human health, which is evidenced by the observation of lower incidence rates of chronic diseases in Mediterranean countries. The MD dietary pattern is rich in antioxidants, such as melatonin, which is a hormone produced mainly by the pineal gland and controls several circadian rhythms. Additionally, melatonin is found in foods, such as fruit and vegetables. The purpose of this systematic review was to assess the melatonin content in Mediterranean foods and to evaluate the influence of the MD on melatonin levels in both humans and model organisms. A comprehensive search was conducted in four databases (PubMed, Scopus, Cochrane Library and Web of Science) and data were extracted. A total of 31 records were chosen. MD-related foods, such as tomatoes, olive oil, red wine, beer, nuts, and vegetables, showed high melatonin contents. The consumption of specific MD foods increases melatonin levels and improves the antioxidant status in plasma.
Collapse
Affiliation(s)
| | | | | | | | - Sergio Montserrat-de la Paz
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Avenida Sanchez Pizjuan s/n, 41009 Seville, Spain
| |
Collapse
|
5
|
Functional Yogurt Fortified with Honey Produced by Feeding Bees Natural Plant Extracts for Controlling Human Blood Sugar Level. PLANTS 2022; 11:plants11111391. [PMID: 35684164 PMCID: PMC9182764 DOI: 10.3390/plants11111391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 11/21/2022]
Abstract
The human blood sugar level is important and should be controlled to avoid any damage to nerves and blood vessels which could lead to heart disease and many other problems. Several market-available treatments for diabetes could be used, such as insulin therapy, synthetic drugs, herbal drugs, and transdermal patches, to help control blood sugar. In a double-blind human study, four kinds of honey from bees fed on acacia, sea buckthorn, chlorella alga, and green walnut extracts were used in fortifying yogurt for controlling human blood sugar. The impact of a previously fortified honey was investigated on blood levels and other parameters of healthy individuals in a human study with 60 participants. The participants received 150 mL of yogurt mixed with 30 g of honey every morning for 21 days. Before and after the study period, the basic blood parameters were tested, and the participants filled out standardized self-report questionnaires. Acacia honey was the traditional honey used as a control; the special honey products were produced by the patented technology. The consumption of green walnut honey had a significant effect on the morning blood sugar level, which decreased for every participant in the group (15 people). The average blood sugar level at the beginning in the walnut group was 4.81 mmol L−1, whereas the value after 21 days was 3.73 mmol L−1. The total decrease level of the individuals was about 22.45% (1.08 mmol L−1). Concerning the sea buckthorn and chlorella alga-based honey product groups, there was no significant change in the blood sugar level, which were recorded at 4.91 and 5.28 mmol L−1 before treatment and 5.28 and 5.07 mmol L−1 after, respectively. In the case of the acacia honey group, there was a slight significant decrease as well, it was 4.77 mmol L−1 at the beginning and 4.27 mmol L−1 at the end with a total decrease rate of 10.48%. It could thus be concluded that the active ingredients of green walnut can significantly decrease the blood sugar level in humans. This study, as a first report, is not only a new innovative process to add herbs or healthy active ingredients to honey but also shows how these beneficial ingredients aid the honey in controlling the human blood sugar level.
Collapse
|
6
|
Ma K, Xu R, Zhao Y, Han L, Xu Y, Li L, Wang J, Li N. Walnut N-Acetylserotonin Methyltransferase Gene Family Genome-Wide Identification and Diverse Functions Characterization During Flower Bud Development. FRONTIERS IN PLANT SCIENCE 2022; 13:861043. [PMID: 35498672 PMCID: PMC9051526 DOI: 10.3389/fpls.2022.861043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/28/2022] [Indexed: 05/24/2023]
Abstract
Melatonin widely mediates multiple developmental dynamics in plants as a vital growth stimulator, stress protector, and developmental regulator. N-acetylserotonin methyltransferase (ASMT) is the key enzyme that catalyzes the final step of melatonin biosynthesis in plants and plays an essential role in the plant melatonin regulatory network. Studies of ASMT have contributed to understanding the mechanism of melatonin biosynthesis in plants. However, AMST gene is currently uncharacterized in most plants. In this study, we characterized the JrASMT gene family using bioinformatics in a melatonin-rich plant, walnut. Phylogenetic, gene structure, conserved motifs, promoter elements, interacting proteins and miRNA analyses were also performed. The expansion and differentiation of the ASMT family occurred before the onset of the plant terrestrialization. ASMT genes were more differentiated in dicotyledonous plants. Forty-six ASMT genes were distributed in clusters on 10 chromosomes of walnut. Four JrASMT genes had homologous relationships both within walnut and between species. Cis-regulatory elements showed that JrASMT was mainly induced by light and hormones, and targeted cleavage of miRNA172 and miR399 may be an important pathway to suppress JrASMT expression. Transcriptome data showed that 13 JrASMT were differentially expressed at different periods of walnut bud development. WGCNA showed that JrASMT1/10/13/23 were coexpressed with genes regulating cell fate and epigenetic modifications during early physiological differentiation of walnut female flower buds. JrASMT12/28/37/40 were highly expressed during morphological differentiation of flower buds, associated with altered stress capacity of walnut flower buds, and predicted to be involved in the regulatory network of abscisic acid, salicylic acid, and cytokinin in walnut. The qRT-PCR validated the results of differential expression analysis and further provided three JrASMT genes with different expression profiles in walnut flower bud development. Our study explored the evolutionary relationships of the plant ASMT gene family and the functional characteristics of walnut JrASMT. It provides a valuable perspective for further understanding the complex melatonin mechanisms in plant developmental regulation.
Collapse
Affiliation(s)
- Kai Ma
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Urumqi, China
- Xinjiang Fruit Science Experiment Station, Ministry of Agriculture and Rural Affairs, Urumqi, China
| | - Ruiqiang Xu
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Urumqi, China
| | - Yu Zhao
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Urumqi, China
- Xinjiang Fruit Science Experiment Station, Ministry of Agriculture and Rural Affairs, Urumqi, China
| | - Liqun Han
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Urumqi, China
- Xinjiang Fruit Science Experiment Station, Ministry of Agriculture and Rural Affairs, Urumqi, China
| | - Yuhui Xu
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Urumqi, China
| | - Lili Li
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Urumqi, China
- Xinjiang Fruit Science Experiment Station, Ministry of Agriculture and Rural Affairs, Urumqi, China
| | - Juan Wang
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Urumqi, China
| | - Ning Li
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Urumqi, China
| |
Collapse
|
7
|
Verde A, Míguez JM, Gallardo M. Role of Melatonin in Apple Fruit during Growth and Ripening: Possible Interaction with Ethylene. PLANTS (BASEL, SWITZERLAND) 2022; 11:688. [PMID: 35270158 PMCID: PMC8912437 DOI: 10.3390/plants11050688] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/10/2022] [Accepted: 02/25/2022] [Indexed: 05/27/2023]
Abstract
The role of melatonin during the growth and ripening of apple fruit was studied using local varieties. The evolution of the growth and ripening parameters, including fruit size and weight, firmness, color change, sugar content, and ethylene production, was different in the five varieties studied, with yellow apples (Reineta and Golden) initiating the ripening process earlier than reddish ones (Teórica, Sanroqueña, and Caguleira). Changes in the melatonin and melatonin isomer 2 contents during growth and ripening were studied in Golden apples, as was the effect of the melatonin treatment (500 µM, day 124 post-anthesis) on the apple tree. Melatonin content varied greatly, with higher value in the skin than in the flesh. In the skin, melatonin increased at day 132 post-anthesis, when ethylene synthesis started. In the flesh, melatonin levels were high at the beginning of the growth phase and at the end of ripening. Melatonin isomer 2 was also higher once the ripening started and when ethylene began to increase. The melatonin treatment significantly advanced the ethylene production and increased the fruit size, weight, sugar content, and firmness. The data suggest that melatonin stimulates fruit ripening through the induction of ethylene synthesis, while melatonin treatments before ripening improve the final fruit quality.
Collapse
Affiliation(s)
- Antía Verde
- Departamento de Biología Vegetal, C.C. del Suelo, Universidade de Vigo, 36310 Vigo, Spain;
| | - Jesús M. Míguez
- Departamento de Biología Funcional, C.C. de la Salud, Universidade de Vigo, 36310 Vigo, Spain;
| | - Mercedes Gallardo
- Departamento de Biología Vegetal, C.C. del Suelo, Universidade de Vigo, 36310 Vigo, Spain;
| |
Collapse
|