1
|
Raigón Jiménez MD, García-Martínez MD, Esteve Ciudad P, Fukalova Fukalova T. Nutritional, Bioactive, and Volatile Characteristics of Two Types of Sorbus domestica Undervalued Fruit from Northeast of Iberian Peninsula, Spain. Molecules 2024; 29:4321. [PMID: 39339316 PMCID: PMC11434549 DOI: 10.3390/molecules29184321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
The promotion of food from underutilized plants can help combat biodiversity loss, foster cultural preservation, and empower farmers in the face of market pressures and sustainable production conditions. The nutritional and aromatic characterization of two undervalued types of Sorbus domestica fruits, differentiated by their apple and pear shapes, has been carried out. Official Association of Analytical Communities methods have been used for proximate composition and mineral analysis determinations, and gas chromatography was used for the analysis of volatile components in three states of ripeness and compared with the aromas of fresh apple and quince jam. S. domestica fruits are a good source of K, Ca, Fe, and fiber and are an important source of antioxidants in the human diet. S. domestica fruits have proven to be very distinctive in the aromatic fraction. 1-hexanol, hexyl 1,3-octanediol, phenylacetaldehyde, nonanal, hexanal, and α-farnesene are the most potent odor compounds in the overripening stage of the fruits. The aroma profiles of immature S. domestica fruits were dominated by aldehydes, while in the overripe stage, the fruit accumulated abundant esters, alcohols, and sesquiterpenoids. S. domestica fruits could be introduced as an alternative to seasonal fruit consumption and could generate sustainable production and consumption alternatives while recovering cultural and food heritage.
Collapse
Affiliation(s)
- María Dolores Raigón Jiménez
- Instituto de Conservación y Mejora de la Agrobiodiversidad Valenciana, Universitat Politècnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain; (M.D.G.-M.); (P.E.C.)
| | - María Dolores García-Martínez
- Instituto de Conservación y Mejora de la Agrobiodiversidad Valenciana, Universitat Politècnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain; (M.D.G.-M.); (P.E.C.)
| | - Patricia Esteve Ciudad
- Instituto de Conservación y Mejora de la Agrobiodiversidad Valenciana, Universitat Politècnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain; (M.D.G.-M.); (P.E.C.)
| | - Tamara Fukalova Fukalova
- Laboratorio de Fitoquímica y Productos Biológicos, Facultad de Ciencias Químicas, Universidad Central del Ecuador, Avenue Universitaria, Quito 170521, Ecuador;
| |
Collapse
|
2
|
Su C, Yang M, Chen S, Fu C, Zhang L, Liu S, Kang J, Li C. Multiple metabolite profiles uncover remarkable bioactive compounds and metabolic characteristics of noni fruit (Morinda citrifolia L.) at various stages of ripeness. Food Chem 2024; 450:139357. [PMID: 38631202 DOI: 10.1016/j.foodchem.2024.139357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 04/19/2024]
Abstract
This study aimed to investigate the changes in physicochemical properties, bioactive compounds, and metabolic characteristics of noni fruit at different ripeness levels. The results showed that there were significant differences in physicochemical properties. HPLC analysis was conducted, revealing succinic acid, scopoletin, deacetylasperulosidic acid, and asperulosidic acid were key bioactive compounds as the fruit ripened. Additionally, 4 differentbiomarkers (isocitric acid, 4,4-thiodiphenol, lobaric acid, and octocrylene), identified using 1HNMR and LC-IT-TOF-MS, were found to have a VIP value over 1. The results from HS-GC-IMS demonstrated noteworthy that 14 volatile compounds were identified as highly discriminative features during fruit ripening. Furthermore, correlation analysis showed that different ripeness had significant effects on bioactive components and functional activities, e.g., the inhibition rate of enzyme and E. coli of noni fruit with different ripeness exceeded 90% at the last stage. This study contributes new insights into the effective utilization of bioactive ingredients in noni fruit.
Collapse
Affiliation(s)
- Congyan Su
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Ming Yang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Shuai Chen
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Chuanxian Fu
- Wanning Wanwei Biotechnology Co., LTD, Wanning 571500, China
| | - Lin Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China; Key Laboratory of Tropical Agricultural Products Processing Technology of Haikou, Haikou 570228, China
| | - Sixin Liu
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China; Key Laboratory of Tropical Agricultural Products Processing Technology of Haikou, Haikou 570228, China
| | - Jiamu Kang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China; Key Laboratory of Tropical Agricultural Products Processing Technology of Haikou, Haikou 570228, China
| | - Congfa Li
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China; Key Laboratory of Tropical Agricultural Products Processing Technology of Haikou, Haikou 570228, China
| |
Collapse
|
3
|
Cheng W, Lan W, Chen X, Xue X, Liang H, Zeng H, Li R, Pan T, Li N, Yang H. Source and succession of microbial communities and tetramethylpyrazine during the brewing process of compound-flavor Baijiu. Front Microbiol 2024; 15:1450997. [PMID: 39165577 PMCID: PMC11333356 DOI: 10.3389/fmicb.2024.1450997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 07/22/2024] [Indexed: 08/22/2024] Open
Abstract
Pyrazines are important flavor components and healthy active components in Baijiu, which including tetramethylpyrazine (TTMP). During the brewing process, the traceability of microbial communities and the content distribution characteristics of TTMP are important for improving the quality and style characteristics of compound-flavored Baijiu (CFB). However, the traceability analysis of microorganisms in fermented grains (FG)-used in the production of CFB-lacks quantitative and systematic evaluation. In this study, the microbial communities and TTMP content of Jiuqu (JQ), Liangpei (LP), FG, and pit mud (CP) used in CFB production were characterized; further, coordinate and discriminant analyses were employed to determine differences in microbial communities. Additionally, traceability and correlation analyses were performed to reveal the origin of microbial communities in FG. The source, content, and distribution characteristics of TTMP based on the brewing process have also been discussed. The results showed that most of the bacterial and fungal communities at different levels of FG came from other sources, and the microorganisms of Cladosporium, Acetobacter, Aspergillus, Methanosarcina, and Bacillus were considered have a osculating correlations with TTMP content of FG. Taken together, this study provides insights into the origin of microbial communities in FG and the distribution characteristics of TTMP based on the CFB brewing process. The current findings are conducive for optimizing the fermentation process and improving the quality and style characteristics of CFB.
Collapse
Affiliation(s)
- Wei Cheng
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui, China
- Technology Center of Enterprise, Anhui Jinzhongzi Distillery Co., Ltd., Fuyang, Anhui, China
| | - Wei Lan
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui, China
| | - Xuefeng Chen
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'An, Shaanxi, China
| | - Xijia Xue
- Technology Center of Enterprise, Anhui Jinzhongzi Distillery Co., Ltd., Fuyang, Anhui, China
| | - Huipeng Liang
- Technology Research Institute, China Resources Snow Breweries Co., Ltd., Beijing, China
| | - Huawei Zeng
- School of Life Sciences, Huaibei Normal University, Huaibei, Anhui, China
| | - Ruilong Li
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui, China
| | - Tianquan Pan
- Technology Center of Enterprise, Anhui Jinzhongzi Distillery Co., Ltd., Fuyang, Anhui, China
| | - Na Li
- Technology Center of Enterprise, Anhui Jinzhongzi Distillery Co., Ltd., Fuyang, Anhui, China
| | - Hongwen Yang
- Technology Center of Enterprise, Anhui Jinzhongzi Distillery Co., Ltd., Fuyang, Anhui, China
| |
Collapse
|
4
|
Zheng AR, Wei CK, Wang MS, Ju N, Fan M. Characterization of the key flavor compounds in cream cheese by GC-MS, GC-IMS, sensory analysis and multivariable statistics. Curr Res Food Sci 2024; 8:100772. [PMID: 38840807 PMCID: PMC11150910 DOI: 10.1016/j.crfs.2024.100772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/07/2024] Open
Abstract
The aroma types of cream cheese affect its commercial value and consumer acceptability. However, the types of volatile substances and sensory characteristics of cream cheese at different fermentation stages are still unclear. Therefore, in this study, headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) and headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS) were used to analyze the volatile substances in cream cheese fermentation. Orthogonal partial least squares discriminant analysis (OPLS-DA), odor activity value (OAV), relative odor activity value (ROAV) and variable projection importance (VIP) were used to identify the characteristic flavor substances in cream cheese fermentation. Finally, the relationship between key flavor substances and sensory characteristics was determined by partial least squares (PLS) analysis. A total of 34 and 36 volatile organic compounds were identified by HS-SPME-GC-MS and HS-GC-MS, respectively, and 14 characteristic flavor substances were found, based on VIP, ROAV and OAV models. Combined with sensory analysis and flavor substance changes, it was found that the cream cheese fermented for 15 d had the best flavor and taste. This study reveals the characteristics and contribution of volatile substances in cream cheese at different fermentation stages, which provides new insights into improving flavor and quality control.
Collapse
Affiliation(s)
- An-Ran Zheng
- School of Food Science and Engineering, Ningxia University, Yinchuan, 750021, People's Republic of China
| | - Chao-Kun Wei
- School of Food Science and Engineering, Ningxia University, Yinchuan, 750021, People's Republic of China
| | - Meng-Song Wang
- School of Food Science and Engineering, Ningxia University, Yinchuan, 750021, People's Republic of China
| | - Ning Ju
- School of Food Science and Engineering, Ningxia University, Yinchuan, 750021, People's Republic of China
| | - Min Fan
- School of Food Science and Engineering, Ningxia University, Yinchuan, 750021, People's Republic of China
- Inner Mongolia Yili Industrial Group Company Limited, Hohhot 151100, People's Republic of China
| |
Collapse
|
5
|
Zhao X, Wang Z, Tang F, Cai W, Peng B, Shan C. Exploring jujube wine flavor and fermentation mechanisms by HS-SPME-GC-MS and UHPLC-MS metabolomics. Food Chem X 2024; 21:101115. [PMID: 38292672 PMCID: PMC10825367 DOI: 10.1016/j.fochx.2024.101115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/28/2023] [Accepted: 01/01/2024] [Indexed: 02/01/2024] Open
Abstract
The fermentation metabolites significantly influence the quality of jujube wine. However, the dynamics of these metabolites during fermentation are not well understood. In this study, a total of 107 volatile and 1758 non-volatile compounds were identified using a flavor-directed research strategy and non-targeted metabolomics. The increase in esters and alcohols during fermentation shifted the aroma from grassy, mushroomy, and earthy to a floral and fruity flavor in the jujube wine. Leucine and phenylalanine were notably enriched during fermentation, potentially benefiting human health and enriching the flavor of fruit wines. Moreover, pathway analysis identified four key metabolic pathways and two crucial metabolic substrates, pyruvate and l-aspartate. This study provides a theoretical reference for optimizing the fermentation process and enhancing the quality of jujube wine.
Collapse
Affiliation(s)
- Xinxin Zhao
- School of Food Science, Shihezi University, Xinjiang Autonomous Region, Shihezi 832000, PR China
- Shihezi University, Key Laboratory for Processing and Quality Safety Control of Specialty Agricultural Products of Ministry of Agriculture and Rural Affairs, Xinjiang Autonomous Region, Shihezi 832000, PR China
| | - Zhouping Wang
- School of Food Science and Technology, Jiangnan University, Jiangsu Autonomous Region, Wuxi 214000, PR China
| | - Fengxian Tang
- School of Food Science, Shihezi University, Xinjiang Autonomous Region, Shihezi 832000, PR China
- Shihezi University, Key Laboratory for Processing and Quality Safety Control of Specialty Agricultural Products of Ministry of Agriculture and Rural Affairs, Xinjiang Autonomous Region, Shihezi 832000, PR China
| | - Wenchao Cai
- School of Food Science, Shihezi University, Xinjiang Autonomous Region, Shihezi 832000, PR China
- Shihezi University, Key Laboratory for Processing and Quality Safety Control of Specialty Agricultural Products of Ministry of Agriculture and Rural Affairs, Xinjiang Autonomous Region, Shihezi 832000, PR China
| | - Bo Peng
- School of Food Science, Shihezi University, Xinjiang Autonomous Region, Shihezi 832000, PR China
- Shihezi University, Key Laboratory for Processing and Quality Safety Control of Specialty Agricultural Products of Ministry of Agriculture and Rural Affairs, Xinjiang Autonomous Region, Shihezi 832000, PR China
| | - Chunhui Shan
- School of Food Science, Shihezi University, Xinjiang Autonomous Region, Shihezi 832000, PR China
- Shihezi University, Key Laboratory for Processing and Quality Safety Control of Specialty Agricultural Products of Ministry of Agriculture and Rural Affairs, Xinjiang Autonomous Region, Shihezi 832000, PR China
| |
Collapse
|
6
|
Li Y, Wang A, Dang B, Yang X, Nie M, Chen Z, Lin R, Wang L, Wang F, Tong LT. Deeply analyzing dynamic fermentation of highland barley vinegar: Main physicochemical factors, key flavors, and dominate microorganisms. Food Res Int 2024; 177:113919. [PMID: 38225120 DOI: 10.1016/j.foodres.2023.113919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 01/17/2024]
Abstract
Highland barley vinegar, as a solid-state fermentation-type vinegar emerged recently, is well-known in Qinghai-Tibet plateau area of China. This work aimed to explore the main physicochemical factors, key flavor volatile compounds, and dominate microorganisms of highland barley vinegar during fermentation. The results showed that the decrease trend of reducing sugar, pH and the increase trend of amino acid nitrogen were associated with the metabolism of dominate bacteria, especially Lactobacillus and Acetobacter. Totally, 35 volatile compounds mainly including 20 esters, 10 alcohols, 2 aldehydes, 1 ketone and 2 pyrazines and 7 organic acids were identified. Especially, isoamyl acetate, acetyl methyl carbinol, ethyl caprylate, 1,2-propanediol, 3-methyl-1-butanol and ethyl isovalerate with high odor activity values were confirmed as key aroma compounds. Meanwhile, the relative average abundance of bacteria at genus level decreased significantly as fermentation time goes on. Among these microbes, Lactobacillus were the dominate bacteria at alcohol fermentation stage, Lactobacillus and Acetobacter were dominate at acetic acid fermentation stage. Furthermore, the correlations between dominate bacteria and the key volatile compounds were revealed, which highlighted Lactobacillus and Acetobacter were significantly correlated with key volatile compounds (|r| > 0.5, P < 0.01). The fundings of this study provide insights into the flavor and assist to improve the production quality of highland barley vinegar.
Collapse
Affiliation(s)
- Yan Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Ministry of Agriculture, Beijing 100193, China
| | - Aixia Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Ministry of Agriculture, Beijing 100193, China
| | - Bin Dang
- Qinghai Tibetan Plateau Key Laboratory of Agric-Product Processing, Qinghai Academy of Agricultural and Forestry Sciences, Xining 810016, China
| | - Xijuan Yang
- Qinghai Tibetan Plateau Key Laboratory of Agric-Product Processing, Qinghai Academy of Agricultural and Forestry Sciences, Xining 810016, China
| | - Mengzi Nie
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Ministry of Agriculture, Beijing 100193, China
| | - Zhiying Chen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Ministry of Agriculture, Beijing 100193, China
| | - Ran Lin
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Ministry of Agriculture, Beijing 100193, China
| | - Lili Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Ministry of Agriculture, Beijing 100193, China
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Ministry of Agriculture, Beijing 100193, China.
| | - Li-Tao Tong
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Ministry of Agriculture, Beijing 100193, China.
| |
Collapse
|
7
|
Chen X, Zhang W, Quek SY, Zhao L. Flavor-food ingredient interactions in fortified or reformulated novel food: Binding behaviors, manipulation strategies, sensory impacts, and future trends in delicious and healthy food design. Compr Rev Food Sci Food Saf 2023; 22:4004-4029. [PMID: 37350045 DOI: 10.1111/1541-4337.13195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/02/2023] [Accepted: 05/27/2023] [Indexed: 06/24/2023]
Abstract
With consumers gaining prominent awareness of health and well-being, a diverse range of fortified or reformulated novel food is developed to achieve personalized or tailored nutrition using protein, carbohydrates, or fat as building blocks. Flavor property is a critical factor in the acceptability and marketability of fortified or reformulated food. Major food ingredients are able to interact with flavor compounds, leading to a significant change in flavor release from the food matrix and, ultimately, altering flavor perception. Although many efforts have been made to elucidate how food matrix components change flavor binding capacities, the influences on flavor perception and their implications for the innovation of fortified or reformulated novel food have not been systematically summarized up to now. Thus, this review provides detailed knowledge about the binding behaviors of flavors to major food ingredients, as well as their influences on flavor retention, release, and perception. Practical approaches for manipulating these interactions and the resulting flavor quality are also reviewed, from the scope of their intrinsic and extrinsic influencing factors with technologies available, which is helpful for future food innovation. Evaluation of food-ingredient interactions using real food matrices while considering multisensory flavor perception is also prospected, to well motivate food industries to investigate new strategies for tasteful and healthy food design in response to consumers' unwillingness to compromise on flavor for health.
Collapse
Affiliation(s)
- Xiao Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, P. R. China
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Wangang Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, P. R. China
| | - Siew Young Quek
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
- Riddet Institute, Centre of Research Excellence in Food Research, Palmerston North, New Zealand
| | - Liyan Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, P. R. China
| |
Collapse
|
8
|
Yang H, Wang J, Cao W. Improved liquid-liquid extraction followed by HPLC-UV for accurate and eco-friendly determination of tetramethylpyrazine in vinegar products. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1229:123869. [PMID: 37716345 DOI: 10.1016/j.jchromb.2023.123869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/23/2023] [Accepted: 08/31/2023] [Indexed: 09/18/2023]
Abstract
Tetramethylpyrazine (TMP) is an important bioactive compound in vinegars, contributing to their health-enhancing attributes. It serves as a crucial benchmark for the assessment of vinegar quality. Unfortunately, inaccuracies have arisen due to incomplete extraction techniques and the use of an inappropriate standard substance. These challenges have significantly curtailed comprehensive exploration into the underlying TMP formation mechanisms, impeding advancements within prevailing benchmarks and methodologies governing vinegar products. To address these challenges, several critical parameters, encompassing pH, solvent type, centrifugal force, extraction times and reference materials were investigated and optimized. The TMP content was determined by adjusting the pH to 9 using a sodium hydroxide solution, followed by extraction with ethyl acetate and subsequent re-extraction of the ethyl acetate layer with 0.2 mol/L HCl. A high-performance liquid chromatography method with an ultraviolet detector (UV) was developed and validated. This method demonstrated superior sensitivity compared to existing methods, with a limit of detection (LOD) of 0.0237 μg/g, limit of quantification (LOQ) of 0.0829 μg/g, method limit of detection (MLOD) of 0.10 μg/g and method limit of quantitation (MLOQ) of 0.25 μg/g. The modified method exhibited excellent linearity for TMP in the range of 0.1-118.4 μg/mL, with a good correlation coefficient (R2 > 0.999). The recovery rate of TMP in vinegar products ranged from 82.4 to 96.2%. Consequently, the proposed method exhibits substantial promise for systematic inquiry into TMP formation mechanisms and for ensuring consistent quality control during the production of premium-grade vinegars.
Collapse
Affiliation(s)
- Hong Yang
- Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd., Shanghai 200137, China
| | - Jing Wang
- Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd., Shanghai 200137, China
| | - Wenming Cao
- Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd., Shanghai 200137, China.
| |
Collapse
|
9
|
Zhang L, Qin Z, Zhang L, Jiang Y, Zhu J. Dynamic changes of quality and flavor characterization of Zhejiang rosy vinegar during fermentation and aging based on untargeted metabolomics. Food Chem 2023; 404:134702. [DOI: 10.1016/j.foodchem.2022.134702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/24/2022] [Accepted: 10/18/2022] [Indexed: 11/22/2022]
|
10
|
Zhang L, Hong Q, Yu C, Wang R, Li C, Liu S. Acetobacter sp. improves the undesirable odors of fermented noni (Morinda citrifolia L.) juice. Food Chem 2023; 401:134126. [DOI: 10.1016/j.foodchem.2022.134126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 01/21/2023]
|
11
|
Yang P, Wang H, Cao Q, Song H, Xu Y, Lin Y. Aroma-active compounds related to Maillard reaction during roasting in Wuyi Rock tea. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Processing Technologies and Flavor Analysis of Chinese Cereal Vinegar: a Comprehensive Review. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02328-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|