1
|
Montoya-Arroyo A, Brand V, Kröpfl A, Vetter W, Frank J. Metabolism of 11'-α- and 11'-γ-Tocomonoenols in HepG2 Cells Favors the γ-Congener and Results Predominantly in Carboxymethylbutyl-Hydroxychromans. Mol Nutr Food Res 2024; 68:e2300657. [PMID: 38698718 DOI: 10.1002/mnfr.202300657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/22/2024] [Indexed: 05/05/2024]
Abstract
SCOPE Tocomonoenols (T1) are little-known vitamin E derivatives naturally occurring in foods. Limited knowledge exists regarding the cellular uptake and metabolism of α-tocomonoenol (αT1) and none about that of γ-tocomonoenol (γT1). METHODS AND RESULTS The study investigates the cytotoxicity, uptake, and metabolism of αT1 and γT1 in HepG2 cells compared to the α- and γ-tocopherols (T) and -tocotrienols (T3). None of the studied tocochromanols are cytotoxic up to 100 µmol L-1. The uptake of the γ-congeners is significantly higher than that of the corresponding α-forms, whereas no significant differences are observed based on the degree of saturation of the sidechain. Carboxymethylbutyl-hydroxychromans (CMBHC) are the predominant short-chain metabolites of all tocochromanols and conversion is higher for γT1 than αT1 as well as for the γ-congeners of T and T3. The rate of metabolism increases with the number of double bonds in the sidechain. The rate of metabolic conversion of the T1 is more similar to tocopherols than to that of the tocotrienols. CONCLUSION This is the first evidence that both αT1 and γT1 follow the same sidechain degradation pathway and exert similar rates of metabolism than tocopherols. Therefore, investigation into the biological activities of tocomonoenols is warranted.
Collapse
Affiliation(s)
- Alexander Montoya-Arroyo
- Department of Food Biofunctionality (140b), Institute of Nutritional Sciences, University of Hohenheim, Garbenstrasse 28, 70599, Stuttgart, Germany
| | - Viola Brand
- Department of Food Biofunctionality (140b), Institute of Nutritional Sciences, University of Hohenheim, Garbenstrasse 28, 70599, Stuttgart, Germany
| | - Alexander Kröpfl
- Department of Food Chemistry (170b), Institute of Food Chemistry, University of Hohenheim, 70599, Stuttgart, Germany
| | - Walter Vetter
- Department of Food Chemistry (170b), Institute of Food Chemistry, University of Hohenheim, 70599, Stuttgart, Germany
| | - Jan Frank
- Department of Food Biofunctionality (140b), Institute of Nutritional Sciences, University of Hohenheim, Garbenstrasse 28, 70599, Stuttgart, Germany
| |
Collapse
|
2
|
Montoya‐Arroyo A, Muñoz‐González A, Lehnert K, Frick K, Schmid‐Staiger U, Vetter W, Frank J. Monodopsis subterranea is a source of α-tocomonoenol, and its concentration, in contrast to α-tocopherol, is not affected by nitrogen depletion. Food Sci Nutr 2024; 12:1869-1879. [PMID: 38455160 PMCID: PMC10916641 DOI: 10.1002/fsn3.3880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 03/09/2024] Open
Abstract
α-Tomonoenols (αT1) are tocochromanols structurally related to tocopherols (T) and tocotrienols (T3), the bioactive members of the vitamin E family. However, limited evidence exists regarding the sources and biosynthesis of tocomonoenols. Nitrogen depletion increases the content of α-tocopherol (αT), the main vitamin E congener, in microalgae, but little is known regarding its effect on other tocochromanols, such as tocomonoenols and tocotrienols. We therefore quantified the concentrations of T, T1, and T3, in freeze-dried biomass from nitrogen-sufficient, and nitrogen-depleted Monodopsis subterranea (Eustigmatophyceae). The identities of isomers of αT1 were confirmed by LC-MS and GC-MS. αT was the predominant tocochromanol (82% of total tocochromanols). αT1 was present in higher quantities than the sum of all T3 (6% vs. 1% of total tocochromanols). 11'-αT1 was the main αT1 isomer. Nitrogen depletion increased αT, but not αT1 or T3 in M. subterranea. In conclusion, nitrogen depletion increased the content of αT, the biologically most active form of vitamin E, in M. subterranea without affecting αT1 and T3 and could potentially be used as a strategy to enhance its nutritional value but not to increase αT1 content, indicating that αT1 accumulation is independent of that of αT in microalgae.
Collapse
Affiliation(s)
| | - Alejandra Muñoz‐González
- Institute of Nutritional Sciences (140b)University of HohenheimStuttgartGermany
- School of Food TechnologyUniversity of Costa RicaSan PedroCosta Rica
| | - Katja Lehnert
- Institute of Food Chemistry (170b)University of HohenheimStuttgartGermany
| | - Konstantin Frick
- Institute of Interfacial Process Engineering and Plasma TechnologyUniversity of StuttgartStuttgartGermany
| | - Ulrike Schmid‐Staiger
- Innovation Field Functional IngredientsFraunhofer Institute for Interfacial Engineering and Biotechnology IGBStuttgartGermany
| | - Walter Vetter
- Institute of Food Chemistry (170b)University of HohenheimStuttgartGermany
| | - Jan Frank
- Institute of Nutritional Sciences (140b)University of HohenheimStuttgartGermany
| |
Collapse
|
3
|
Carroll AR, Copp BR, Grkovic T, Keyzers RA, Prinsep MR. Marine natural products. Nat Prod Rep 2024; 41:162-207. [PMID: 38285012 DOI: 10.1039/d3np00061c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Covering: January to the end of December 2022This review covers the literature published in 2022 for marine natural products (MNPs), with 645 citations (633 for the period January to December 2022) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, the submerged parts of mangroves and other intertidal plants. The emphasis is on new compounds (1417 in 384 papers for 2022), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. An analysis of NP structure class diversity in relation to biota source and biome is discussed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia.
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Tanja Grkovic
- Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, and Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Robert A Keyzers
- Centre for Biodiscovery, and School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
4
|
Montoya-Arroyo A, Toro-González C, Sus N, Warner J, Esquivel P, Jiménez VM, Frank J. Vitamin E and carotenoid profiles in leaves, stems, petioles and flowers of stinging nettle (Urtica leptophylla Kunth) from Costa Rica. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6340-6348. [PMID: 35527679 DOI: 10.1002/jsfa.11985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/23/2021] [Accepted: 05/09/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Local leafy vegetables are gaining attention as affordable sources of micronutrients, including vitamins, pro-vitamin carotenoids and other bioactive compounds. Stinging nettles (Urtica spp.) are used as source of fibers, herbal medicine and food. However, despite the relatively wide geographical spread of Urtica leptophylla on the American continent, little is known about its content of vitamin E congeners and carotenoids. We therefore investigated the particular nutritional potential of different plant structures of wild Costa Rican U. leptophylla by focusing on their vitamin E and carotenoid profiles. RESULTS Young, mature and herbivore-damaged leaves, flowers, stems and petioles were collected and freeze-dried. Vitamin E and carotenoids were determined by high-performance liquid chromatography after liquid/liquid extraction with hexane. α-Tocopherol was the major vitamin E congener in all structures. Flowers had a high content of γ-tocopherol. Herbivore-damaged leaves had higher contents of vitamin E than undamaged leaves. Lutein was the major and β-carotene the second most abundant carotenoid in U. leptophylla. No differences in carotenoid profiles were observed between damaged and undamaged leaves. CONCLUSION The leaves of U. leptophylla had the highest nutritional value of all analyzed structures; therefore, they might represent a potential source of α-tocopherol, lutein and β-carotene. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Alexander Montoya-Arroyo
- Department of Food Biofunctionality, Institute of Nutritional Sciences, University of Hohenheim, Stuttgart, Germany
| | | | - Nadine Sus
- Department of Food Biofunctionality, Institute of Nutritional Sciences, University of Hohenheim, Stuttgart, Germany
| | - Jorge Warner
- Jardín Botánico Lankester, Universidad de Costa Rica, Cartago, Costa Rica
| | - Patricia Esquivel
- School of Food Technology, Universidad de Costa Rica, San Pedro, Costa Rica
| | | | - Jan Frank
- Department of Food Biofunctionality, Institute of Nutritional Sciences, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
5
|
Górnaś P, Baškirovs G, Siger A. Free and Esterified Tocopherols, Tocotrienols and Other Extractable and Non-Extractable Tocochromanol-Related Molecules: Compendium of Knowledge, Future Perspectives and Recommendations for Chromatographic Techniques, Tools, and Approaches Used for Tocochromanol Determination. Molecules 2022; 27:6560. [PMID: 36235100 PMCID: PMC9573122 DOI: 10.3390/molecules27196560] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/07/2022] Open
Abstract
Free and esterified (bound) tocopherols, tocotrienols and other tocochromanol-related compounds, often referred to "tocols", are lipophilic antioxidants of great importance for health. For instance, α-tocopherol is the only tocochromanol with vitamin E activity, while tocotrienols have a positive impact on health and are proposed in the prevention and therapy of so-called modern diseases. Tocopherols, tocotrienols and plastochromanol-8 are the most well-known tocochromanols; in turn, knowledge about tocodienols, tocomonoenols, and other rare tocochromanol-related compounds is limited due to several challenges in analytical chemistry and/or low concentration in plant material. The presence of free, esterified, and non-extractable tocochromanols in plant material as well as their biological function, which may be of great scientific, agricultural and medicinal importance, is also poorly studied. Due to the lack of modern protocols as well as equipment and tools, for instance, techniques suitable for the efficient and simultaneous chromatographical separation of major and minor tocochromanols, the topic requires attention and new solutions, and/or standardization, and proper terminology. This review discusses the advantages and disadvantages of different chromatographic techniques, tools and approaches used for the separation and detection of different tocochromanols in plant material and foodstuffs. Sources of tocochromanols and procedures for obtaining different tocochromanol analytical standards are also described. Finally, future challenges are discussed and perspective green techniques for tocochromanol determination are proposed along with best practice recommendations. The present manuscript aims to present key aspects and protocols related to tocochromanol determination, correct identification, and the interpretation of obtained results.
Collapse
Affiliation(s)
- Paweł Górnaś
- Institute of Horticulture, Graudu 1, LV-3701 Dobele, Latvia
| | | | - Aleksander Siger
- Department of Food Biochemistry and Analysis, Poznan University of Life Sciences, Wojska Polskiego 48, 60-637 Poznan, Poland
| |
Collapse
|
6
|
Montoya-Arroyo A, Lehnert K, Muñoz-González A, Schmid-Staiger U, Vetter W, Frank J. Tocochromanol Profiles in Chlorella sorokiniana, Nannochloropsis limnetica and Tetraselmis suecica Confirm the Presence of 11'-α-Tocomonoenol in Cultured Microalgae Independently of Species and Origin. Foods 2022; 11:396. [PMID: 35159546 PMCID: PMC8834470 DOI: 10.3390/foods11030396] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 02/01/2023] Open
Abstract
11'-α-Tocomonoenol (11'-αT1) is structurally related to vitamin E and has been quantified in the microalgae Tetraselmis sp. and Nannochloropsis oceanica. However, it is not known whether 11'-αT1 is present in other microalgae independent of species and origin. The aim of this study was to analyze the tocochromanol profiles of Chlorella sorokiniana, Nannochloropsis limnetica, and Tetraselmis suecica and to determine if 11'-αT1 is present in these microalgae. Cultured microalgae were freeze-dried and the presence and identity of α-tocomonoenols were confirmed by LC-MSn (liquid chromatography coupled to mass spectroscopy) and GC-MS (gas chromatography coupled to mass spectroscopy). Tocochromanol profiles were determined by HPLC-FLD (liquid chromatography with fluorescence detection) and fatty acid profiles (as fatty acid methyl esters; FAME) by GC-MS. As confirmed by LC-MSn and GC-MS, 11'-αT1 was the dominant αT1 isomer in cultured microalgae instead of 12'-αT1, the isomer also known as marine-derived tocopherol. αT1 represented less than 1% of total tocochromanols in all analyzed samples and tended to be more abundant in microalgae with higher proportions of polyunsaturated fatty acids. In conclusion, our findings confirm that αT1 is not restricted to terrestrial photosynthetic organisms, but can also accumulate in microalgae of different species, with 11'-αT1-and not the marine-derived tocopherol (12'-αT1)-as the predominant αT1 isomer.
Collapse
Affiliation(s)
- Alexander Montoya-Arroyo
- Department of Food Biofunctionality (140b), Institute of Nutritional Sciences, University of Hohenheim, Garbenstrasse 28, 70599 Stuttgart, Germany; (A.M.-A.); (A.M.-G.)
| | - Katja Lehnert
- Department of Food Chemistry (170b), Institute of Food Chemistry, University of Hohenheim, 70599 Stuttgart, Germany; (K.L.); (W.V.)
| | - Alejandra Muñoz-González
- Department of Food Biofunctionality (140b), Institute of Nutritional Sciences, University of Hohenheim, Garbenstrasse 28, 70599 Stuttgart, Germany; (A.M.-A.); (A.M.-G.)
- School of Food Technology, Universidad de Costa Rica, San Pedro 11501-2060, Costa Rica
| | - Ulrike Schmid-Staiger
- Innovation Field Algae Biotechnology-Development, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, 70569 Stuttgart, Germany;
| | - Walter Vetter
- Department of Food Chemistry (170b), Institute of Food Chemistry, University of Hohenheim, 70599 Stuttgart, Germany; (K.L.); (W.V.)
| | - Jan Frank
- Department of Food Biofunctionality (140b), Institute of Nutritional Sciences, University of Hohenheim, Garbenstrasse 28, 70599 Stuttgart, Germany; (A.M.-A.); (A.M.-G.)
| |
Collapse
|
7
|
Lux PE, Fuchs L, Wiedmaier-Czerny N, Frank J. Oxidative stability of tocochromanols, carotenoids, and fatty acids in maize (Zea mays L.) porridges with varying phytate concentrations during cooking and in vitro digestion. Food Chem 2022; 378:132053. [PMID: 35033718 DOI: 10.1016/j.foodchem.2022.132053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/06/2021] [Accepted: 01/02/2022] [Indexed: 01/01/2023]
Abstract
Phytic acid, the main storage form of phosphate in maize (Zea mays L.) grains, is known as antinutrient due to its chelating properties but may also prevent oxidation. Thus, the impact of phytic acid on the degradation of tocochromanols, carotenoids, fatty acids, and oxidation products in maize during cooking and subsequent in vitro digestion was examined. Maize porridges from low phytic acid maize flour with or without admixed phytate, or from high phytic acid maize flour were prepared, and digestion experiments conducted. HPLC-(MS) or GC-MS analyses revealed a significant decrease in tocochromanols, carotenoids, and unsaturated fatty acids in the digesta compared to the maize porridges while α-tocopherylquinone and malondialdehyde concentrations increased. The addition of phytic acid did not affect the digestive stabilities of total tocochromanols and carotenoids, but increased micellarisation efficiencies of carotenoids. In conclusion, phytate did not exert antioxidant effects in maize porridge during cooking or simulated digestion.
Collapse
Affiliation(s)
- Peter E Lux
- Institute of Nutritional Sciences, Department of Food Biofunctionality, University of Hohenheim, Garbenstrasse 28, 70599 Stuttgart, Germany
| | - Larissa Fuchs
- Institute of Nutritional Sciences, Department of Food Biofunctionality, University of Hohenheim, Garbenstrasse 28, 70599 Stuttgart, Germany
| | - Nina Wiedmaier-Czerny
- Institute of Food Chemistry, Department of Food Chemistry, University of Hohenheim, Garbenstrasse 28, 70599 Stuttgart, Germany
| | - Jan Frank
- Institute of Nutritional Sciences, Department of Food Biofunctionality, University of Hohenheim, Garbenstrasse 28, 70599 Stuttgart, Germany.
| |
Collapse
|