1
|
Hu W, Nie Y, Huang L, Qian D. Contribution of phenolamides to the quality evaluation in Lycium spp. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118220. [PMID: 38657878 DOI: 10.1016/j.jep.2024.118220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/05/2024] [Accepted: 04/16/2024] [Indexed: 04/26/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Goji berry is a general term for various plant species in the genus Lycium. Goji has long been historically used in traditional Chinese medicines. Goji is a representative tonic medicine that has the effects of nourishing the liver and kidney and benefiting the essence and eyesight. It has been widely used in the treatment of various diseases, including tinnitus, impotence, spermatorrhea and blood deficiency, since ancient times. AIM OF THE REVIEW This study aims to comprehensively summarize the quality evaluation methods of the main compounds in goji, as well as the current research status of the phenolamides in goji and their pharmacological effects, to explore the feasibility of using phenolamides as quality control markers and thus improve the quality and efficacy in goji. MATERIALS AND METHODS Relevant literature from PubMed, Web of Science, Science Direct, CNKI and other databases was comprehensively collected, screened and summarized. RESULTS According to the collected literature, the quality evaluation markers of goji in the Pharmacopoeia of the People's Republic of China are Lycium barbarum polysaccharide (LBP) and betaine. As a result of its structure complexity, only the total level of LBP can be determined, while betaine is not prominent in the pharmacological action of goji and lacks species distinctiveness. Neither of them can well explain the quality of goji. KuA and KuB are commonly used as quality evaluation markers of the Lycii cortex because of their high levels and suitable pharmacological activity. Goji is rich in polyphenols, carotenoids and alkaloids. Many studies have used the above compounds to establish quality evaluation methods but the results have not been satisfactory. Phenolamides have often been neglected in previous studies because of their low single compound levels and high separation difficulty. However, in recent years, the favorable pharmacological activities of phenolamides have been gradually recognized, and studies on goji phenolamides are greatly increasing. In addition, phenolamides have higher species distinctiveness than other compounds and can be combined with other compounds to better evaluate the quality of goji to improve its average quality. CONCLUSIONS The phenolamides in the goji are rich and play a key role in antioxidation, anti-inflammation, neuroprotection and immunomodulation. As a result of their characteristics, it is suitable to evaluate the quality by quantitative analysis of multi-components by single-marker and fingerprint. This method can be combined with other techniques to improve the quality evaluation system of goji, which lays a foundation for their effectiveness and provides a reference for new quality evaluation methods of similar herbal medicines.
Collapse
Affiliation(s)
- Wenxiao Hu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yinglan Nie
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Luqi Huang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Dan Qian
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
2
|
Koşar M, Karatoprak GŞ, Atlı B, İlgün S, Köngül Şafak E, Öztinen N, Akçakaya Mutlu S, Ak Sakallı E. Unveiling the Antioxidant, Cytotoxic, and Anti-Inflammatory Activities and Chemical Compositional Information of an Invasive Plant: Lycium ferocissimum Miers. PLANTS (BASEL, SWITZERLAND) 2024; 13:1035. [PMID: 38611563 PMCID: PMC11013897 DOI: 10.3390/plants13071035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/19/2024] [Accepted: 03/15/2024] [Indexed: 04/14/2024]
Abstract
In this study, the antioxidant (DPPH and ABTS radical-scavenging, ferric-reducing, iron (II)-chelating), anti-inflammatory (LPS-induced Raw 264.7 cell line), and cytotoxic activities (Du145 and A549 cell lines) of raw fruit, ripe fruit and leaves of the Lycium ferocissimum species were examined. By using high-pressure liquid chromatography, p-OH benzoic acid, caffeic acid, and rutin were detected in the ethanol and water extracts. For the most active raw fruit ethanol extract, the IC50 in terms of the DPPH-scavenging activity was 0.57 mg/mL, and the ABTS inhibition percentage was 88.73% at a 3 mg/mL concentration. The raw fruit ethanol extract exhibited significant inhibition of viability in the Du145 cell line in the concentration range of 62.5-1000 µg/mL. Additionally, the extract effectively reduced the LPS-induced inflammation parameters (TNF-α, IFN-γ, PGE 2, and NO) at a concentration of 31.25 µg/mL. The biological activities of L. ferocissimum, which have been elucidated for the first time, have yielded promising results.
Collapse
Affiliation(s)
- Müberra Koşar
- Department of Pharmacognosy, Faculty of Pharmacy, Eastern Mediterranean University, North Cyprus, Via Mersin-10, 99628 Famagusta, Türkiye; (B.A.); (N.Ö.); (E.A.S.)
| | - Gökçe Şeker Karatoprak
- Department of Pharmacognosy, Faculty of Pharmacy, Erciyes University, 38039 Kayseri, Türkiye; (G.Ş.K.); (E.K.Ş.)
| | - Beste Atlı
- Department of Pharmacognosy, Faculty of Pharmacy, Eastern Mediterranean University, North Cyprus, Via Mersin-10, 99628 Famagusta, Türkiye; (B.A.); (N.Ö.); (E.A.S.)
| | - Selen İlgün
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Erciyes University, 38039 Kayseri, Türkiye; (S.İ.); (S.A.M.)
| | - Esra Köngül Şafak
- Department of Pharmacognosy, Faculty of Pharmacy, Erciyes University, 38039 Kayseri, Türkiye; (G.Ş.K.); (E.K.Ş.)
| | - Nesrin Öztinen
- Department of Pharmacognosy, Faculty of Pharmacy, Eastern Mediterranean University, North Cyprus, Via Mersin-10, 99628 Famagusta, Türkiye; (B.A.); (N.Ö.); (E.A.S.)
| | - Sena Akçakaya Mutlu
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Erciyes University, 38039 Kayseri, Türkiye; (S.İ.); (S.A.M.)
| | - Ezgi Ak Sakallı
- Department of Pharmacognosy, Faculty of Pharmacy, Eastern Mediterranean University, North Cyprus, Via Mersin-10, 99628 Famagusta, Türkiye; (B.A.); (N.Ö.); (E.A.S.)
| |
Collapse
|
3
|
Qiao J, Cai W, Wang K, Haubruge E, Dong J, El-Seedi HR, Xu X, Zhang H. New Insights into Identification, Distribution, and Health Benefits of Polyamines and Their Derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5089-5106. [PMID: 38416110 DOI: 10.1021/acs.jafc.3c08556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Polyamines and their derivatives are ubiquitously present in free or conjugated forms in various foods from animal, plant, and microbial origins. The current knowledge of free polyamines in foods and their contents is readily available; furthermore, conjugated polyamines generate considerable recent research interest due to their potential health benefits. The structural diversity of conjugated polyamines results in challenging their qualitative and quantitative analysis in food. Herein, we review and summarize the knowledge published on polyamines and their derivatives in foods, including their identification, sources, quantities, and health benefits. Particularly, facing the inherent challenges of isomer identification in conjugated polyamines, this paper provides a comprehensive overview of conjugated polyamines' structural characteristics, including the cleavage patterns and characteristic ion fragments of MS/MS for isomer identification. Free polyamines are present in all types of food, while conjugated polyamines are limited to plant-derived foods. Spermidine is renowned for antiaging properties, acclaimed as antiaging vitamins. Conjugated polyamines highlight their anti-inflammatory properties and have emerged as the mainstream drugs for antiprostatitis. This paper will likely help us gain better insight into polyamines and their derivatives to further develop functional foods and personalized nutraceuticals.
Collapse
Affiliation(s)
- Jiangtao Qiao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
- Terra Research Center, Gembloux Agro-Bio Tech, University of Liege, Gembloux 5030, Belgium
| | - Wenwen Cai
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
- College of Food Engineering, Harbin University of Commerce, Harbin 155023, China
| | - Kai Wang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
- Terra Research Center, Gembloux Agro-Bio Tech, University of Liege, Gembloux 5030, Belgium
| | - Eric Haubruge
- Terra Research Center, Gembloux Agro-Bio Tech, University of Liege, Gembloux 5030, Belgium
| | - Jie Dong
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
- Key Laboratory of Bee Products for Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| | - Hesham R El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, BMC, Uppsala University, Box 591, SE 75124 Uppsala, Sweden
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
| | - Xiang Xu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Hongcheng Zhang
- Key Laboratory of Bee Products for Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| |
Collapse
|
4
|
González-Rodríguez T, García-Lara S. Maize hydroxycinnamic acids: unveiling their role in stress resilience and human health. Front Nutr 2024; 11:1322904. [PMID: 38371498 PMCID: PMC10870235 DOI: 10.3389/fnut.2024.1322904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/18/2024] [Indexed: 02/20/2024] Open
Abstract
Maize production is pivotal in ensuring food security, particularly in developing countries. However, the crop encounters multiple challenges stemming from climatic changes that adversely affect its yield, including biotic and abiotic stresses during production and storage. A promising strategy for enhancing maize resilience to these challenges involves modulating its hydroxycinnamic acid amides (HCAAs) content. HCAAs are secondary metabolites present in plants that are essential in developmental processes, substantially contributing to defense mechanisms against environmental stressors, pests, and pathogens, and exhibiting beneficial effects on human health. This mini-review aims to provide a comprehensive overview of HCAAs in maize, including their biosynthesis, functions, distribution, and health potential applications.
Collapse
Affiliation(s)
| | - Silverio García-Lara
- Tecnologico de Monterrey, School of Engineering and Science, Monterrey, Nuevo León, Mexico
| |
Collapse
|
5
|
Galarce-Bustos O, Obregón C, Vallejos-Almirall A, Folch C, Acevedo F. Application of effect-directed analysis using TLC-bioautography for rapid isolation and identification of antidiabetic compounds from the leaves of Annona cherimola Mill. PHYTOCHEMICAL ANALYSIS : PCA 2023; 34:970-983. [PMID: 37488746 DOI: 10.1002/pca.3265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/26/2023]
Abstract
INTRODUCTION Type 2 diabetes mellitus is a globally prevalent chronic disease characterised by hyperglycaemia and oxidative stress. The search for new natural bioactive compounds that contribute to controlling this condition and the application of analytical methodologies that facilitate rapid detection and identification are important challenges for science. Annona cherimola Mill. is an important source of aporphine alkaloids with many bioactivities. OBJECTIVE The aim of this study is to isolate and identify antidiabetic compounds from alkaloid extracts with α-glucosidase and α-amylase inhibitory activity from A. cherimola Mill. leaves using an effect-directed analysis by thin-layer chromatography (TLC)-bioautography. METHODOLOGY Guided fractionation for α-glucosidase and α-amylase inhibitors in leaf extracts was done using TLC-bioassays. The micro-preparative TLC was used to isolate the active compounds, and the identification was performed by mass spectrometry associated with web-based molecular networks. Additionally, in vitro estimation of the inhibitory activity and antioxidant capacity was performed in the isolated compounds. RESULTS Five alkaloids (liriodenine, dicentrinone, N-methylnuciferine, anonaine, and moupinamide) and two non-alkaloid compounds (3-methoxybenzenepropanoic acid and methylferulate) with inhibitory activity were isolated and identified using a combination of simple methodologies. Anonaine, moupinamide, and methylferulate showed promising results with an outstanding inhibitory activity against both enzymes and antioxidant capacity that could contribute to controlling redox imbalance. CONCLUSIONS These high-throughput methodologies enabled a rapid isolation and identification of seven compounds with potential antidiabetic activity. To our knowledge, the estimated inhibitory activity of dicentrinone, N-methylnuciferine, and anonaine against α-glucosidase and α-amylase is reported here for the first time.
Collapse
Affiliation(s)
- Oscar Galarce-Bustos
- Laboratorio de Farmacognosia, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Camilo Obregón
- Laboratorio de Farmacognosia, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Alejandro Vallejos-Almirall
- Grupo Interdisciplinario de Biotecnología Marina (GIBMAR), Centro de Biotecnología, Universidad de Concepción, Concepción, Chile
| | - Christian Folch
- Departamento de Agroindustrias, Facultad de Ingeniería Agrícola, Universidad de Concepción, Chillán, Chile
| | - Francisca Acevedo
- Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
- Center of Excellence translational Medicine, Scientific and Technological Bioresource Nucleus, BIOREN, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
6
|
Liu H, Liu Y, Han H, Lu C, Chen H, Chai Y. Identification and characterization of phenolamides in tea (Camellia sinensis) flowers using ultra-high-performance liquid chromatography/Q-Exactive orbitrap mass spectrometry. Food Chem 2023; 424:136402. [PMID: 37216782 DOI: 10.1016/j.foodchem.2023.136402] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/24/2023]
Abstract
Phenolamides (PAs) are important secondary metabolites present in plants with multiple bioactivities. This study aims to comprehensively identify and characterize PAs in tea (Camellia sinensis) flowers using ultra-high-performance liquid chromatography/Q-Exactive orbitrap mass spectrometry based on a lab-developed in-silico accurate-mass database. The PAs found in tea flowers were conjugates of Z/E-hydroxycinnamic acids (p-coumaric, caffeic and ferulic acids) with polyamines (putrescine, spermidine and agmatine). The positional and Z/E isomers were distinguished through characteristic MS2 fragmentation rules and chromatographic retention behavior summarized from some synthetic PAs. 21 types of PAs consisting of over 80 isomers were identified, and the majority of them were found in tea flowers for the first time. Among 12 tea flower varieties studied, they all possessed tris-(p-coumaroyl)-spermidine with the highest relative content, and C. sinensis 'Huangjinya' had the highest total relative contents of PAs. This study shows the richness and structural diversity of PAs in tea flowers.
Collapse
Affiliation(s)
- Hongxia Liu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yingying Liu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haolei Han
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chengyin Lu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Hongping Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China.
| | - Yunfeng Chai
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China.
| |
Collapse
|
7
|
Comparative Analysis of the Phenolic Profile of Lycium barbarum L. Fruits from Different Regions in China. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27185842. [PMID: 36144578 PMCID: PMC9501245 DOI: 10.3390/molecules27185842] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/28/2022]
Abstract
Lycium barbarum L. (LB) fruits have high nutritive values and therapeutic effects. The aim of this study was to comprehensively evaluate the differences in phenolic composition of LB fruits from different geographical regions. Different methods of characterization and statistical analysis of data showed that different geographic sources of China could be significantly separated from each other. The highest total phenolic compound (TPC) content was observed in LB fruits from Ningxia (LBN), followed by those from Gansu (LBG) and Qinghai (LBQ). The Fourier transform infrared (FTIR) spectra of LB fruits revealed that LBQ had a peak at 2972 cm−1 whereas there was no similar peak in LBG and LBQ. A new HPLC method was established for the simultaneous determination of 8 phenolic compounds by quantitative analysis of multiple components by a single marker (QAMS), including 4 phenolic acids (chlorogenic acid, caffeic acid, 4-hydroxycinnamic acid, and ferulic acid), 1 coumarin (scopoletin), and 3 flavonoids (kaempferol-3-O-rutinoside, rutin, and narcissoside). It was showed that rutin was the most dominant phenolic compound in LBQ, although the average content of 4 phenolic acids was also high in LBQ, and scopoletin was the richest in LBG. UHPLC-Q-TOF-MS was used to qualitatively analyze the phenolics, which showed LBN was abundant in phenolic acids, LBQ was rich in flavonoids, and coumarins were the most plentiful in LBG. In conclusion, this study can provide references for the quality control and evaluation of phenolics in LB fruits and their by-products.
Collapse
|
8
|
Peraza-Labrador A, Buitrago DM, Coy-Barrera E, Perdomo-Lara SJ. Antiproliferative and Pro-Apoptotic Effects of a Phenolic-Rich Extract from Lycium barbarum Fruits on Human Papillomavirus (HPV) 16-Positive Head Cancer Cell Lines. Molecules 2022; 27:molecules27113568. [PMID: 35684505 PMCID: PMC9182172 DOI: 10.3390/molecules27113568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022] Open
Abstract
The in vitro antiproliferative activity of a phenolic-rich extract from Lycium barbarum fruits against head and neck HPV16 squamous cell carcinoma (OSCC) has been demonstrated, indicating for the first time that L. barbarum extract inhibits human papillomavirus (HPV) type 16 cell lines. Ethanol extract of L. barbarum was used for cell viability evaluation on SCC090, CAL27, and HGnF cell lines. After 24 and 48 h, the cell cycle effect of L. barbarum extract (at 1.0, 10, and 100 µg/mL) was measured via flow cytometry. In addition, the mRNA expression on E6/E7 and p53 via RT-PCR and the expression of p16, p53, Ki-67, and Bcl-2 via immunohistochemistry were also determined. Untreated cells, 20 µM cisplatin, and a Camellia sinensis-derived extract were used as negative and positive controls, respectively. We demonstrated that the studied L. barbarum extract resulted in G0/G1 arrest and S phase accumulation in SCC090 at 1.0 and 10 μg/mL. A reduction in mRNA levels of E6/E7 oncogenes (p < 0.05) with p53 overexpression was also observed through PCR, while immunohistochemical analyses indicated p16 overexpression (p > 0.05) and a decrease in p53 overexpression. The observed effects were associated with anticancer and immunomodulatory phenolics, such as flavonols/flavan-3-ols and tyramine-conjugated hydroxycinnamic acid amides, identified in the studied extract. These findings revealed that the phenolic-rich extract of L. barbarum fruits has promising properties to be considered further for developing new therapies against oral and oropharyngeal HPV lesions.
Collapse
Affiliation(s)
- Alberto Peraza-Labrador
- Unit of Basic Oral Investigation-UIBO, School of Dentistry, Universidad El Bosque, Bogotá 110121, Colombia; (A.P.-L.); (D.M.B.)
- Cellular and Molecular Immunology Group-INMUBO, School of Dentistry, Universidad El Bosque, Bogotá 110121, Colombia
| | - Diana Marcela Buitrago
- Unit of Basic Oral Investigation-UIBO, School of Dentistry, Universidad El Bosque, Bogotá 110121, Colombia; (A.P.-L.); (D.M.B.)
| | - Ericsson Coy-Barrera
- Bioorganic Chemistry Laboratory, Department of Chemistry, Universidad Militar Nueva Granada, Cajicá 250247, Colombia;
| | - Sandra J. Perdomo-Lara
- Cellular and Molecular Immunology Group-INMUBO, School of Dentistry, Universidad El Bosque, Bogotá 110121, Colombia
- Correspondence: ; Tel.: +57-164-89000
| |
Collapse
|
9
|
Chen C, Wang B, Li J, Xiong F, Zhou G. Multivariate Statistical Analysis of Metabolites in Anisodus tanguticus (Maxim.) Pascher to Determine Geographical Origins and Network Pharmacology. FRONTIERS IN PLANT SCIENCE 2022; 13:927336. [PMID: 35845631 PMCID: PMC9277180 DOI: 10.3389/fpls.2022.927336] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/09/2022] [Indexed: 05/17/2023]
Abstract
Anisodus tanguticus (Maxim.) Pascher, has been used for the treatment of septic shock, analgesia, motion sickness, and anesthesia in traditional Tibetan medicine for 2,000 years. However, the chemical metabolites and geographical traceability and their network pharmacology are still unknown. A total of 71 samples of A. tanguticus were analyzed by Ultra-Performance Liquid Chromatography Q-Exactive Mass Spectrometer in combination with chemometrics developed for the discrimination of A. tanguticus from different geographical origins. Then, network pharmacology analysis was used to integrate the information of the differential metabolite network to explore the mechanism of pharmacological activity. In this study, 29 metabolites were identified, including tropane alkaloids, hydroxycinnamic acid amides and coumarins. Principal component analysis (PCA) explained 49.5% of the total variance, and orthogonal partial least-squares discriminant analysis (OPLS-DA) showed good discrimination (R2Y = 0.921 and Q2 = 0.839) for A. tanguticus samples. Nine differential metabolites accountable for such variations were identified through variable importance in the projection (VIP). Through network pharmacology, 19 components and 20 pathways were constructed and predicted for the pharmacological activity of A. tanguticus. These results confirmed that this method is accurate and effective for the geographic classification of A. tanguticus, and the integrated strategy of metabolomics and network pharmacology can explain well the "multicomponent--multitarget" mechanism of A. tanguticus.
Collapse
Affiliation(s)
- Chen Chen
- Chinese Academy of Sciences Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bo Wang
- Chinese Academy of Sciences Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jingjing Li
- College of Life Science, Qinghai Normal University, Xining, China
| | - Feng Xiong
- Chinese Academy of Sciences Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, China
| | - Guoying Zhou
- Chinese Academy of Sciences Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, China
- *Correspondence: Guoying Zhou
| |
Collapse
|
10
|
Lei Z, Chen X, Cao F, Guo Q, Wang J. Phytochemicals and bioactivities of Goji (
Lycium barbarum
L. and
Lycium chinense
Mill.) leaves and their potential applications in the food industry: a review. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15507] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zilun Lei
- Department of Food Science and Engineering College of Light Industry and Food Engineering Nanjing Forestry University Nanjing 210037 China
| | - Xianqiang Chen
- Department of Food Science and Engineering College of Light Industry and Food Engineering Nanjing Forestry University Nanjing 210037 China
| | - Fuliang Cao
- Co‐innovation Center for the Sustainable Forestry in Southern China College of Forestry Nanjing Forestry University Nanjing 210037 China
| | - Qirong Guo
- Co‐innovation Center for the Sustainable Forestry in Southern China College of Forestry Nanjing Forestry University Nanjing 210037 China
| | - Jiahong Wang
- Department of Food Science and Engineering College of Light Industry and Food Engineering Nanjing Forestry University Nanjing 210037 China
- Co‐innovation Center for the Sustainable Forestry in Southern China College of Forestry Nanjing Forestry University Nanjing 210037 China
| |
Collapse
|
11
|
Lv Y, Ma P, Wang J, Xu Q, Fan J, Yan L, Ma P, Zhou R. Betaine alleviates right ventricular failure via regulation of Rho A/ROCK signaling pathway in rats with pulmonary arterial hypertension. Eur J Pharmacol 2021; 910:174311. [PMID: 34245749 DOI: 10.1016/j.ejphar.2021.174311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 01/10/2023]
Abstract
Pulmonary vascular remodeling was shown to lead to pulmonary arterial hypertension (PAH), further trigger excessive apoptosis of cardiomyocytes, and ultimately cause right ventricular failure (RVF), which involves the activation of Rho A/ROCK signaling pathway. Betaine has been found efficacious for attenuating PAH through its anti-inflammatory effects in our previous research while its effects on RVF due to PAH remains inconclusive. Thus, we attempted to elucidate the protective effects of betaine on PAH, RVF due to PAH as well as the potential mechanisms. To this end, male Sprague Dawley rats received a single subcutaneous injection of monocrotaline (50 mg/kg) to imitate PAH and RVF, and subsequently oral administration of betaine (100, 200, and 400 mg/kg/day). Betaine treatment improved the hemodynamics and histomorphological parameters and echocardiographic changes. Moreover, betaine also alleviated the pulmonary vascular remodeling and cardiomyocyte apoptosis. The mechanisms study revealed that administration of betaine significantly increased the expression of Rho A, ROCK1, and ROCK2. Furthermore, betaine alleviated the changes of its downstream molecules P53, Bcl-2, Bax, phosphorylated MYPT1 (p-MYPT1), total MYPT1 (t-MYPT1), p27kip1, and Cleaved Caspase-3. According to what we observed, this study indicated that betaine treatment could protect RVF due to PAH, which may be achieved through an altered Rho A/ROCK signaling pathway.
Collapse
Affiliation(s)
- Yingjie Lv
- School of Public Health and Management, Ningxia Medical University, Yinchuan, China
| | - Pengsheng Ma
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Jialing Wang
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Qingbin Xu
- General Hospital of Ningxia Medical University, Yinchuan, China
| | - Jun Fan
- Shizuishan Center for Disease Control and Prevention, Shizuishan, China
| | - Lin Yan
- College of Basic Medicine, Ningxia Medical University, Yinchuan, China
| | - Ping Ma
- General Hospital of Ningxia Medical University, Yinchuan, China.
| | - Ru Zhou
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, China; Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, China; Ningxia Characteristic Traditional Chinese Medicine Modernization Engineering Technology Research Center, Ningxia Medical University, Yinchuan, China.
| |
Collapse
|
12
|
Safwan S, Hsiao G, Lee TH, Lee CK. Bioactive compounds from an endophytic fungi Nigrospora aurantiaca. BOTANICAL STUDIES 2021; 62:18. [PMID: 34698886 PMCID: PMC8548483 DOI: 10.1186/s40529-021-00324-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Many groups of fungi live as an endophyte in plants. Both published and undiscovered bioactive compounds can be found in endophytic fungi. Various biological activities of bioactive compounds from endophytic fungi had been reported, including anti-inflammatory and anticancerous effects. The chemical investigation of biologically active compounds from endophytic fungi Melaleuca leucadendra Linn. have not yet been stated. RESULTS One new compound, namely nigaurdiol (1), along with five known compounds, xyloketal K (2), bostrycin (3), deoxybostrycin (4), xylanthraquinone (5), and ergosterol (6), were isolated from the Melaleuca leucadendra Linn. associated fungal strain Nigrospora aurantiaca #TMU062. Their chemical structures were elucidated by spectroscopic data and compared with literature. All isolated compounds were evaluated for inhibitory effect of NO production in LPS-activated microglial BV-2 cells. CONCLUSIONS Compound 6 exhibited considerable inhibitory effect on NO production with IC50 values of 7.2 ± 1.4 µM and the survival rate of the cells was 90.8 ± 6.7% at the concentration of 10 µM.
Collapse
Affiliation(s)
- Safwan Safwan
- Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan
- Department of Pharmacy, Faculty of Health Science, University of Muhammadiyah Mataram, Mataram, 83127, Indonesia
| | - George Hsiao
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- Department of Pharmacology, School of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Tzong-Huei Lee
- Institute of Fisheries Science, National Taiwan University, Taipei, 10617, Taiwan.
| | - Ching-Kuo Lee
- Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan.
- School of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan.
| |
Collapse
|
13
|
Li S, Yaermaimaiti S, Tian XM, Wang ZW, Xu WJ, Luo J, Kong LY. Dynamic metabolic and transcriptomic profiling reveals the biosynthetic characteristics of hydroxycinnamic acid amides (HCAAs) in sunflower pollen. Food Res Int 2021; 149:110678. [PMID: 34600680 DOI: 10.1016/j.foodres.2021.110678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 11/19/2022]
Abstract
Sunflower pollen is a natural nutritious food with a long history and multiple functions, however, the main chemical components apart from flavonoids and their biosynthesis processes have not been thoroughly investigated. In this study, seven hydroxycinnamic acid amides (HCAAs) (1-7) abundant in sunflower pollen were isolated and identified as one type of the pollen's main chemicals. For a comprehensive understanding of HCAA biosynthesis in Helianthus annuus flowers, RNA-seq, metabolomics, and key genes related to biosynthesis in the sunflower were studied. A large number of compounds at different sunflower growth stages (the 7th, 14th, 21st, and 28th days) and high expression levels of related genes in the transcriptome were detected. A molecular network was constructed to clarify the synthetic pathway of HCAAs, which revealed high transcriptional levels of spermidine hydroxycinnamoyl transferase genes (HaSHT2795 and HaSHT2436) in 14-21-days-old flowers. HaSHT2795 enzymes catalyze tri-coumaroylspermidine formation, and virus-induced gene silencing to inhibit HaSHT2795 and HaSHT2436 could significantly reduce the synthesis of hydroxycinnamic acid amides in sunflower pollen. HCAAs were inferred to be related to the formation of pollen walls and the health effects of pollen. Analyzing HCAA biosynthesis and accumulation in H. annuus pollen will be helpful to understand the functions of HCAAs in the development of pollen and its nutritional value.
Collapse
Affiliation(s)
- Shan Li
- State Key Laboratory of Natural Medicines and Jiangsu Key of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Saimijiang Yaermaimaiti
- State Key Laboratory of Natural Medicines and Jiangsu Key of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Xiao-Meng Tian
- State Key Laboratory of Natural Medicines and Jiangsu Key of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Zi-Wen Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Wen-Jun Xu
- State Key Laboratory of Natural Medicines and Jiangsu Key of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Jun Luo
- State Key Laboratory of Natural Medicines and Jiangsu Key of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| | - Ling-Yi Kong
- State Key Laboratory of Natural Medicines and Jiangsu Key of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| |
Collapse
|
14
|
Zhou P, Wang R, Fan R, Yang X, Mei H, Chen H, Wang H, Wang Z, Wang X. Magnetic amino-functionalized metal-organic frameworks as a novel solid support in ionic liquids-based effervescent tablets for efficient extraction of polycyclic aromatic hydrocarbons in milks. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112482. [PMID: 34224969 DOI: 10.1016/j.ecoenv.2021.112482] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/22/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Herein, a kind of novel multi-layer core-shell nanocomposites (NSPN) was prepared by employing SiO2 and polyvinylpyrrolidone (PVP) polymers as modifiers and amino-functionalized metal-organic frameworks (NH2-MIL101(Fe)) as coating. It was referred to as the NSPN and ILs-based effervescence-assisted dispersive solid-phase microextraction, hereafter abbreviated as NIE-DSM. In terms of extraction efficiency, SiO2 and PVP as modifiers and NH2-MIL(Fe) as coating onto the surface of NiFe2O4 cores played a synergistically enhancing effect on adsorption/extraction. Effervescent tablets were prepared by integrating the NSPN magnetic nanoparticles as adsorbents with imidazolium-based ionic liquids (ILs) as extractants as well as acidic and alkaline sources. Under vigorous dispersion of CO2 bubbles, the NIE-DSM method realized the goal of rapidly diffusing and separating the adsorbent/extractant (~3 min) without needing conventional vortexing or centrifugation step. Consequently, the NIE-DSM approach combined dispersion and adsorption/extractant in a synchronous way. Under optimized conditions, the NIE-DSM/HPLC-FLD method gave low limits of detection (0.008-0.034 μg kg-1) and satisfactory extraction recoveries (74.1-101.6%) for five polycyclic aromatic hydrocarbons (PAHs; fluorene, anthracene, pyrene, chrysene and benzo(a)pyrene) in milk samples. The intra-day and inter-day precision, expressed as relative standard deviations, was < 5.9% and 6.5%, respectively, demonstrating a high precision. Owing to no requirement for electrical power, this method shows great potential for outdoor monitoring of trace-level PAHs in food matrices.
Collapse
Affiliation(s)
- Peipei Zhou
- Zhejiang Provincial Key Laboratory of Watershed Science and Health, College of Public Health and Management, Center for Health Assessment, Wenzhou Medical University, Wenzhou 325035, China
| | - Rui Wang
- Zhejiang Provincial Key Laboratory of Watershed Science and Health, College of Public Health and Management, Center for Health Assessment, Wenzhou Medical University, Wenzhou 325035, China
| | - Ru Fan
- Zhejiang Provincial Key Laboratory of Watershed Science and Health, College of Public Health and Management, Center for Health Assessment, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiaoran Yang
- Zhejiang Provincial Key Laboratory of Watershed Science and Health, College of Public Health and Management, Center for Health Assessment, Wenzhou Medical University, Wenzhou 325035, China
| | - He Mei
- Zhejiang Provincial Key Laboratory of Watershed Science and Health, College of Public Health and Management, Center for Health Assessment, Wenzhou Medical University, Wenzhou 325035, China
| | - Huaiyu Chen
- Zhejiang Provincial Key Laboratory of Watershed Science and Health, College of Public Health and Management, Center for Health Assessment, Wenzhou Medical University, Wenzhou 325035, China
| | - Huili Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Zhenfeng Wang
- Zhejiang Provincial Key Laboratory of Watershed Science and Health, College of Public Health and Management, Center for Health Assessment, Wenzhou Medical University, Wenzhou 325035, China
| | - Xuedong Wang
- Zhejiang Provincial Key Laboratory of Watershed Science and Health, College of Public Health and Management, Center for Health Assessment, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
15
|
Jiang Y, Fang Z, Leonard W, Zhang P. Phenolic compounds in Lycium berry: Composition, health benefits and industrial applications. J Funct Foods 2021. [DOI: 10.1016/j.jff.2020.104340] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
16
|
Rinaldi de Alvarenga JF, Quifer-Rada P, Hurtado-Barroso S, Illan M, Torrado-Prat X, Lamuela-Raventós RM. Cuisinomics: MS-based untargeted approach reveals chemical modulation by a recipe during home cooking. Food Res Int 2020; 138:109787. [PMID: 33288173 DOI: 10.1016/j.foodres.2020.109787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/01/2020] [Accepted: 10/04/2020] [Indexed: 11/30/2022]
Abstract
Most of daily eaten food are cooked, which helps in absorbing nutrients and phytochemicals, but at the same time it can decrease its content. Currently, the impact of cooking has been studied that could influence food health related compounds, but they have a limited view of compounds by not consider molecular structural modifications and new compounds formation. An untargeted approach using LC-ESI-LQT-Orbitrap-MS/MS and univariate/multivariate statistical analysis was applied to understand how the preparation of a recipe, varying its ingredients (olive oil, 5-10%; onion, 20-40%; and garlic, 2-4%) and cooking time, could modulate the chemical profile of a tomato sofrito sauce. The presence of unexplored compounds that may have a beneficial effect on health, such as phytoprostanes, hydroxycinnamic acid amides and compounds such as 3,4 dihydroxyphenylglycone was revealed. Moreover, cooking was able to modulate the content of compounds like aminoacids, thiosulfates or phenolics and could be used as a tool to increase these molecules. The untargeted approach on cooking allows to use a recipe as a tool to improve a chemical profile of a dish, which opens the view for new dietary recommendations by cuisine to improve our diet, habits and health.
Collapse
Affiliation(s)
- José Fernando Rinaldi de Alvarenga
- Food Research Center (FoRC), Departament of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, Rua do Lago, 250, 05508-080 São Paulo, Brazil.
| | - Paola Quifer-Rada
- Departament of Endocrinology & Nutrition, CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Biomedical Research Institute Sant Pau, Hospital de la Santa Creu i Sant Pau, Carrer de Sant Quintin, 77, 08041 Barcelona, Spain; LactApp Women Health, Barcelona, Carrer Valencia 263, 08007 Barcelona, Spain
| | - Sara Hurtado-Barroso
- Department of Nutrition, Food Sciences and Gastronomy, XaRTA, INSA-UB, School of Pharmacy and Food Sciences. University of Barcelona, Av Joan XXIII 27-31, 08028 Barcelona, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.
| | - Montserrat Illan
- Department of Nutrition, Food Sciences and Gastronomy, XaRTA, INSA-UB, School of Pharmacy and Food Sciences. University of Barcelona, Av Joan XXIII 27-31, 08028 Barcelona, Spain.
| | - Xavier Torrado-Prat
- Department of Nutrition, Food Sciences and Gastronomy, XaRTA, INSA-UB, School of Pharmacy and Food Sciences. University of Barcelona, Av Joan XXIII 27-31, 08028 Barcelona, Spain.
| | - Rosa M Lamuela-Raventós
- Department of Nutrition, Food Sciences and Gastronomy, XaRTA, INSA-UB, School of Pharmacy and Food Sciences. University of Barcelona, Av Joan XXIII 27-31, 08028 Barcelona, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
17
|
Leonard W, Zhang P, Ying D, Fang Z. Tyramine-derived hydroxycinnamic acid amides in plant foods: sources, synthesis, health effects and potential applications in food industry. Crit Rev Food Sci Nutr 2020; 62:1608-1625. [PMID: 33206548 DOI: 10.1080/10408398.2020.1845603] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Tyramine-derived hydroxycinnamic acid amines (HCAAT) are naturally occurring group of secondary metabolites present in various plant genera, such as Allium, Cannabis, Lycium, Polyganotum and Solanum. It belongs to the neutral, water-insoluble compounds and plays a role in plant growth, development and defence mechanism. The past two decades have seen a shift in the study of HCAAT from its role in plants to its potent biological activities. This review highlights the sources, roles in plants, biosynthetic pathways, metabolic engineering and chemical synthesis of HCAAT. The biological properties of HCAAT remain the focus in this paper, including antioxidant, anti-inflammatory, anti-cancer, anti-diabetic, anti-melanogenesis and neuroprotective properties. The effects of food processing and technology on HCAAT are also discussed. Given the current research gap, this review proposes future directions on the study of HCAAT, as well as its potential applications in food and pharmaceutical industry.
Collapse
Affiliation(s)
- William Leonard
- School of Agriculture and Food, The University of Melbourne, Melbourne, Victoria, Australia
| | - Pangzhen Zhang
- School of Agriculture and Food, The University of Melbourne, Melbourne, Victoria, Australia
| | - Danyang Ying
- CSIRO Agriculture & Food, Werribee, Victoria, Australia
| | - Zhongxiang Fang
- School of Agriculture and Food, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
18
|
Roumani M, Duval RE, Ropars A, Risler A, Robin C, Larbat R. Phenolamides: Plant specialized metabolites with a wide range of promising pharmacological and health-promoting interests. Biomed Pharmacother 2020; 131:110762. [PMID: 33152925 DOI: 10.1016/j.biopha.2020.110762] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022] Open
Abstract
Phenolamides constitute a family of metabolites, widely represented in the plant kingdom, that can be found in all plant organs with a predominance in flowers and pollen grains. They represent a large and structurally diverse family, resulting from the association of phenolic acids with aliphatic or aromatic amines. Initially revealed as active compounds in several medicinal plant extracts, phenolamides have been extensively studied for their health-promoting and pharmacological properties. Indeed, phenolamides have been shown to exhibit antioxidant, anti-inflammatory, anti-cancer and antimicrobial properties, but also protective effects against metabolic syndrome and neurodegenerative diseases. The purpose of this review is to summarise this large body of literature, including in vitro and in vivo studies, by describing the diversity of their biological properties and our actual knowledge of the molecular mechanisms behind them. With regard to their considerable pharmacological interest, the question of industrial production is also tackled through chemical and biological syntheses in engineered microorganisms. The diversity of biological activities already described, together with the active discovery of the broad structural diversity of this metabolite family, make phenolamides a promising source of new active compounds on which future studies should be focused.
Collapse
Affiliation(s)
- Marwa Roumani
- UMR 1121, Laboratoire Agronomie et Environnement (LAE), Université de Lorraine- INRAe, Nancy, France
| | | | - Armelle Ropars
- Stress Immunity Pathogens Université de Lorraine, Nancy, France
| | - Arnaud Risler
- Université de Lorraine, CNRS, L2CM, F-54000, Nancy, France
| | - Christophe Robin
- UMR 1121, Laboratoire Agronomie et Environnement (LAE), Université de Lorraine- INRAe, Nancy, France
| | - Romain Larbat
- UMR 1121, Laboratoire Agronomie et Environnement (LAE), Université de Lorraine- INRAe, Nancy, France.
| |
Collapse
|
19
|
|
20
|
Wang W, Snooks HD, Sang S. The Chemistry and Health Benefits of Dietary Phenolamides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6248-6267. [PMID: 32422049 DOI: 10.1021/acs.jafc.0c02605] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Phenolamides, also known as hydroxycinnamic acid amides or phenylamides, have been reported throughout the plant kingdom, while a few of these amine-conjugated hydroxycinnamic acids are unique in foods. The current knowledge of their specific functions in plant development and defense is readily available as is their biosynthesis; however, their functionality in humans is still largely unknown. Of the currently known phenolamides, the most common are avenanthramides, which are unique in oats and similar to the well-known drug Tranilast, which possess anti-inflammatory, antioxidant, anti-itch, and antiatherogenic activities. While recent data have brought to light more information regarding the other known phenolamides, such as hordatines, dimers of agmatine conjugated to hydroxycinnamic acid, and kukoamines, spermine-derived phenolamides, the information is still severely limited, leaving their potential health benefits to speculation. Herein, to highlight the importance of dietary phenolamides to human health, we review and summarize the four major subgroups of phenolamides, including their chemical structures, dietary sources, and reported health benefits. We believe that the studies on phenolamides are still in the infancy stage and additional health benefits of these phenolamides may yet be identified.
Collapse
Affiliation(s)
- Weixin Wang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, North Carolina 28081, United States
| | - Hunter D Snooks
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, North Carolina 28081, United States
| | - Shengmin Sang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, North Carolina 28081, United States
| |
Collapse
|
21
|
Nigro E, Crescente G, Formato M, Pecoraro MT, Mallardo M, Piccolella S, Daniele A, Pacifico S. Hempseed Lignanamides Rich-Fraction: Chemical Investigation and Cytotoxicity towards U-87 Glioblastoma Cells. Molecules 2020; 25:E1049. [PMID: 32110947 PMCID: PMC7179246 DOI: 10.3390/molecules25051049] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 12/14/2022] Open
Abstract
The weak but noteworthy presence of (poly)phenols in hemp seeds has been long overshadowed by the essential polyunsaturated fatty acids and digestible proteins, considered responsible for their high nutritional benefits. Instead, lignanamides and their biosynthetic precursors, phenylamides, seem to display interesting and diverse biological activities only partially clarified in the last decades. Herein, negative mode HR-MS/MS techniques were applied to the chemical investigation of a (poly)phenol-rich fraction, obtained from hemp seeds after extraction/fractionation steps. This extract contained phenylpropanoid amides and their random oxidative coupling derivatives, lignanamides, which were the most abundant compounds and showed a high chemical diversity, deeply unraveled through high resolution tandem mass spectrometry (HR-MS/MS) tools. The effect of different doses of the lignanamides-rich extract (LnHS) on U-87 glioblastoma cell line and non-tumorigenic human fibroblasts was evaluated. Thus, cell proliferation, genomic DNA damage, colony forming and wound repair capabilities were assessed, as well as LnHS outcome on the expression levels of pro-inflammatory cytokines. LnHS significantly inhibited U-87 cancer cell proliferation, but not that of fibroblasts, and was able to reduce U-87 cell migration, inducing further DNA damage. No modification in cytokines' expression level was found. Data acquired suggested that LnHS acted in U-87 cells by inducing the apoptosis machinery and suppressing the autophagic cell death.
Collapse
Affiliation(s)
- Ersilia Nigro
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, I-81100 Caserta, Italy; (E.N.); (G.C.); (M.F.); (M.T.P.); (M.M.); (S.P.); (A.D.)
- CEINGE-Advanced Biotechnologies, Scarl, 80131 Napoli, Italy
| | - Giuseppina Crescente
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, I-81100 Caserta, Italy; (E.N.); (G.C.); (M.F.); (M.T.P.); (M.M.); (S.P.); (A.D.)
| | - Marialuisa Formato
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, I-81100 Caserta, Italy; (E.N.); (G.C.); (M.F.); (M.T.P.); (M.M.); (S.P.); (A.D.)
| | - Maria Tommasina Pecoraro
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, I-81100 Caserta, Italy; (E.N.); (G.C.); (M.F.); (M.T.P.); (M.M.); (S.P.); (A.D.)
| | - Marta Mallardo
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, I-81100 Caserta, Italy; (E.N.); (G.C.); (M.F.); (M.T.P.); (M.M.); (S.P.); (A.D.)
- CEINGE-Advanced Biotechnologies, Scarl, 80131 Napoli, Italy
| | - Simona Piccolella
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, I-81100 Caserta, Italy; (E.N.); (G.C.); (M.F.); (M.T.P.); (M.M.); (S.P.); (A.D.)
| | - Aurora Daniele
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, I-81100 Caserta, Italy; (E.N.); (G.C.); (M.F.); (M.T.P.); (M.M.); (S.P.); (A.D.)
- CEINGE-Advanced Biotechnologies, Scarl, 80131 Napoli, Italy
| | - Severina Pacifico
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, I-81100 Caserta, Italy; (E.N.); (G.C.); (M.F.); (M.T.P.); (M.M.); (S.P.); (A.D.)
| |
Collapse
|
22
|
Metabolomic Profiling of the Host Response of Tomato ( Solanum lycopersicum) Following Infection by Ralstonia solanacearum. Int J Mol Sci 2019; 20:ijms20163945. [PMID: 31416118 PMCID: PMC6720392 DOI: 10.3390/ijms20163945] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 12/16/2022] Open
Abstract
Tomato (Solanum lycopersicum) is an important dietary source of bioactive phytochemicals and active breeding programs constantly produce new cultivars possessing superior and desirable traits. The phytopathogenic Ralstonia solanacearum, the causal agent of bacterial wilt, is a highly destructive bacterial disease with a high economic impact on tomato production. This study followed an untargeted metabolomic approach involving four tomato cultivars and aimed at the identification of secondary metabolites involved in plant defense after infection with R. solanacearum. Liquid chromatography coupled to mass spectrometry (LC-MS) in combination with multivariate data analysis and chemometric modelling were utilized for the identification of discriminant secondary metabolites. The total of 81 statistically selected features were annotated belonging to the metabolite classes of amino acids, organic acids, fatty acids, various derivatives of cinnamic acid and benzoic acids, flavonoids and steroidal glycoalkaloids. The results indicate that the phenylpropanoid pathway, represented by flavonoids and hydroxycinnamic acids, is of prime importance in the tomato defense response. The hydroxycinnamic acids esters of quinic acid, hexoses and glucaric acids were identified as signatory biomarkers, as well as the hydroxycinnamic acid amides to polyamines and tyramine. Interestingly, the rapid and differential accumulation of putrescine, dopamine, and tyramine derivatives, along with the presence of a newly documented metabolite, feruloyl serotonin, were documented in the infected plants. Metabolite concentration variability in the different cultivar tissues point to cultivar-specific variation in the speed and manner of resource redistribution between the host tissues. These metabolic phenotypes provide insights into the differential metabolic signatures underlying the defense metabolism of the four cultivars, defining their defensive capabilities to R. solanacearum.
Collapse
|
23
|
Inhibition of LPS-Induced Oxidative Damages and Potential Anti-Inflammatory Effects of Phyllanthus emblica Extract via Down-Regulating NF-κB, COX-2, and iNOS in RAW 264.7 Cells. Antioxidants (Basel) 2019; 8:antiox8080270. [PMID: 31382466 PMCID: PMC6721275 DOI: 10.3390/antiox8080270] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 02/06/2023] Open
Abstract
Phyllanthus emblica is an edible nutraceutical and functional food in the Asia area with medicinal and nutritive importance. The fruit extract of P. emblica is currently considered to be one of the effective functional foods for flesh maintenance and disease treatments because of its antioxidative and immunomodulatory properties. We examined the antioxidant abilities of the fruit extract powder by carrying out 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging, iron reducing power, and metal chelating activity analysis and showed excellent antioxidative results. In 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, the result showed that the samples had no cytotoxic effect on RAW 264.7 cells even at a high concentration of 2 mg/mL. To investigate its immunomodulatory function, our estimation was to treat it with lipopolysaccharide (LPS) in RAW 264.7 cells to present anti-inflammatory capacities. The extract decreased reactive oxygen species (ROS) production levels in a dose-dependent manner measured by flow cytometry. We also examined various inflammatory mRNAs and proteins, including nuclear factor-κB (NF-κB), inducible nitric oxide synthases (iNOS), and cyclooxygenase-2 (COX-2). In quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blotting assay, all three targets were decreased by the extract, also in a dose-dependent manner. In conclusion, P. emblica fruit extract powder not only lessened antioxidative stress damages, but also inhibited inflammatory reactions.
Collapse
|
24
|
Galarce-Bustos O, Pavón-Pérez J, Henríquez-Aedo K, Aranda M. An improved method for a fast screening of α-glucosidase inhibitors in cherimoya fruit (Annona cherimola Mill.) applying effect-directed analysis via high-performance thin-layer chromatography-bioassay-mass spectrometry. J Chromatogr A 2019; 1608:460415. [PMID: 31402104 DOI: 10.1016/j.chroma.2019.460415] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/27/2019] [Accepted: 07/30/2019] [Indexed: 12/16/2022]
Abstract
α-glucosidase inhibitors (AGIs) are very attractive bioactive compounds due to their therapeutic profile that includes beneficial effects over glycemic control in type 2 diabetes mellitus and viral infections. Its detection and identification in plants and fruits has gained growing attention, and certainly requires efficient screening methodologies. The objective of the present work was to develop a fast methodology to detect and identify AGIs in cherimoya fruit (Annona cherimola Mill.) applying effect-directed analysis via high-performance thin layer-chromatography (HPTLC) linked with bioassay and mass spectrometry (MS). Both, HPTLC and bioassay conditions, were optimized accomplishing 50% and 83% reduction on enzyme concentration and incubation time respectively, compared to the original method. Additionally, the contrast between inhibitory bands and purple background was also enhanced by enzyme substrate impregnation on HPTLC plate. The optimized detection conditions established were the following: 5.0 U mL-1 of enzyme solution, 1.0 mg mL-1 of 2-naphthyl-α-D-glucopyranoside substrate, 1.0 mg mL-1 of Fast Blue B salt solution and 10 min as incubation time. Applying this methodology, coupled to HPTLC-MS and ultra-high-performance liquid chromatography (UHPLC)-diode array detector (DAD)-MS/MS, it was possible for the first time to detect and identify three AGIs in cherimoya peel and seeds. Compounds were tentatively assigned as phenolamides (phenylethyl cinnamides): N-trans-feruloyl tyramine (m/z 314 [M+H]+; UV λmax 293 and 316 nm), N-trans-p-coumaroyl tyramine (m/z 284 [M+H]+; UV λmax 296 nm) and N-trans-feruloyl phenethylamine (m/z 298 [M+H]+; UV λmax 288 nm). To the best of our knowledge, the presence of latter compound is reported for the first time in cherimoya.
Collapse
Affiliation(s)
- Osca Galarce-Bustos
- Laboratory of Advanced Research on Foods and Drugs, Department of Food Science and Technology, Faculty of Pharmacy, University of Concepción, Chile
| | - Jessy Pavón-Pérez
- Laboratory of Advanced Research on Foods and Drugs, Department of Food Science and Technology, Faculty of Pharmacy, University of Concepción, Chile
| | - Karem Henríquez-Aedo
- Laboratory of Biotechnology and Genetic of the Foods, Department of Food Science and Technology, Faculty of Pharmacy, University of Concepcion, Chile; Center for Biotechnology, University of Concepcion, Chile
| | - Mario Aranda
- Laboratory of Advanced Research on Foods and Drugs, Department of Food Science and Technology, Faculty of Pharmacy, University of Concepción, Chile; Center for Biotechnology, University of Concepcion, Chile.
| |
Collapse
|
25
|
Badibostan H, Feizy J, Daraei B, Shoeibi S, Rajabnejad SH, Asili J, Taghizadeh SF, Giesy JP, Karimi G. Polycyclic aromatic hydrocarbons in infant formulae, follow-on formulae, and baby foods in Iran: An assessment of risk. Food Chem Toxicol 2019; 131:110640. [PMID: 31233871 DOI: 10.1016/j.fct.2019.110640] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/13/2019] [Accepted: 06/20/2019] [Indexed: 12/20/2022]
Abstract
Twenty-seven samples of infant formulae and follow-on formulae and fifteen samples of baby food from Iranian markets were analyzed for concentrations of four polycyclic aromatic hydrocarbons (PAH4) determined by use of gas chromatography coupled to mass spectrophotometry. An assessment of risks posed to infants and toddlers was conducted by calculating the margin of exposure and incremental lifetime cancer risk (ILCR) by use of the Monte Carlo Simulation Method. Benzo (a) anthracene, was not detected in any of the samples, while approximately 64.3% samples contained detectable amounts of benzo (a) pyrene, while chrysene was observed in three samples and benzo (b) fluoranthene was detected in one sample. One of the samples contained 1.43 μg PAH4/kg, which was greater than the maximum tolerable limit (MTL; 1 μg/kg) stated in Commission Regulation (EU) 2015/1125. Accordingly, the 95% ILCRs in the infants/toddlers due to ingestion of milk powder and baby foods were determined to be 1.3 × 10-6 and 7.3 × 10-7, respectively. Also, the 95th centiles of the MOEs, due to ingesting milk powder or baby foods by infants/toddlers were estimated to be 3.6 × 104 and 7.2 × 104, respectively. In Iran, infants and toddlers are not at serious health risk (MOE ≥ 1 × 104 and ILCR < 1 × 10-4).
Collapse
Affiliation(s)
- Hasan Badibostan
- Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Javad Feizy
- Research Institute of Food Science and Technology, Mashhad, Iran.
| | - Bahram Daraei
- Department of Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Shahram Shoeibi
- Food and Drug Reference Control Laboratories Center, Food and Drug Organization, MOH & ME, Tehran, Iran; Food and Drug Laboratory Research Center, Food and Drug Organization, MOH & ME, Tehran, Iran.
| | | | - Javad Asili
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | | | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Department of Zoology and Center for Integrative Toxicology, Michigan State University, East Lansing, MI, USA; School of Biological Sciences, University of Hong Kong, Hong Kong, China.
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
26
|
Lycium barbarum polysaccharide reduces hyperoxic acute lung injury in mice through Nrf2 pathway. Biomed Pharmacother 2019; 111:733-739. [PMID: 30611998 DOI: 10.1016/j.biopha.2018.12.073] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/08/2018] [Accepted: 12/17/2018] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION The disruption of the balance between antioxidants and oxidants plays a vital role in the pathogenesis of acute lung injury (ALI). Evidence has shown that Lycium barbarum polysaccharide (LBP) has antioxidant feature. We examined the efficacy and mechanisms of LBP on hyperoxia-induced acute lung injury (ALI) in the present study. MATERIALS AND METHODS C57BL/6 wild-type (WT) mice and nuclear factor erythroid 2-related factor 2 (Nrf2)-deficient (Nrf2-/-) mice were used in the present study. LBP was fed by gavages once daily for 1 week. Then, the mice were exposed to hyperoxia or room air for 72 h. Additional dosage of LBP was given per 24 h. RESULTS Reactive oxygen species production was increased in WT mice exposed to hyperoxia. Inflammatory cytokines including interleukin (IL)-1β as well as IL-6, and inflammatory cells were increased infiltration in the lung after 3 days hyperoxia exposure. Hyperoxia exposure also induced pulmonary edema and histopathological changes. These hyperoxia-induced changes were improved in LBP treated group. Moreover, elevated activities of heme oxygenase-1 and glutathione peroxidase and enhanced activation of Nrf2 were observed in mice treated with LBP. However, the benefit of LBP on hyperoxic ALI was abolished in Nrf2-/- mice. Moreover, our cell study showed that the LBP-induced activation of Nrf2 was dampened in pulmonary microvascular endothelial cells when the AMPK signal was inhibited by siRNA. CONCLUSIONS LBP improves hyperoxic ALI via Nrf2-dependent manner. The LBP-induced activation of Nrf2 is mediated, at least in part, by AMPK pathway.
Collapse
|
27
|
Li Z, Zhao C, Zhao X, Xia Y, Sun X, Xie W, Ye Y, Lu X, Xu G. Deep Annotation of Hydroxycinnamic Acid Amides in Plants Based on Ultra-High-Performance Liquid Chromatography-High-Resolution Mass Spectrometry and Its In Silico Database. Anal Chem 2018; 90:14321-14330. [PMID: 30453737 DOI: 10.1021/acs.analchem.8b03654] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hydroxycinnamic acid amides (HCAAs), diversely distributed secondary metabolites in plants, play essential roles in plant growth and developmental processes. Most current approaches can be used to analyze a few known HCAAs in a given plant. A novel method for comprehensive detection of plant HCAAs is urgently needed. In this study, a deep annotation method of HCAAs was proposed on the basis of ultra-high-performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS) and its in silico database of HCAAs. To construct an in silico UHPLC-HRMS HCAAs database, a total of 846 HCAAs were generated from the most common phenolic acid and polyamine/aromatic monoamine substrates according to possible biosynthesis reactions, which represent the structures of plant-specialized HCAAs. The characteristic MS/MS fragmentation patterns of HCAAs were extracted from reference mixtures. Four quantitative structure-retention relationship (QSRR) models were developed to predict retention times of mono-trans-HCAAs (aromatic amines conjugates), mono-trans-HCAAs (aliphatic amines conjugates), bis-HCAAs, and tris-HCAAs. The developed method was applied for identifying HCAAs in seeds (maize, wheat, and rice), roots (rice), and leaves (rice and tobacco). A total of 79 HCAAs were detected: 42 of them were identified in these plants for the first time, and 20 of them have never been reported to exist in plants. The results showed that the developed method can be used to identify HCAAs in a plant without prior knowledge of HCAA distributions. To the best of our knowledge, it is the first UHPLC-HRMS database developed for effective deep annotation of HCAAs from nontargeted UHPLC-HRMS data. It is useful for the identification of novel HCAAs in plants.
Collapse
Affiliation(s)
- Zaifang Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Chunxia Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , China
| | - Xinjie Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , China
| | - Yueyi Xia
- CAS Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xiaoshan Sun
- CAS Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Wenyan Xie
- Shanghai Tobacco Group Co. Ltd, Technology Center , Shanghai 200082 , China
| | - Yaorui Ye
- CAS Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , China
| | - Xin Lu
- CAS Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , China
| |
Collapse
|
28
|
Effect of roasting parameters on the physicochemical characteristics of high-molecular-weight Maillard reaction products isolated from cocoa beans of different Theobroma cacao L. groups. Eur Food Res Technol 2018. [DOI: 10.1007/s00217-018-3144-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|