1
|
Zhou J, Ho V. Role of Baseline Gut Microbiota on Response to Fiber Intervention in Individuals with Irritable Bowel Syndrome. Nutrients 2023; 15:4786. [PMID: 38004180 PMCID: PMC10674363 DOI: 10.3390/nu15224786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Irritable bowel syndrome (IBS) is one of the most prevalent functional gut disorders in the world. Partially hydrolyzed guar gum, a low-viscosity soluble fiber, has shown promise in the management of IBS-related symptoms. In this study, we aimed to determine if an individual's baseline gut microbiota impacted their response to a partially hydrolyzed guar gum intervention. Patients diagnosed with IBS undertook a 90-day intervention and follow-up. IBS symptom severity, tolerability, quality-of-life, and fecal microbiome composition were recorded during this study. Patients with normal microbiota diversity (Shannon index ≥ 3) showed significant improvements to IBS symptom scores, quality-of-life, and better tolerated the intervention compared to patients with low microbiota diversity (Shannon index < 3). Our findings suggest that an individual's baseline microbiome composition exerts a substantial influence on their response to fiber intervention. Future investigations should explore a symbiotic approach to the treatment of IBS.
Collapse
Affiliation(s)
- Jerry Zhou
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia;
| | | |
Collapse
|
2
|
OHASHI Y, FUJISAWA T. Amounts and species of probiotic lactic acid bacteria affect stimulation of short-chain fatty acid production in fecal batch culture. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2023; 42:100-103. [PMID: 36660593 PMCID: PMC9816051 DOI: 10.12938/bmfh.2022-048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022]
Abstract
The effects of lactate and probiotic lactic acid bacteria (LAB) on intestinal fermentation were analyzed using a fecal batch culture. Lactate was efficiently metabolized to butyrate and propionate by butyrate-utilizing bacteria in fecal fermentation. Probiotic LAB could stimulate butyrate and propionate production through their lactate production in fecal fermentation. It was considered that 109 cfu/g or more of probiotic LAB would be required to stimulate butyrate and propionate production in the large intestine. Due to the low production of lactate, a larger number of heterofermentative LAB than homofermentative LAB would be required for this stimulation.
Collapse
Affiliation(s)
- Yuji OHASHI
- Laboratory of Food Hygiene, Department of Food Science and
Technology, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino,
Tokyo 180-8602, Japan,*Corresponding author. Yuji Ohashi (E-mail: )
| | - Tomohiko FUJISAWA
- Laboratory of Food Hygiene, Department of Food Science and
Technology, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino,
Tokyo 180-8602, Japan
| |
Collapse
|
3
|
Akhtar MN, Khalil AA, Bilal A, Afzaal M, Tufail T, Saeed R, Siddique R, Nemat A, Manzoor MF. Characterization of ultrasonically extracted flaxseed polysaccharide gum and assessing its lipid-lowering potential in a rat model. Food Sci Nutr 2023; 11:137-147. [PMID: 36655088 PMCID: PMC9834843 DOI: 10.1002/fsn3.3045] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/02/2022] [Accepted: 08/10/2022] [Indexed: 01/21/2023] Open
Abstract
Flaxseed polysaccharide gum (FPG) was extracted through the ultrasound-assisted process using water as a solvent with a yield ranging from 8.05 ± 0.32% to 12.23 ± 0.45% by changing different extraction variables. The extracted FPG was analyzed for its functional groups and antioxidant potential. The maximum DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical scavenging activity (≈100%) of FPG was noted at concentrations beyond ≈10 mg·ml-1. The maximum inhibition percentage through ABTS (2,2'-azino-bis 3-ethylbenzothiazoline-6-sulfonic acid) (72.4% ± 1.9%) was noted at 40 mg·ml-1, which was observed to be less when compared to DPPH at the same concentration. The total antioxidant potential of the FPG solution at a concentration of 10 mg·ml-1 was equivalent to 461 mg ascorbic acid, which tends to increase with concentration at a much lower scope. The in vivo trial suggested that the least weight gain was noted in experimental groups G2 and Gh2. A significant reduction in total cholesterol was noticed in G1 (-14.14%) and G2 (-17.72%) and in Gh1 (-22.02%) and Gh2 (-34.68%) after 60 days of the trial compared to the baseline values. The maximum reduction in total triglyceride was observed in Gh2 (-25.06%) and Gh1 (-22.01%) after 60 days of the trial. It was an increasing trend in high-density lipoprotein cholesterol (HDL-c) in different experimental groups G2 (10.51%) than G1 (5.35%) and Gh2 (48.96%) and Gh1 (31.11%), respectively, after 60 days of study interval. Reduction of -5.05% and - 9.45% was observed in G1 and G2, while similar results were observed in Gh1 and Gh2. Conclusively, results suggested a possible protective role of FPG against hyperlipidemia.
Collapse
Affiliation(s)
- Muhammad Nadeem Akhtar
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health SciencesThe University of LahoreLahorePakistan
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health SciencesThe University of LahoreLahorePakistan
| | - Ahmed Bilal
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health SciencesThe University of LahoreLahorePakistan
| | - Muhammad Afzaal
- Department of Food Science, Faculty of Life SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Tabussam Tufail
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health SciencesThe University of LahoreLahorePakistan
| | - Rabia Saeed
- Department of MicrobiologyUniversity of Health Sciences LahoreLahorePakistan
| | - Rabia Siddique
- Department of ChemistryGovernment College University FaisalabadFaisalabadPakistan
| | - Arash Nemat
- Department of MicrobiologyKabul University of Medical SciencesKabulAfghanistan
| | - Muhammad Faisal Manzoor
- Guangdong Provincial Key Laboratory of Intelligent Food ManufacturingFoshan UniversityFoshanChina
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhouChina
| |
Collapse
|
4
|
Mary PR, Kapoor M. Co-culture fermentations suggest cross-feeding among Bacteroides ovatus DSMZ 1896, Lactiplantibacillus plantarum WCFS1 and Bifidobacterium adolescentis DSMZ 20083 for utilizing dietary galactomannans. Food Res Int 2022; 162:111942. [DOI: 10.1016/j.foodres.2022.111942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/27/2022] [Accepted: 09/12/2022] [Indexed: 02/08/2023]
|
5
|
Cheng L, Kong L, Xia C, Zeng X, Wu Z, Guo Y, Pan D. Sources, Processing-Related Transformation, and Gut Axis Regulation of Conventional and Potential Prebiotics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4509-4521. [PMID: 35389646 DOI: 10.1021/acs.jafc.2c00168] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
One strategy to achieve a balanced intestinal microbiota is to introduce prebiotics. Some substances present in the diet, such as soybean extracts, koji glycosylceramides, grape extracts, tea polyphenols, and seaweed extracts, can be considered as potential prebiotics, because they can selectively stimulate the proliferation of beneficial bacteria in the intestine. However, the discovery of novel prebiotics also involves advances in screening methods and the use of thermal and non-thermal processing techniques to modify and enhance the properties of beneficial organisms. The health benefits of prebiotics are also reflected by their participation in regulating the microbiota in different gut axes. In the present review, we introduced the field of prebiotics, focusing on potential prebiotic substances, the process of screening potential prebiotics, the transformation of prebiotics by food-processing technologies, and the roles of prebiotics on gut axis regulation, which, it is hoped, will promote the discovery and utilization of novel prebiotics.
Collapse
Affiliation(s)
- Lu Cheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo, Zhejiang 315211, People's Republic of China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, People's Republic of China
| | - Lingyu Kong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo, Zhejiang 315211, People's Republic of China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, People's Republic of China
| | - Chaoran Xia
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo, Zhejiang 315211, People's Republic of China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, People's Republic of China
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo, Zhejiang 315211, People's Republic of China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, People's Republic of China
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo, Zhejiang 315211, People's Republic of China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, People's Republic of China
| | - Yuxing Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo, Zhejiang 315211, People's Republic of China
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210097, People's Republic of China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo, Zhejiang 315211, People's Republic of China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, People's Republic of China
| |
Collapse
|
6
|
Okamura T, Hamaguchi M, Mori J, Yamaguchi M, Mizushima K, Abe A, Ozeki M, Sasano R, Naito Y, Fukui M. Partially Hydrolyzed Guar Gum Suppresses the Development of Sarcopenic Obesity. Nutrients 2022; 14:nu14061157. [PMID: 35334814 PMCID: PMC8955723 DOI: 10.3390/nu14061157] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 02/04/2023] Open
Abstract
Partially hydrolyzed guar gum (PHGG) is a soluble dietary fiber derived through controlled enzymatic hydrolysis of guar gum, a highly viscous galactomannan derived from the seeds of Cyamopsis tetragonoloba. Here, we examined the therapeutic potential of dietary supplementation with PHGG against sarcopenic obesity using Db/Db mice. Db/Db mice fed a normal diet alone or a fiber-free diet, or supplemented with a diet containing PHGG (5%), were examined. PHGG increased grip strength and the weight of skeletal muscles. PHGG increased the short-chain fatty acids (SCFAs) concentration in feces and sera. Concerning innate immunity, PHGG decreased the ratio of inflammatory cells, while increasing the ratio of anti-inflammatory cells in the small intestine. The present study demonstrated the preventive effect of PHGG on sarcopenic obesity. Changes in nutrient absorption might be involved through the promotion of an anti-inflammatory shift of innate immunity in the intestine accompanied by an increase in SCFA production by PHGG.
Collapse
Affiliation(s)
- Takuro Okamura
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (T.O.); (M.H.)
| | - Masahide Hamaguchi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (T.O.); (M.H.)
| | - Jun Mori
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (J.M.); (M.Y.)
| | - Mihoko Yamaguchi
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (J.M.); (M.Y.)
| | - Katsura Mizushima
- Department of Human Immunology and Nutrition Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (K.M.); (Y.N.)
| | - Aya Abe
- Nutrition Division, Taiyo Kagaku Co., Ltd., Yokkaichi 510-0844, Japan; (A.A.); (M.O.)
| | - Makoto Ozeki
- Nutrition Division, Taiyo Kagaku Co., Ltd., Yokkaichi 510-0844, Japan; (A.A.); (M.O.)
| | | | - Yuji Naito
- Department of Human Immunology and Nutrition Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (K.M.); (Y.N.)
| | - Michiaki Fukui
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (T.O.); (M.H.)
- Correspondence: ; Tel.: +81-75-251-5505
| |
Collapse
|
7
|
Abstract
The aim of this review is to provide an overview of the complex interactions between dietary fibre and the resident microbial community in the human gut. The microbiota influences both health maintenance and disease development. In the large intestine, the microbiota plays a crucial role in the degradation of dietary carbohydrates that remain undigested in the upper gut (non-digestible carbohydrates or fibre). Dietary fibre contains a variety of different types of carbohydrates, and its breakdown is facilitated by many different microbial enzymes. Some microbes, termed generalists, are able to degrade a range of different carbohydrates, whereas others are more specialised. Furthermore, the physicochemical characteristics of dietary fibre, such as whether it enters the gut in soluble or insoluble form, also likely influence which microbes can degrade it. A complex nutritional network therefore exists comprising primary degraders able to attack complex fibre and cross feeders that benefit from fibre breakdown intermediates or fermentation products. This leads predominately to the generation of the short-chain fatty acids (SCFA) acetate, propionate and butyrate, which exert various effects on host physiology, including the supply of energy, influencing glucose and lipid metabolism and anti-carcinogenic and anti-inflammatory actions. In order to effectively modulate the gut microbiota through diet, there is a need to better understand the complex competitive and cooperative interactions between gut microbes in dietary fibre breakdown, as well as how gut environmental factors and the physicochemical state of fibre originating from different types of diets influence microbial metabolism and ecology in the gut.
Collapse
|
8
|
Wang N, Pan D, Guo Z, Xiang X, Wang S, Zhu J, Sun G. Effects of guar gum on blood lipid levels: A systematic review and meta-analysis on randomized clinical trials. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
9
|
Rawi M, Abdullah A, Ismail A, Sarbini SR. Manipulation of Gut Microbiota Using Acacia Gum Polysaccharide. ACS OMEGA 2021; 6:17782-17797. [PMID: 34308014 PMCID: PMC8296006 DOI: 10.1021/acsomega.1c00302] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 05/19/2021] [Indexed: 05/16/2023]
Abstract
Acacia gum (AG) is a branched-polysaccharide gummy exudate that consists of arabinose and galactose. The traditional practice in African-Middle Eastern countries uses this gum as medicine. Traditional use of AG is to treat stomach disease, which can be a potential functional food. In this research, commercially available AG from Acacia senegal and Acacia seyal was investigated as the prebiotic. The experiment employed a pH-controlled in vitro colon model inoculated with human fecal microbiota to mimic the human colon. Fermentation samples at 0, 6, 12, and 24 h were brought for short-chain fatty acid (SCFA) analysis using high-performance liquid chromatography and bacterial enumeration via fluorescent in situ hybridization. Results showed that AG significantly promotes Bifidobacteria proliferation similar to fructo-oligosaccharides (FOS) while inhibiting the Clostridium histolyticum group, commonly associated with gut dysbiosis. Acetate, propionate, and butyrate showed a similar trend to FOS (p > 0.05). The AG shows potential against gut dysbiosis, as it promotes gut-probiotics, through modulation of microbial population and SCFA production, especially butyrate.
Collapse
Affiliation(s)
- Muhamad
Hanif Rawi
- Faculty
of Agricultural Science and Forestry, Universiti
Putra Malaysia Kampus Bintulu Sarawak, Bintulu, Sarawak 97008, Malaysia
| | - Aminah Abdullah
- Faculty
of Science and Technology, Universiti Kebangsaan
Malaysia, Bangi, Selangor 43600, Malaysia
| | - Amin Ismail
- Faculty
of Medicine and Health Sciences, Universiti
Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Shahrul Razid Sarbini
- Faculty
of Agricultural Science and Forestry, Universiti
Putra Malaysia Kampus Bintulu Sarawak, Bintulu, Sarawak 97008, Malaysia
- Halal
Products Research Institute, Universiti
Putra Malaysia, Putra
Infoport, Serdang, Selangor 43400 UPM, Malaysia
| |
Collapse
|
10
|
Chen Y, Wan M, Zhong Y, Gao T, Zhang Y, Yan F, Huang D, Wu Y, Weng Z. Partially Hydrolyzed Guar Gum Modulates Gut Microbiota, Regulates the Levels of Neurotransmitters, and Prevents CUMS-Induced Depressive-Like Behavior in Mice. Mol Nutr Food Res 2021; 65:e2100146. [PMID: 34125489 DOI: 10.1002/mnfr.202100146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/29/2021] [Indexed: 12/20/2022]
Abstract
SCOPE Depression is the leading cause of disability around the world; however, most antidepressants have drug tolerance and serious side effects. In this study, it is explored whether partially hydrolyzed guar gum (PHGG) is a safe food that exhibits protection in a mouse model of depression. METHODS AND RESULTS PHGG is orally administered to mice with depression induced by chronic unpredictable mild stress (CUMS) in two animal experiments (prevention trial and intervention trial) to characterize the potentially protective effect of PHGG. The results in the prevention trial show that PHGG significantly inhibits the loss of body weight, and prevents CUMS-induced depressive-like behavior in mice. The beneficial effects may be associated with PHGG modulating the gut microbiota structure and then increasing the levels of short-chain fatty acids in mice feces and the levels of 5-hydroxytryptamine and dopamine in serum, striatum, and hippocampus. Besides, PHGG in the intervention trial is less effective than that in the prevention trial, but it may have a synergistic effect on improving depression with fluoxetine. CONCLUSIONS This study suggests that moderate daily intake of PHGG can contribute to relieving depressive-like behavior.
Collapse
Affiliation(s)
- Yanqiu Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Mei Wan
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China.,Department of Dermatology, The First Affiliated Hospital of the Army Medical University, Chongqing, 400038, China
| | - Yi Zhong
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Tingfang Gao
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Yuehan Zhang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Fen Yan
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Da Huang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Yuanzi Wu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Zuquan Weng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|
11
|
Tani M, Tanaka S, Takamiya K, Kato Y, Harata G, He F, Sakaue M, Ito M. Effects of dietary fiber on vascular calcification by repetitive diet-induced fluctuations in plasma phosphorus in early-stage chronic kidney disease rats. J Clin Biochem Nutr 2020; 67:283-289. [PMID: 33293769 PMCID: PMC7705083 DOI: 10.3164/jcbn.20-46] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/12/2020] [Indexed: 12/12/2022] Open
Abstract
Vascular calcification progresses under hyperphosphatemia, and represents a risk factor for cardiovascular disease in chronic kidney disease (CKD) patients. We recently indicated that phosphorus (P) fluctuations also exacerbated vascular calcification in early-stage CKD rats. Dietary fiber intake is reportedly associated with cardiovascular risk. This study investigated the effects of dietary fiber on vascular calcification by repeated P fluctuations in early-stage CKD rats. Unilateral nephrectomy rats were used as an early-stage CKD model. For 36 days, a P fluctuation (LH) group was fed low-P (0.02% P) and high-P (1.2% P) diets alternating every 2 days, and a P fluctuation with dietary fiber intake (LH + F) group was fed low-P and high-P diets containing dietary fiber alternating every 2 days. The effect on vascular calcification was measured calcium content. Effects on uremic toxin were measured levels of indoxyl sulfate (IS) and investigated gut microbiota. The LH + F group showed significantly reduced vessel calcium content compared to the LH group. Further, dietary fiber inhibited increases in blood levels of IS after intake of high-P diet, and decreased uremic toxin-producing intestinal bacteria. Dietary fiber may help suppress progression of vascular calcification due to repeated P fluctuations in early-stage CKD rats by decreasing uremic toxin-producing intestinal bacteria.
Collapse
Affiliation(s)
- Mariko Tani
- Graduate School of Human Science and Environment, University of Hyogo, 1-1-12 Shinzaike-Honcho, Himeji, Hyogo 670-0092, Japan
| | - Sarasa Tanaka
- Graduate School of Human Science and Environment, University of Hyogo, 1-1-12 Shinzaike-Honcho, Himeji, Hyogo 670-0092, Japan
| | - Kana Takamiya
- School of Human Science and Environment, University of Hyogo, 1-1-12 Shinzaike-Honcho, Himeji, Hyogo 670-0092, Japan
| | - Yoji Kato
- Graduate School of Human Science and Environment, University of Hyogo, 1-1-12 Shinzaike-Honcho, Himeji, Hyogo 670-0092, Japan
| | - Gaku Harata
- Technical Research Laboratory, Takanashi Milk Products Co., Ltd., Yokohama, Kanagawa 241-0023, Japan
| | - Fang He
- Technical Research Laboratory, Takanashi Milk Products Co., Ltd., Yokohama, Kanagawa 241-0023, Japan
| | - Motoyoshi Sakaue
- Graduate School of Human Science and Environment, University of Hyogo, 1-1-12 Shinzaike-Honcho, Himeji, Hyogo 670-0092, Japan
| | - Mikiko Ito
- Graduate School of Human Science and Environment, University of Hyogo, 1-1-12 Shinzaike-Honcho, Himeji, Hyogo 670-0092, Japan
| |
Collapse
|
12
|
Yasukawa Z, Inoue R, Ozeki M, Okubo T, Takagi T, Honda A, Naito Y. Effect of Repeated Consumption of Partially Hydrolyzed Guar Gum on Fecal Characteristics and Gut Microbiota: A Randomized, Double-Blind, Placebo-Controlled, and Parallel-Group Clinical Trial. Nutrients 2019; 11:E2170. [PMID: 31509971 PMCID: PMC6769658 DOI: 10.3390/nu11092170] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/27/2019] [Accepted: 09/02/2019] [Indexed: 02/08/2023] Open
Abstract
Partially hydrolyzed guar gum (PHGG) is a water-soluble dietary fiber and is used in solid and liquid food to regulate gut function. The aim of this study was to investigate effects of PHGG on bowel movements (stool form and frequency), plasma bile acids, quality of life, and gut microbiota of healthy volunteers with a tendency toward diarrhea, i.e., irritable bowel syndrome diarrhea (IBS-D)-like symptoms. A randomized, double-blind, placebo-controlled, and parallel trial was performed on 44 healthy volunteers (22 males, 22 females, 41.9 ± 6.3 years old (average ± SD)) with minimum 7 bowel movements every week, wherein above 50% of their stool was between the Bristol stool scale (BSS) value of 5 and 6. Intake of the PHGG for 3 months significantly improved stool form, evaluated using BSS, and had no effects on stool frequency. BSS was significantly normalized in the group consuming the PHGG compared with the placebo. Comprehensive fecal microbiome analysis by the 16S rRNA-sequence method detected significant changes in the ratio of some bacteria, such as an increase of Bifidobacterium (p < 0.05) in the PHGG group. Our results suggest that intake of PHGG improves human stool form via regulating intestinal microbiota.
Collapse
Affiliation(s)
- Zenta Yasukawa
- Nutrition Division, Taiyo Kagaku Co., Ltd., Yokkaichi, Mie 510-0844, Japan.
- Academic-Industrial Graduate School, Mie University, Tsu, Mie 514-8507, Japan.
| | - Ryo Inoue
- Laboratory of Animal Science, Department of Agricultural and Life Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan.
| | - Makoto Ozeki
- Nutrition Division, Taiyo Kagaku Co., Ltd., Yokkaichi, Mie 510-0844, Japan.
- Academic-Industrial Graduate School, Mie University, Tsu, Mie 514-8507, Japan.
| | - Tsutomu Okubo
- Nutrition Division, Taiyo Kagaku Co., Ltd., Yokkaichi, Mie 510-0844, Japan.
- Academic-Industrial Graduate School, Mie University, Tsu, Mie 514-8507, Japan.
| | - Tomohisa Takagi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan.
| | - Akira Honda
- Gastroenterology, Tokyo Medical University Ibaraki Medical Center, Inashiki, Ibaraki 300-0395, Japan.
| | - Yuji Naito
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan.
| |
Collapse
|
13
|
Role of guar fiber in improving digestive health and function. Nutrition 2019; 59:158-169. [DOI: 10.1016/j.nut.2018.07.109] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/29/2018] [Accepted: 07/30/2018] [Indexed: 01/18/2023]
|
14
|
Alarifi S, Bell A, Walton G. In vitro fermentation of gum acacia - impact on the faecal microbiota. Int J Food Sci Nutr 2018; 69:696-704. [PMID: 29334803 DOI: 10.1080/09637486.2017.1404970] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Interest in the consumption of gum acacia (GA) has been associated with beneficial health effects, which may be mediated in part by prebiotic activity. Two doses of GA and fructooligosaccharide (FOS) (1 and 2%) were tested for their efficacy over 48 h in pH- and temperature-controlled anaerobic batch cultures inoculated with human faeces. Samples were taken after 0, 5, 10, 24 and 48 h of fermentation. The selective effects of GA (increases in Bifidobacterium spp. and Lactobacillus spp.) were similar to those of the known prebiotic FOS. The 1% dose of substrates showed more enhanced selectivity compared to the 2% dose. The fermentation of GA also led to SCFA production, specifically increased acetate after 10, 24 and 48 h of fermentation, propionate after 48 h and butyrate after 24 and 48 h. In addition, FOS led to significant increase in the main SCFAs. These results suggest that GA displays potential prebiotic properties.
Collapse
Affiliation(s)
- Sehad Alarifi
- a Department of Food and Nutritional Sciences , University of Reading , Reading , UK
| | - Alan Bell
- a Department of Food and Nutritional Sciences , University of Reading , Reading , UK
| | - Gemma Walton
- a Department of Food and Nutritional Sciences , University of Reading , Reading , UK
| |
Collapse
|
15
|
Role of guar fiber in appetite control. Physiol Behav 2016; 164:277-83. [DOI: 10.1016/j.physbeh.2016.06.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 11/22/2022]
|
16
|
Long W, Xue Z, Zhang Q, Feng Z, Bridgewater L, Wang L, Zhao L, Pang X. Differential responses of gut microbiota to the same prebiotic formula in oligotrophic and eutrophic batch fermentation systems. Sci Rep 2015; 5:13469. [PMID: 26305380 PMCID: PMC4548253 DOI: 10.1038/srep13469] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 07/28/2015] [Indexed: 01/01/2023] Open
Abstract
The same prebiotics have produced inconsistent effects on microbiota when evaluated in different batch fermentation studies. To understand the reasons behind these discrepancies, we compared impact of one prebiotic formula on the same inoculated fecal microbiota in two frequently used batch systems: phosphate-buffered saline (PBS, oligotrophic) and basal culture medium (BCM, eutrophic). The microbiota was monitored using 454 pyrosequencing. Negative controls (no prebiotic) of both systems showed significant shifts in the microbiota during fermentation, although their pH remained relatively stable, especially in BCM, with increases in Bilophila and Escherichia/Shigella but a decrease in Faecalibacterium. We identified prebiotic responders via redundancy analysis by including both baseline and negative controls. The key positive and negative responders in the two systems were very different, with only 8 consistently modulated OTUs (7 of the 28 positive responders and 1 of the 35 negative responders). Moreover, some OTUs within the same genus responded to the prebiotic in opposite ways. Therefore, to obtain a complete in vitro evaluation of the modulatory effects of a prebiotic on microbiota, it is necessary to use both oligotrophic and eutrophic systems, compare treatment groups with both baseline and negative controls, and analyze the microbiota changes down to the OTU level.
Collapse
Affiliation(s)
- Wenmin Long
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhengsheng Xue
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qianpeng Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhou Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Laura Bridgewater
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah 84602, USA
| | - Linghua Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liping Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,Shanghai Jiao Tong University and Perfect (China) Co. Ltd. Joint Research Center on Microbiota and Health
| | - Xiaoyan Pang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
17
|
Ohashi Y, Sumitani K, Tokunaga M, Ishihara N, Okubo T, Fujisawa T. Consumption of partially hydrolysed guar gum stimulates Bifidobacteria and butyrate-producing bacteria in the human large intestine. Benef Microbes 2015; 6:451-5. [PMID: 25519526 DOI: 10.3920/bm2014.0118] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Partially hydrolysed guar gum (PHGG) is a water-soluble dietary fibre that is non-digestible in the upper gastrointestinal tract. It is believed that PHGG benefits the health of hosts by altering the colonic microbiota and stimulating short-chain fatty acid (SCFA) production. However, it remains unclear which bacteria ferment PHGG in the human large intestine. In this study, the effect of PHGG on faecal bacteria was analysed to specify the bacteria that contribute to the fermentation of PHGG in the human large intestine. Ten healthy volunteers consumed PHGG (6 g/day) for 2 weeks. Faeces were collected at 2 weeks prior to consumption, at the end of 2 weeks of consumption, and 2 weeks after consumption of PHGG. Bacterial DNA was extracted from these collected faeces and subjected to real-time PCR using bacterial group- or species-specific primers. The copy number of the butyryl-CoA CoA-transferase gene and the 16S rRNA gene copy numbers of Bifidobacterium, the Clostridium coccoides group, the Roseburia/ Eubacterium rectale group, Eubacterium hallii, and butyrate-producing bacterium strain SS2/1 were significantly increased by the intake of PHGG. Other bacteria and bacterial groups were not significantly influenced by the intake of PHGG. It was believed that the Roseburia/E. rectale group bacteria, Bifidobacterium, the lactate-utilising, butyrate-producing bacteria, E. hallii and bacterium strain SS2/1, would contribute to the fermentation of PHGG in the human large intestine. PHGG may benefit health by stimulating Bifidobacterium and butyrate-producing bacteria in the human large intestine.
Collapse
Affiliation(s)
- Y Ohashi
- 1 Laboratory of Food Hygiene, Department of Food Science and Technology, Nippon Veterinary and Life Science University, 1-7-1, Kyonan-cho, Musashino, Tokyo 180-8602, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Effects of tropical fruit pulps and partially hydrolysed galactomannan from Caesalpinia pulcherrima seeds on the dietary fibre content, probiotic viability, texture and sensory features of goat dairy beverages. Lebensm Wiss Technol 2014. [DOI: 10.1016/j.lwt.2014.04.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Buriti FC, dos Santos KM, Sombra VG, Maciel JS, Teixeira Sá DM, Salles HO, Oliveira G, de Paula RC, Feitosa JP, Monteiro Moreira AC, Moreira RA, Egito AS. Characterisation of partially hydrolysed galactomannan from Caesalpinia pulcherrima seeds as a potential dietary fibre. Food Hydrocoll 2014. [DOI: 10.1016/j.foodhyd.2013.07.015] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
|