1
|
Choque-Delgado GT, Condo-Mamani AR, Quispe-Sucso MG, Hamaker BR. Nutritional and Functional Value of Andean Native Legumes and Their Potential Industrial Application. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024:10.1007/s11130-024-01233-3. [PMID: 39251475 DOI: 10.1007/s11130-024-01233-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/23/2024] [Indexed: 09/11/2024]
Abstract
Legumes are edible seeds that have high nutritional and functional value. Their cultivation and consumption turn out to be an alternative to hunger and guarantee food security in vulnerable populations. This manuscript explores the nutritional and functional properties and potential uses of native Andean legumes such as Pajuro, Tarhui, Common bean, and Lima beans. They contain macro and micronutrients and bioactive compounds with antioxidant, antimicrobial, antidiabetic, and antihypertensive that benefit consumer health. These compounds are particular proteins, peptides, polyphenols, alkaloids, vitamins, minerals, and among others. Moreover, Andean legumes have shown industrial potential due to their technological properties that could be useful in adding value to other food products. These properties are due to their content of starch, oil, fiber, and protein that could facilitate their processing and obtain products with adequate sensory characteristics. Andean legumes have good nutritional and functional value and have the potential to be included in daily diets. Given the accumulated evidence, we believe that the consumption of Andean legumes in nature and processed should be strongly encouraged.
Collapse
Affiliation(s)
- Grethel Teresa Choque-Delgado
- Departamento Académico de Ingeniería de Industrias Alimentarias, Universidad Nacional de San Agustín de Arequipa, Arequipa, Perú.
| | - Ana Rosmery Condo-Mamani
- Departamento Académico de Ingeniería de Industrias Alimentarias, Universidad Nacional de San Agustín de Arequipa, Arequipa, Perú
| | - Maribel Gabriela Quispe-Sucso
- Departamento Académico de Ingeniería de Industrias Alimentarias, Universidad Nacional de San Agustín de Arequipa, Arequipa, Perú
| | - Bruce R Hamaker
- Whistler Center for Carbohydrate Research and Department of Food Science, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
2
|
Ortiz-Sempértegui J, Ibieta G, Tullberg C, Peñarrieta JM, Linares-Pastén JA. Chemical Characterisation of New Oils Extracted from Cañihua and Tarwi Seeds with Different Organic Solvents. Foods 2024; 13:1982. [PMID: 38998488 PMCID: PMC11240921 DOI: 10.3390/foods13131982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/13/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Vegetable oils are rich in health-beneficial compounds, including fatty acids, phenolic compounds, natural antioxidants, and fat-soluble vitamins. However, oil extraction methods can influence their composition. This study aims to understand the chemical basis for developing a green process to extract oils from two Andean seeds, cañihua (Chenopodium pallidicaule) and tarwi (Lupinus mutabilis). Ethanol, considered a green solvent, is compared to petroleum ether used at the laboratory level and hexane used at the industrial scale for extracting oils. The extraction efficiency is assessed in terms of yield, fatty acids profile, polar and neutral lipids, tocopherols, phenolic compounds, and antioxidant capacity. The chemical composition of edible commercial oils, such as sunflower, rapeseed, and olive oils, was used as a reference. Hexane had the highest extraction yield, followed by petroleum ether and ethanol. However, the oils extracted with ethanol having yields of tarwi 15.5% and cañihua 5.8%, w/w showed the significatively superior content of tocopherols (α, γ, and δ); phenolic compounds; and antioxidant capacity. In addition, ethanol-extracted (EE) oils have higher levels of polar lipids, such as phosphatidylcholine and phosphatidylinositol, than those extracted with the other solvents. Remarkably, EE oils presented comparable or slightly higher levels of monounsaturated fatty acids than those extracted with hexane. Finally, compared to the commercial oils, tarwi and cañihua EE oils showed lower but acceptable levels of oleic, linoleic and palmitic acids and a wider variety of fatty acids (10 and 13, respectively). The composition of tarwi and cañahua oils extracted with ethanol includes compounds associated with nutritional and health benefits, providing a sustainable alternative for oil production.
Collapse
Affiliation(s)
- Jimena Ortiz-Sempértegui
- Biotechnology, Faculty of Engineering LTH, Lund University, P.O. Box 117, S-221 00 Lund, Sweden
- Instituto de Investigaciones Químicas IIQ, Universidad Mayor de San Andrés UMSA, Av. Villazón N° 1995, 0201-0220 La Paz, Bolivia
| | - Gabriela Ibieta
- Biotechnology, Faculty of Engineering LTH, Lund University, P.O. Box 117, S-221 00 Lund, Sweden
- Instituto de Investigaciones Químicas IIQ, Universidad Mayor de San Andrés UMSA, Av. Villazón N° 1995, 0201-0220 La Paz, Bolivia
| | - Cecilia Tullberg
- Biotechnology, Faculty of Engineering LTH, Lund University, P.O. Box 117, S-221 00 Lund, Sweden
| | - J. Mauricio Peñarrieta
- Instituto de Investigaciones Químicas IIQ, Universidad Mayor de San Andrés UMSA, Av. Villazón N° 1995, 0201-0220 La Paz, Bolivia
| | | |
Collapse
|
3
|
Timón ML, Andrés AI, Petrón MJ. Antioxidant Activity of Aqueous Extracts Obtained from By-Products of Grape, Olive, Tomato, Lemon, Red Pepper and Pomegranate. Foods 2024; 13:1802. [PMID: 38928744 PMCID: PMC11202578 DOI: 10.3390/foods13121802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/29/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
The aim of this work was to study the antioxidant potential of aqueous extracts obtained from different by-products. The effectiveness of these extracts was compared with that of rosemary extract. Total phenol carotenoid and vitamin C contents, as well as in vitro antioxidant activity, were assessed. Phenol content was positively correlated with in vitro antioxidant activity in extracts, while carotenoids showed a less clear relationship. Vitamin C was associated with antioxidant activity in lemon and pepper pomace extracts. Extracts from olive, grape, and lemon by-products displayed the highest antioxidant activity (radical scavenging activity), this being similar to the activity of rosemary extracts. Moreover, the phenolic profile of the extracts was analyzed, revealing diverse phenolic compounds. Rosemary extracts contained the highest variety and quantity of phenolic compounds, while olive pomace extracts were rich in hydroxytyrosol and 4-hydroxybenzoic acid. Lemon and pepper extracts contained high amounts of tyrosol, and tomato extracts had abundant epicatechin. The PCA analysis distinguished extracts based on in vitro antioxidant activity, phenol, carotenoid, and vitamin C content, along with their phenolic compound profiles. This study emphasizes the capacity of aqueous extract by-products as valuable sources of antioxidants and highlights the importance of understanding their bioactive components.
Collapse
Affiliation(s)
- María Luisa Timón
- Food Technology Department, School of Agricultural Engineering, University of Extremadura, 06007 Badajoz, Spain; (A.I.A.); (M.J.P.)
| | | | | |
Collapse
|
4
|
Tian Y, Cortés-Avendaño P, Yang B, Glorio-Paulet P, Repo-Carrasco-Valencia R, Suomela JP. Flavonoid diversity in bitter and debittered seeds of Andean lupin (Lupinus mutabilis Sweet). Food Chem 2024; 442:138411. [PMID: 38271901 DOI: 10.1016/j.foodchem.2024.138411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/27/2024]
Abstract
Seeds of ten Andean lupin (Lupinus mutabilis Sweet) ecotypes were collected from different regions of Peru and treated with an aqueous debittering method. Both untreated and treated seeds were analyzed by using LC-MS to investigate flavonoid profiles of different ecotypes and impact of debittering process on these compounds. Thirteen isoflavones (mainly as glycosides of genistein and methoxy-genistein) and eight flavones (glycosylated apigenins and methyl-luteolins) were characterized as the main flavonoids in the seed samples. The untreated lupin seeds contained 187-252 mg/100 g (dry weight) of flavonoids. The main difference among lupin ecotypes was observed in the levels of genistein-malonylhexoside, methoxy-genistein-malonylhexoside, and methyl-luteolin-malonylhexoside. After the debittering treatment, the total flavonoid content in the seeds was decreased to 125-203 mg/100 g dry weight, the aglycones of genistein, methoxy-genistein, and methyl-luteolin being the key distinguishing compounds of ecotypes. The aqueous treatment was effective in degrading flavonoid glycosides and releasing the corresponding aglycones.
Collapse
Affiliation(s)
- Ye Tian
- Food Sciences, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland
| | - Paola Cortés-Avendaño
- Facultad de Industrias Alimentarias, Innovative Technology, Food and Health Research Group, Universidad Nacional Agraria La Molina-UNALM, Av. La Molina s/n, Lima, Peru
| | - Baoru Yang
- Food Sciences, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland
| | - Patricia Glorio-Paulet
- Food Chemistry and Biochemistry Associated with Food Safety and Stability Group, Instituto de Investigación de Bioquímica y Biología Molecular (UNALM-IIBBM), Av. La Molina s/n, Lima, Peru
| | - Ritva Repo-Carrasco-Valencia
- Centro de Investigación e Innovación en Productos Derivados de Cultivos Andinos (CIINCA), Universidad Nacional Agraria La Molina-UNALM, Av. La Molina s/n, Lima, Peru
| | - Jukka-Pekka Suomela
- Food Sciences, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland.
| |
Collapse
|
5
|
Spina A, Summo C, Timpanaro N, Canale M, Sanfilippo R, Amenta M, Strano MC, Allegra M, Papa M, Pasqualone A. Lupin as Ingredient in Durum Wheat Breadmaking: Physicochemical Properties of Flour Blends and Bread Quality. Foods 2024; 13:807. [PMID: 38472920 DOI: 10.3390/foods13050807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
The popularity of adding pulse flours to baked goods is growing rapidly due to their recognised health benefits. In this study, increasing amounts (3, 7, 10, and 15%) of white lupin flour (Lupinus albus L.) and of protein concentrate from narrow-leaved lupin (Lupinus angustifolius L.) were used as replacements for durum wheat semolina to prepare bread, and their effects on the physicochemical properties of the flour blends, as well as the technological and sensory qualities of bread, were evaluated. The addition of protein concentrate from narrow-leaved lupin and white lupin flour increased the water binding capacity and the leavening rate compared to pure semolina. A farinograph test indicated that the dough development time had a slight but significant tendency to increase with the addition of lupin flour and protein concentrate of narrow-leaved lupin, while had a negative effect on the stability of dough. The alveograph strength decreased (225, 108, and 76 × 10-4 J for dough made with semolina, 15% of protein concentrate from narrow-leaved lupin, and 15% of white lupin flour, respectively), whereas there was an upward trend in the P/L ratio. Compared to re-milled semolina, the samples with lupin flour and protein concentrate from narrow-leaved lupin had low amylase activity, with falling number values ranging from 439 s to 566 s. The addition of the two different lupin flours lowered the specific volumes of the breads (2.85, 2.39, and 1.93 cm3/g for bread made from semolina, from 15% of protein concentrate from narrow-leaved lupin, and from 15% of white lupin flour, respectively) and increased their hardness values (up to 21.34 N in the bread with 15% of protein concentrate from narrow-leaved lupin). The porosity of the loaves was diminished with the addition of the two lupin flours (range of 5-8). The sensory analysis showed that the addition of white lupin flour or protein concentrate from narrow-leaved lupin did not impart any unpleasant flavours or odours to the bread. To conclude, the use of lupin in breadmaking requires adjustments to strengthen the gluten network but does not require a deflavouring process.
Collapse
Affiliation(s)
- Alfio Spina
- Research Centre for Cereal and Industrial Crops, Council for Agricultural Research and Economics (CREA), Corso Savoia, 190, 95024 Acireale, Italy
| | - Carmine Summo
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola, 165/A, 70126 Bari, Italy
| | - Nicolina Timpanaro
- Research Centre for Olive, Fruit and Citrus Crops, Council for Agricultural Research and Economics (CREA), Corso Savoia, 190, 95024 Acireale, Italy
| | - Michele Canale
- Research Centre for Cereal and Industrial Crops, Council for Agricultural Research and Economics (CREA), Corso Savoia, 190, 95024 Acireale, Italy
| | - Rosalia Sanfilippo
- Research Centre for Cereal and Industrial Crops, Council for Agricultural Research and Economics (CREA), Corso Savoia, 190, 95024 Acireale, Italy
| | - Margherita Amenta
- Research Centre for Olive, Fruit and Citrus Crops, Council for Agricultural Research and Economics (CREA), Corso Savoia, 190, 95024 Acireale, Italy
| | - Maria Concetta Strano
- Research Centre for Olive, Fruit and Citrus Crops, Council for Agricultural Research and Economics (CREA), Corso Savoia, 190, 95024 Acireale, Italy
| | - Maria Allegra
- Research Centre for Olive, Fruit and Citrus Crops, Council for Agricultural Research and Economics (CREA), Corso Savoia, 190, 95024 Acireale, Italy
| | - Martina Papa
- Research Centre for Olive, Fruit and Citrus Crops, Council for Agricultural Research and Economics (CREA), Corso Savoia, 190, 95024 Acireale, Italy
| | - Antonella Pasqualone
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola, 165/A, 70126 Bari, Italy
| |
Collapse
|
6
|
Plustea L, Dossa S, Dragomir C, Cocan I, Negrea M, Obistioiu D, Poiana MA, Voica D, Berbecea A, Alexa E. Comparative Study of the Nutritional, Phytochemical, Sensory Characteristics and Glycemic Response of Cookies Enriched with Lupin Sprout Flour and Lupin Green Sprout. Foods 2024; 13:656. [PMID: 38472769 DOI: 10.3390/foods13050656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
This study aimed to compare the nutritional, phytochemical, and sensory characteristics of wheat flour (WF) cookies enriched with different proportions of lupin sprout flour (LSF) and those with different proportions of lupin green sprout (LGS). To achieve this, a control cookie (CC); three cookies with 10%, 20%, and 30% of LSF, respectively, CLSF1, CLSF2, and CLSF3; and three other cookies (CLGS1, CLGS2, and CLGS3) with 10%, 20%, and 30%, respectively, were produced. The proximate composition of each cookie was analyzed using AOAC methods. Also, the measurements of the total polyphenol content, antioxidant activity, individual polyphenols, glycemic index, and a sensory analysis were carried out using recent and accurate methods. The contribution of the main nutrients from 100 g of product to the required daily dose was also calculated. Data analysis revealed that cookies with LSF were richer than cookies with LGS in protein, fat, and energy values. CLGS3 was 35.12%, 1.45%, and 5.0% lower in protein, fat, and energy content than CLSF3, respectively. On the other hand, CLSF3 was lower than CLGS3, with 48.2% and 12.4% in moisture and mineral substances, respectively. Both cookies were lower in carbohydrates than the CC (65.20 g/100 g). Still on the subject of micro- and macronutrients, cookies with LSF were richer than those with LGS in all the minerals analyzed. The study also revealed improvements in phytochemical properties, such as total and individual polyphenols and antioxidant activity with the percentage of lupin sprout flour addition. The sensory analysis revealed that, for LSF and LGS cookies, the 10% samples were the most appreciated by consumers, irrespective of the sensory attributes studied. The glycemic index of the CLSF2 product was lower compared to the CC. This study shows that the LSF cookies have better nutritional, phytochemical, and sensory values than the LGS cookies. LSF is, therefore, better suited than LGS to the enrichment of bakery products in general and cookies in particular. The paper provides significant information to estimate the contribution of the consumption of functional products based on lupin sprouts to the required daily dose of food nutrients and the impact on the glycemic index of fortified products.
Collapse
Affiliation(s)
- Loredana Plustea
- Faculty of Food Engineering, University of Life Sciences "King Mihai I" from Timisoara, Aradului Street No 119, 300645 Timisoara, Romania
| | - Sylvestre Dossa
- Faculty of Food Engineering, University of Life Sciences "King Mihai I" from Timisoara, Aradului Street No 119, 300645 Timisoara, Romania
| | - Christine Dragomir
- Faculty of Food Engineering, University of Life Sciences "King Mihai I" from Timisoara, Aradului Street No 119, 300645 Timisoara, Romania
| | - Ileana Cocan
- Faculty of Food Engineering, University of Life Sciences "King Mihai I" from Timisoara, Aradului Street No 119, 300645 Timisoara, Romania
| | - Monica Negrea
- Faculty of Food Engineering, University of Life Sciences "King Mihai I" from Timisoara, Aradului Street No 119, 300645 Timisoara, Romania
| | - Diana Obistioiu
- Faculty of Agriculture, University of Life Sciences "King Mihai I" from Timisoara, Aradului Street No 119, 300645 Timisoara, Romania
| | - Mariana-Atena Poiana
- Faculty of Food Engineering, University of Life Sciences "King Mihai I" from Timisoara, Aradului Street No 119, 300645 Timisoara, Romania
| | - Daniela Voica
- Romanian Association of Milling and Bakery (ROMPAN), Calea Plevnei nr. 145, București, Sector 6, 060012 Bucharest, Romania
| | - Adina Berbecea
- Faculty of Agriculture, University of Life Sciences "King Mihai I" from Timisoara, Aradului Street No 119, 300645 Timisoara, Romania
| | - Ersilia Alexa
- Faculty of Food Engineering, University of Life Sciences "King Mihai I" from Timisoara, Aradului Street No 119, 300645 Timisoara, Romania
| |
Collapse
|
7
|
Estivi L, Brandolini A, Gasparini A, Hidalgo A. Lupin as a Source of Bioactive Antioxidant Compounds for Food Products. Molecules 2023; 28:7529. [PMID: 38005249 PMCID: PMC10673580 DOI: 10.3390/molecules28227529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Four species of lupin (white lupin, yellow lupin, blue lupin and Andean lupin) are widely cropped thanks to the excellent nutritional composition of their seeds: high protein content (28-48 g/100 g); good lipid content (4.6-13.5 g/100 g, but up to 20.0 g/100 g in Andean lupin), especially unsaturated triacylglycerols; and richness in antioxidant compounds like carotenoids, tocols and phenolics. Particularly relevant is the amount of free phenolics, highly bioaccessible in the small intestine. However, the typical bitter and toxic alkaloids must be eliminated before lupin consumption, hindering its diffusion and affecting its nutritional value. This review summarises the results of recent research in lupin composition for the above-mentioned three classes of antioxidant compounds, both in non-debittered and debittered seeds. Additionally, the influence of technological processes to further increase their nutritional value as well as the effects of food manufacturing on antioxidant content were scrutinised. Lupin has been demonstrated to be an outstanding raw material source, superior to most crops and suitable for manufacturing foods with good antioxidant and nutritional properties. The bioaccessibility of lupin antioxidants after digestion of ready-to-eat products still emerges as a dearth in current research.
Collapse
Affiliation(s)
- Lorenzo Estivi
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy; (L.E.); (A.H.)
| | - Andrea Brandolini
- Council for Agricultural Research and Economics, Research Centre for Animal Production and Aquaculture (CREA-ZA), Via Piacenza 29, 26900 Lodi, Italy;
| | - Andrea Gasparini
- Council for Agricultural Research and Economics, Research Centre for Animal Production and Aquaculture (CREA-ZA), Via Piacenza 29, 26900 Lodi, Italy;
| | - Alyssa Hidalgo
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy; (L.E.); (A.H.)
| |
Collapse
|
8
|
Schmidt HDO, Oliveira VRD. Overview of the Incorporation of Legumes into New Food Options: An Approach on Versatility, Nutritional, Technological, and Sensory Quality. Foods 2023; 12:2586. [PMID: 37444324 DOI: 10.3390/foods12132586] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/30/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Consumers are more aware and demanding of healthy food options, besides being concerned with environment-friendly consumption. This paper aims to evaluate nutritional, technological, and sensory characteristics of legumes and their products' quality and versatility, considering potential applications in new food options. Legumes are foods that have a recognized nutritional group since they have high protein and fiber content. However, their consumption is still somehow limited for some reasons: in some countries it is not easy to find all the species or cultivars, they need an organization and planning before preparation since they need soaking, and there is the presence of antinutritional factors. Due to the different functionalities of legume proteins, they can be applied to a variety of foods and for different purposes, as grains themselves, aquafaba, extracts, flours, brans, and textured proteins and sprouts. These products have been inserted as ingredients in infant food formulations, gluten-free foods, vegetarian diets, and in hybrid products to reduce food costs as well. Foods such as bread, cakes, cookies, meat analogues, and other baked or cooked products have been elaborated with nutritional, technological and sensory quality. Further development of formulations focused on improving the quality of legume-based products is necessary because of their potential and protein quality.
Collapse
Affiliation(s)
- Helena de Oliveira Schmidt
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, RS, Brazil
| | - Viviani Ruffo de Oliveira
- Postgraduate Program in Food, Nutrition and Health, Nutrition Department, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, RS, Brazil
| |
Collapse
|
9
|
Betrouche A, Estivi L, Colombo D, Pasini G, Benatallah L, Brandolini A, Hidalgo A. Antioxidant Properties of Gluten-Free Pasta Enriched with Vegetable By-Products. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248993. [PMID: 36558126 PMCID: PMC9784952 DOI: 10.3390/molecules27248993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
The only therapy for coeliac disease patients is to completely avoid foods containing gluten, a protein complex common in several small-grain cereals. However, many alternative gluten-free foods available on the market present nutritional deficiencies. Therefore, the aim of this research was to evaluate the composition and the antioxidant properties of gluten-free pasta enriched with 10% or 15% of tomato waste or linseed meal, two food industry by-products. The traits analysed were protein, lipid, ash and fibre content, heat damage, tocols, carotenoids and phenolics composition (by HPLC), antioxidant capacity, and pasta fracturability. The enriched pastas contained more fibre and lipids than the control, while the protein and ash values were similar. The addition of tomato and linseed waste improved tocols concentration but had no effect on carotenoids content. The free soluble polyphenols increase was similar for both by-products and proportional to the enrichment percentage, while the bound insoluble polyphenols were higher in linseed-enriched pastas. The samples with linseed meal showed the greatest antioxidant capacity and, at 10% addition, the highest fracturability value. In conclusion, the addition of tomato and linseed by-products significantly increases the presence of bioactive compounds (particularly polyphenols), improving the nutritional value of gluten-free pasta.
Collapse
Affiliation(s)
- Amel Betrouche
- Food Engineering Laboratory, Institute of Nutrition, Food and Agri-Food Technologies (GéniAAl-INATAA), University Frères Mentouri Constantine 1 (UFMC1), 325 Route de Ain El Bey, Constantine 25017, Algeria
| | - Lorenzo Estivi
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - Davide Colombo
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - Gabriella Pasini
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Viale dell’ Università 16, 35020 Legnaro, Italy
| | - Leila Benatallah
- Food Engineering Laboratory, Institute of Nutrition, Food and Agri-Food Technologies (GéniAAl-INATAA), University Frères Mentouri Constantine 1 (UFMC1), 325 Route de Ain El Bey, Constantine 25017, Algeria
| | - Andrea Brandolini
- Research Centre for Animal Production and Aquaculture (CREA-ZA), Council for Agricultural Research and Economics, Via Piacenza 29, 26900 Lodi, Italy
- Correspondence: (A.B.); (A.H.); Tel.: +39-0371-404750 (A.B.); +39-02-50319189 (A.H.)
| | - Alyssa Hidalgo
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Celoria 2, 20133 Milan, Italy
- Correspondence: (A.B.); (A.H.); Tel.: +39-0371-404750 (A.B.); +39-02-50319189 (A.H.)
| |
Collapse
|
10
|
Estivi L, Fusi D, Brandolini A, Hidalgo A. Effect of Debittering with Different Solvents and Ultrasound on Carotenoids, Tocopherols, and Phenolics of Lupinus albus Seeds. Antioxidants (Basel) 2022; 11:antiox11122481. [PMID: 36552688 PMCID: PMC9774723 DOI: 10.3390/antiox11122481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/11/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Lupin seeds represent a rich nutritional source of bioactive compounds, including antioxidant molecules such as carotenoids, tocopherols, and phenolics. However, before consumption, the lupin seeds must be debittered in order to remove their bitter and toxic alkaloids. This study analyzed the impact on the bioactive compounds of Lupinus albus seeds of a recent time- and water-saving debittering method, which employs alternative washing solutions (0.5% or 1% of either NaCl or citric acid), with or without the assistance of ultrasound. The results were compared with those of two control methods using water or a NaCl solution. The sonication, when it was significant, led to a large loss of bioactive compounds, which was most likely due to its extraction capability. The seeds that were debittered without ultrasound presented high concentrations of tocopherols (172.8-241.3 mg/kg DM), carotenoids (10.9-25.1 mg/kg DM), and soluble-free (106.9-361.1 mg/kg DM), soluble-conjugated (93.9-118.9 mg/kg DM), and insoluble-bound (59.2-156.7 mg/kg DM) phenolics. The soluble-free fraction showed the greatest loss after a prolonged treatment. Overall, debittering with citric acid or NaCl preserved the highest concentration of antioxidant compounds by shortening the treatment time, thus preventing extensive leaching.
Collapse
Affiliation(s)
- Lorenzo Estivi
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
- Correspondence: (L.E.); (A.H.); Tel.: +39-02-50319189 (A.H.)
| | - Davide Fusi
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| | - Andrea Brandolini
- Research Centre for Animal Production and Aquaculture (CREA-ZA), Council for Agricultural Research and Economics, Via Piacenza 29, 26900 Lodi, Italy
| | - Alyssa Hidalgo
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
- Correspondence: (L.E.); (A.H.); Tel.: +39-02-50319189 (A.H.)
| |
Collapse
|
11
|
Estivi L, Pellegrino L, Hogenboom JA, Brandolini A, Hidalgo A. Antioxidants of Amaranth, Quinoa and Buckwheat Wholemeals and Heat-Damage Development in Pseudocereal-Enriched Einkorn Water Biscuits. Molecules 2022; 27:7541. [PMID: 36364365 PMCID: PMC9654256 DOI: 10.3390/molecules27217541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 07/30/2023] Open
Abstract
A viable approach to improve the nutritional quality of cereal-based foods is their enrichment with pseudocereals. The aim of this research was to evaluate the antioxidant properties of amaranth, quinoa and buckwheat, and the heat damage of water biscuits (WB) produced from either wholemeal or refined flour of einkorn and enriched with 50% buckwheat, amaranth or quinoa wholemeal. Buckwheat had the highest tocols content (86.2 mg/kg), and einkorn the most carotenoids (5.6 mg/kg). Conjugated phenolics concentration was highest in buckwheat (230.2 mg/kg) and quinoa (218.6 mg/kg), while bound phenolics content was greatest in einkorn (712.5 mg/kg) and bread wheat (675.7 mg/kg). The all-wholemeal WB had greater heat damage than those containing refined flour (furosine: 251.5 vs. 235.8 mg/100 g protein; glucosylisomaltol: 1.0 vs. 0.6 mg/kg DM; hydroxymethylfurfural: 4.3 vs. 2.8 mg/kg DM; furfural: 8.6 vs. 4.8 mg/kg DM). The 100% bread wheat and einkorn wholemeal WB showed greater heat damage than the WB with pseudocereals (furfural, 9.2 vs. 5.1 mg/kg; glucosylisomaltol 1.1 vs. 0.7 mg/kg). Despite a superior lysine loss, the amino-acid profile of the pseudocereals-enriched WB remained more balanced compared to that of the wheats WB.
Collapse
Affiliation(s)
- Lorenzo Estivi
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| | - Luisa Pellegrino
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| | - Johannes A. Hogenboom
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| | - Andrea Brandolini
- Consiglio per la Ricerca in Agricoltura e L’analisi Dell’economia Agraria–Centro di Ricerca Zootecnia e Acquacoltura (CREA-ZA), Viale Piacenza 29, 26900 Lodi, Italy
| | - Alyssa Hidalgo
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| |
Collapse
|
12
|
Hadidi M, Orellana-Palacios JC, Aghababaei F, Gonzalez-Serrano DJ, Moreno A, Lorenzo JM. Plant by-product antioxidants: Control of protein-lipid oxidation in meat and meat products. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
13
|
Protein Quality and Sensory Perception of Hamburgers Based on Quinoa, Lupin and Corn. Foods 2022; 11:foods11213405. [DOI: 10.3390/foods11213405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/29/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022] Open
Abstract
The need for partial or total substitution of animal protein sources by vegetable sources of high protein quality with good sensory acceptance is a promising alternative. The objective was to develop a hamburger with vegetable protein using a mixture design based on quinoa (Chenopodium quinoa Willd.), Peruvian Andean corn (Zea mays) and Andean lupine (Lupinus mutabilis Sweet). The design of these mixtures allowed obtaining eleven formulations, three of which were selected for complying with the amino acid intake for adults recommended by FAO. Then, a completely randomized design was applied to the selected samples plus a commercial product. Proximal composition was measured on a dry basis (protein, fat, carbohydrates, and ash), calculation of the Protein Digestibility Corrected Amino Acid Score (PDCAAS) and a sensory analysis was carried out using the Check-All-That-Apply (CATA) method with acceptability in 132 regular consumers of vegetarian products. Protein, fat, carbohydrate, and ash contents ranged from 18.5–24.5, 4.1–7.5, 65.4–72.1 and 2.8–5.9%, respectively. The use of Andean crops favored the protein content and the contribution of sulfur amino acids (SAA) and tryptophan from quinoa and lysine and threonine from lupin. The samples with Andean crops were described as easy to cut, soft, good, healthy, legume flavor, tasty and light brown, however the commercial sample was characterized as difficult to cut, hard, dark brown, uneven color, dry and grainy. The sample with 50% quinoa and 50% lupin was the most acceptable and reached a digestibility of 0.92. It complied with the lysine, threonine, and tryptophan intake, with the exception of SAA, according to the essential amino acid pattern proposed by the Food and Agriculture Organization of the United Nations.
Collapse
|
14
|
Nakov G, Brandolini A, Estivi L, Bertuglia K, Ivanova N, Jukić M, Komlenić DK, Lukinac J, Hidalgo A. Effect of Tomato Pomace Addition on Chemical, Technological, Nutritional, and Sensorial Properties of Cream Crackers. Antioxidants (Basel) 2022; 11:2087. [PMID: 36358460 PMCID: PMC9686889 DOI: 10.3390/antiox11112087] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 09/10/2023] Open
Abstract
The aim of this research was to determine the influence of tomato pomace (TP) addition on the chemical, nutritional, and technological characteristics of cream crackers made from wheat flour and 4%, 6%, 8%, and 10% TP. The TP-enriched cream crackers showed progressively increasing ash (from 0.69 of the control to 1.22 g/100 g dry matter of the 10% TP sample), fat (from 11.39 to 13.04 g/100 g), protein (from 13.53 to 15.60 g/100 g), total dietary fibre (from 4.08 to 7.80), carotenoids (from 0.55 to 8.56 mg/kg), tocols (from 57.59 to 71.63 mg/kg), free phenolic acids (from 100.08 to 277.37 mg/kg), free flavonoids (from 0.0 to 45.28 mg/kg), bound flavonoids (from 0.0 to 27.71 mg/kg), and fatty acids contents, antioxidant activity and dough viscosity. The colour coordinates increased via augmenting the amounts of TP. Thickness, volume, and specific volume decreased gradually with increasing TP; the enrichment reduced cracker hardness from 65.42 N (control) to 26.28 N (crackers with 10% TP), while the snapping force rose. Cream crackers with 8% TP showed the best sensory quality. Tomato pomace addition improves the nutritional quality of foods; furthermore, its recycling will help to solve the problems linked to the disposal of this industry waste.
Collapse
Affiliation(s)
- Gjore Nakov
- College of Sliven, Technical University of Sofia, 59 Bourgasko Shaussee Blvd., 8800 Sliven, Bulgaria
| | - Andrea Brandolini
- Consiglio per la Ricerca in Agricoltura e L’analisi Dell’Economia Agraria—Centro di Ricerca Zootecnia e Acquacoltura (CREA-ZA), Via Forlani 3, 26866 Sant’Angelo Lodigiano, Italy
| | - Lorenzo Estivi
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| | - Katia Bertuglia
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| | - Nastia Ivanova
- College of Sliven, Technical University of Sofia, 59 Bourgasko Shaussee Blvd., 8800 Sliven, Bulgaria
| | - Marko Jukić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Str. Franje Kuhača 18, HR-31000 Osijek, Croatia
| | - Daliborka Koceva Komlenić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Str. Franje Kuhača 18, HR-31000 Osijek, Croatia
| | - Jasmina Lukinac
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Str. Franje Kuhača 18, HR-31000 Osijek, Croatia
| | - Alyssa Hidalgo
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| |
Collapse
|
15
|
Górnaś P, Baškirovs G, Siger A. Free and Esterified Tocopherols, Tocotrienols and Other Extractable and Non-Extractable Tocochromanol-Related Molecules: Compendium of Knowledge, Future Perspectives and Recommendations for Chromatographic Techniques, Tools, and Approaches Used for Tocochromanol Determination. Molecules 2022; 27:6560. [PMID: 36235100 PMCID: PMC9573122 DOI: 10.3390/molecules27196560] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/07/2022] Open
Abstract
Free and esterified (bound) tocopherols, tocotrienols and other tocochromanol-related compounds, often referred to "tocols", are lipophilic antioxidants of great importance for health. For instance, α-tocopherol is the only tocochromanol with vitamin E activity, while tocotrienols have a positive impact on health and are proposed in the prevention and therapy of so-called modern diseases. Tocopherols, tocotrienols and plastochromanol-8 are the most well-known tocochromanols; in turn, knowledge about tocodienols, tocomonoenols, and other rare tocochromanol-related compounds is limited due to several challenges in analytical chemistry and/or low concentration in plant material. The presence of free, esterified, and non-extractable tocochromanols in plant material as well as their biological function, which may be of great scientific, agricultural and medicinal importance, is also poorly studied. Due to the lack of modern protocols as well as equipment and tools, for instance, techniques suitable for the efficient and simultaneous chromatographical separation of major and minor tocochromanols, the topic requires attention and new solutions, and/or standardization, and proper terminology. This review discusses the advantages and disadvantages of different chromatographic techniques, tools and approaches used for the separation and detection of different tocochromanols in plant material and foodstuffs. Sources of tocochromanols and procedures for obtaining different tocochromanol analytical standards are also described. Finally, future challenges are discussed and perspective green techniques for tocochromanol determination are proposed along with best practice recommendations. The present manuscript aims to present key aspects and protocols related to tocochromanol determination, correct identification, and the interpretation of obtained results.
Collapse
Affiliation(s)
- Paweł Górnaś
- Institute of Horticulture, Graudu 1, LV-3701 Dobele, Latvia
| | | | - Aleksander Siger
- Department of Food Biochemistry and Analysis, Poznan University of Life Sciences, Wojska Polskiego 48, 60-637 Poznan, Poland
| |
Collapse
|
16
|
Siger A, Grygier A, Czubinski J. Comprehensive characteristic of lipid fraction as a distinguishing factor of three lupin seed species. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
17
|
Free Phenolic Compounds, Antioxidant Capacity and FT-NIR Survey of Debittered Lupinus mutabilis Seeds. Processes (Basel) 2022. [DOI: 10.3390/pr10081637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Lupinus mutabilis protein-rich seeds must be debittered before consumption. The aim of this research was to assess free phenolic compounds, antioxidant capacity and FT-NIR spectra of flours from debittered seeds of 33 Andean ecotypes of L. mutabilis, and five varieties belonging to L. luteus, L. angustifolius and L. albus, as controls. The free phenolics were quantified by RP-HPLC, while the antioxidant capacity was evaluated spectrophotometrically through the Reducing Power, ABTS, FRAP and DPPH methods. The free phenolics of L. mutabilis were mostly (85.5–99.6%) flavonoids (genistein and genistein derivatives, apigenin, catechin and naringenin). Other compounds, detected in low quantities, were phenylethanoids (tyrosol and tyrosol derivative) and phenolic acids (cinnamic acid derivatives). The highest total free phenolic concentration was observed in H6 INIA BP (1393.32 mg/kg DM), followed by Chacas, Moteado beige, Huánuco and Lircay. The antioxidant capacity of the L. mutabilis ecotypes exceeded that of the controls and was correlated to flavonoids content. Additionally, a relationship between free phenolic compounds and spectral bands was established by FT-NIR, paving the way for a fast, reliable and non-destructive approach to lupin seeds characterisation. Even after debittering, lupin flours maintained high free phenolic concentrations and antioxidant capacity.
Collapse
|
18
|
Estivi L, Buratti S, Fusi D, Benedetti S, Rodriguez G, Brandolini A, Hidalgo A. Alkaloid content and taste profile assessed by electronic tongue of Lupinus albus seeds debittered by different methods. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104810] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
19
|
Plustea L, Negrea M, Cocan I, Radulov I, Tulcan C, Berbecea A, Popescu I, Obistioiu D, Hotea I, Suster G, Boeriu AE, Alexa E. Lupin ( Lupinus spp.)-Fortified Bread: A Sustainable, Nutritionally, Functionally, and Technologically Valuable Solution for Bakery. Foods 2022; 11:2067. [PMID: 35885310 PMCID: PMC9316204 DOI: 10.3390/foods11142067] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/04/2022] [Accepted: 07/08/2022] [Indexed: 02/04/2023] Open
Abstract
The purpose of this paper is to evaluate the nutritional, phytochemical, rheological, technological, and sensory properties of wheat flour dough and bread under a replacement of lupin flour at level 10, 20, and 30%. In this sense, the proximate composition, fatty acids profile, the content in total polyphenols content (TPC), antioxidant activity (AA), and flavonoids content (TFC) of lupin; wheat and flour composites; and the bread obtained from them were determined. The rheological properties of the dough using the Mixolab system were also evaluated. The results showed an improvement in the nutritional properties of bread with addition of lupin in the composite flour, especially in terms of proteins, lipids, and mineral substances and a significant increases of functional attributes, such as TPC, TFC, and AA, which recorded the highest values in the bread with 30% lupin flour (76.50 mg GAE/100 g, 8.54 mg QE/100 g, 54.98%). The decrease of lupin bread volume compared to wheat bread ranged between 0.69-7.37%, porosity between 6.92-35.26%, elasticity between 63-70%, and H/D between 3.17-19.05%. The rheological profile of the dough obtained with lupin flours indicates a moderate stability and proper kneading behavior. The sensory analysis was also performed in order to identify the consumer's acceptability regarding this type of bread. According to a 5-point hedonic scale, the most highly appreciated was the bread with 10% lupin flour, which obtained mean scores of 4.73 for general acceptability as compared with control bread (4.43).
Collapse
Affiliation(s)
- Loredana Plustea
- Faculty of Food Engineering, Banat’s University of Agricultural Sciences and Veterinary Medicine, Calea Aradului No. 119, 300645 Timisoara, Romania; (L.P.); (I.C.); (E.A.)
| | - Monica Negrea
- Faculty of Food Engineering, Banat’s University of Agricultural Sciences and Veterinary Medicine, Calea Aradului No. 119, 300645 Timisoara, Romania; (L.P.); (I.C.); (E.A.)
| | - Ileana Cocan
- Faculty of Food Engineering, Banat’s University of Agricultural Sciences and Veterinary Medicine, Calea Aradului No. 119, 300645 Timisoara, Romania; (L.P.); (I.C.); (E.A.)
| | - Isidora Radulov
- Faculty of Agriculture, Banat’s University of Agricultural Sciences and Veterinary Medicine, Calea Aradului No. 119, 300645 Timisoara, Romania; (I.R.); (A.B.); (I.P.)
| | - Camelia Tulcan
- Faculty of Horticulture and Forestry, Banat’s University of Agricultural Sciences and Veterinary Medicine, Calea Aradului No. 119, 300641 Timisoara, Romania;
| | - Adina Berbecea
- Faculty of Agriculture, Banat’s University of Agricultural Sciences and Veterinary Medicine, Calea Aradului No. 119, 300645 Timisoara, Romania; (I.R.); (A.B.); (I.P.)
| | - Iuliana Popescu
- Faculty of Agriculture, Banat’s University of Agricultural Sciences and Veterinary Medicine, Calea Aradului No. 119, 300645 Timisoara, Romania; (I.R.); (A.B.); (I.P.)
| | - Diana Obistioiu
- Faculty of Veterinary Medicine, Banat’s University of Agricultural Sciences and Veterinary Medicine, Calea Aradului No. 119, 300641 Timisoara, Romania; (D.O.); (I.H.)
| | - Ionela Hotea
- Faculty of Veterinary Medicine, Banat’s University of Agricultural Sciences and Veterinary Medicine, Calea Aradului No. 119, 300641 Timisoara, Romania; (D.O.); (I.H.)
| | - Gabriel Suster
- Faculty of Management and Ago-Tourism, Banat’s University of Agricultural Sciences and Veterinary Medicine, Calea Aradului No. 119, 300645 Timisoara, Romania;
| | - Adriana Elena Boeriu
- Faculty of Food and Tourism, Transilvania University of Brasov, 148 Castelului Str., 500014 Brasov, Romania;
| | - Ersilia Alexa
- Faculty of Food Engineering, Banat’s University of Agricultural Sciences and Veterinary Medicine, Calea Aradului No. 119, 300645 Timisoara, Romania; (L.P.); (I.C.); (E.A.)
| |
Collapse
|