1
|
Sanati M, Manavi MA, Noruzi M, Behmadi H, Akbari T, Jalali S, Sharifzadeh M, Khoobi M. Carbohydrates and neurotrophic factors: A promising partnership for spinal cord injury rehabilitation. BIOMATERIALS ADVANCES 2024; 166:214054. [PMID: 39332344 DOI: 10.1016/j.bioadv.2024.214054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 09/29/2024]
Abstract
Spinal cord injury (SCI) leaves a temporary or enduring motor, sensory, and autonomic function loss, significantly impacting the patient's quality of life. Given their biocompatibility, bioactivity, and tunable attributes, three-dimensional scaffolds frequently employ carbohydrates to facilitate spinal cord regeneration. These scaffolds have also been engineered to be novel local delivery platforms that present distinct advantages in the targeted transportation of drug candidates to the damaged spinal cord, ensuring the right dosage and duration of administration. Neurotrophic factors have emerged as promising therapeutic candidates, preserved neuron survival and encouraged severed axons repair, although their local and continuous delivery is believed to produce considerable spinal cord rehabilitation. This study aims to discuss breakthroughs in scaffold engineering, exploiting carbohydrates as an essential part of their structure, and highlight their impact on spinal cord regeneration and sustained neurotrophic factors delivery to treat SCI.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Amin Manavi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzieh Noruzi
- School of Pharmacy, Semnan University of Medical Sciences, Semnan, Iran
| | - Homayoon Behmadi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Tayebeh Akbari
- Department of Microbiology, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Sara Jalali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sharifzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mehdi Khoobi
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, 1417614411 Tehran, Iran.
| |
Collapse
|
2
|
Deng L, Wei SL, Wang L, Huang JQ. Feruloylated Oligosaccharides Prevented Influenza-Induced Lung Inflammation via the RIG-I/MAVS/TRAF3 Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:9782-9794. [PMID: 38597360 DOI: 10.1021/acs.jafc.3c09390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Uncontrolled inflammation contributes significantly to the mortality in acute respiratory infections. Our previous research has demonstrated that maize bran feruloylated oligosaccharides (FOs) possess notable anti-inflammatory properties linked to the NF-kB pathway regulation. In this study, we clarified that the oral administration of FOs moderately inhibited H1N1 virus infection and reduced lung inflammation in influenza-infected mice by decreasing a wide spectrum of cytokines (IFN-α, IFN-β, IL-6, IL-10, and IL-23) in the lungs. The mechanism involves FOs suppressing the transduction of the RIG-I/MAVS/TRAF3 signaling pathway, subsequently lowering the expression of NF-κB. In silico analysis suggests that FOs have a greater binding affinity for the RIG-I/MAVS signaling complex. This indicates that FOs have potential as promising targets for immune modulation. Moreover, in MAVS knockout mice, we confirmed that the anti-inflammatory function of FOs against influenza depends on MAVS. Comprehensive analysis using 16S rRNA gene sequencing and metabolite profiling techniques showed that FOs have the potential to restore immunity by modulating the gut microbiota. In conclusion, our study demonstrates that FOs are effective anti-inflammatory phytochemicals in inhibiting lung inflammation caused by influenza. This suggests that FOs could serve as a potential nutritional strategy for preventing the H1N1 virus infection and associated lung inflammation.
Collapse
Affiliation(s)
- Li Deng
- School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Shu-Lei Wei
- School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Lu Wang
- School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Jun-Qing Huang
- School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| |
Collapse
|
3
|
Yin Z, Liu M, Wang B, Zhao D, Li H, Sun J. Extraction, Identification, and In Vitro Anti-Inflammatory Activity of Feruloylated Oligosaccharides from Baijiu Distillers' Grains. Foods 2024; 13:1283. [PMID: 38672955 PMCID: PMC11049520 DOI: 10.3390/foods13081283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
The structure and function of phenoyl oligosaccharides in baijiu distillers' grains (BDGs) have not been identified and investigated yet. This study aimed to elucidate the major phenolic oligosaccharides present in BDGs, optimize their extraction process via a central composite design, and assess their anti-inflammatory properties utilizing the LPS-induced RAW264.7 inflammation model. The main results are as follows: feruloylated oligosaccharides (FOs) were identified as the main phenoyl oligosaccharides in BDGs with a structure of ferulic acid esterified on arabinooligosaccharide xylose. Then, the preparation process of FOs was optimized using the following conditions: pH 5, temperature 55 °C, time 12 h, xylanase addition amount 7 g/L, BDG concentration 120 g/L. Furthermore, the acquired FOs demonstrated notable scavenging activity against DPPH and ABTS free radicals, with Trolox equivalent values of 366.8 ± 10.38 and 0.35 ± 0.01 mM Trolox/mg sample, respectively. However, their efficacy was comparatively lower than that of ferulic acid. Finally, the obtained FOs could effectively inhibit the LPS-induced secretion of TNF-α, IL-6, and IL-1β and promote the secretion of IL-10 in RAW264.7 cells. Based on the above results, FOs from BDGs were determined to have certain antioxidant and anti-inflammatory activities.
Collapse
Affiliation(s)
- Zhongtian Yin
- Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China;
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; (M.L.); (B.W.); (D.Z.); (H.L.)
| | - Mengyao Liu
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; (M.L.); (B.W.); (D.Z.); (H.L.)
| | - Bowen Wang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; (M.L.); (B.W.); (D.Z.); (H.L.)
| | - Dongrui Zhao
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; (M.L.); (B.W.); (D.Z.); (H.L.)
| | - Hehe Li
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; (M.L.); (B.W.); (D.Z.); (H.L.)
| | - Jinyuan Sun
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; (M.L.); (B.W.); (D.Z.); (H.L.)
| |
Collapse
|
4
|
Hu Y, Meng Z, Wang W, Hao X, Wang Y, Qi J. Carcase traits, meat quality, and lipogenic gene expression in muscle of lambs fed wheat bran feruloyl oligosaccharides. ITALIAN JOURNAL OF ANIMAL SCIENCE 2023. [DOI: 10.1080/1828051x.2023.2181107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Affiliation(s)
- Yuchao Hu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research Center, Hohhot, China
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot, China
| | - Ziqi Meng
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Institute of Animal Nutrition and Feed in Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Wenwen Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research Center, Hohhot, China
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot, China
| | - Xiran Hao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research Center, Hohhot, China
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot, China
| | - Yuan Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research Center, Hohhot, China
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot, China
| | - Jingwei Qi
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Herbivorous Livestock Feed Engineering Technology Research Center, Hohhot, China
- Key Laboratory of Smart Animal Husbandry at Universities of Inner Mongolia Automomous Region, Hohhot, China
| |
Collapse
|
5
|
Yang X, Zeng D, Li C, Yu W, Xie G, Zhang Y, Lu W. Therapeutic potential and mechanism of functional oligosaccharides in inflammatory bowel disease: a review. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
6
|
Wang Y, Wang D, Liu J, Yu X. Effects of rice bran feruloyl oligosaccharides on gel properties and microstructure of grass carp surimi. Food Chem 2023; 407:135003. [PMID: 36516517 DOI: 10.1016/j.foodchem.2022.135003] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022]
Abstract
Effects of feruloyl oligosaccharides (FOs) from rice bran on the gel properties, microstructure, and sensory properties of grass crap surimi gel were investigated. The results showed that FOs decreased the whiteness of surimi gel, and improved the water-holding capacity and breaking force of surimi gel. According to the texture analysis, the hardness and chewiness of surimi gel significantly increased by adding 0.3% FOs, but had no significant effect on the springiness and cohesiveness. The changes in AFM images indicated that FOs made myofibrillar protein aggregated and uniformly distributed. The SEM micrograph revealed that the 0.3% FOs group had the most compact and ordered network structure. Additionally, sensory characteristics suggested that FOs reduced off-odor from freshwater fish and remained fish delicious taste. This study provides a new prospect for the potential commercial application of FOs as a health gel enhancer in surimi products.
Collapse
Affiliation(s)
- Yue Wang
- School of Marine and Bioengineering, YanCheng Institute of Technology, Yancheng 224051, China
| | - Dujun Wang
- School of Marine and Bioengineering, YanCheng Institute of Technology, Yancheng 224051, China
| | - Jinbin Liu
- School of Marine and Bioengineering, YanCheng Institute of Technology, Yancheng 224051, China
| | - Xiaohong Yu
- School of Marine and Bioengineering, YanCheng Institute of Technology, Yancheng 224051, China.
| |
Collapse
|
7
|
Wang W, Wang Y, Duan Y, Meng Z, An X, Qi J. Regulation of wheat bran feruloyl oligosaccharides in the intestinal antioxidative capacity of rats associated with the p38/JNK-Nrf2 signaling pathway and gut microbiota. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6992-7002. [PMID: 35689477 DOI: 10.1002/jsfa.12061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 04/04/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Feruloyl oligosaccharides (FOs), the ferulic acid ester of oligosaccharides, may possess the physiological functions of both ferulic acid and oligosaccharides, including antioxidative activity and gut microbiota modulation capacity. The present study aimed to investigate whether FOs could regulate the intestinal antioxidative capacity of rats by modulating the MAPKs/Nrf2 signaling pathway and gut microbiota. Thirty Wistar rats were randomly divided into five groups. Rats received a standard diet and were gavaged once daily with 0.85% normal saline, 100 mg kg-1 body weight vitamin C or FOs solution at doses of 20, 40 and 80 mg kg-1 body weight for 21 days. RESULTS FOs strengthened the antioxidative capacity of the jejunum, as indicated by increased in contents of catalase, superoxide dismutase and glutathione peroxidase, as well as glutathione. Moreover, FOs administration upregulated the mRNA expression level of antioxidant-related genes (glutamate-cysteine ligase catalytic subunit, glutamate-cysteine ligase modifier subunit and heme oxygenase-1) in the jejunum. Increases in phosphorylation levels of Nrf2, p38 and JNK were also observed. Administration with 40 mg kg-1 FOs altered the structure and composition of the cecal microbiota, which was indicated by the increased the relative abundances of Actinobacteria, Proteobacteria and Acidobacteriota, and the decreased the relative abundances of Firmicutes, Lachnospiraceae_NK4A136_group and Blautia. Furthermore, Spearman correlation analysis revealed that the altered cecal microbiota closely correlated with jejunal antioxidative capacity of rats. CONCLUSION FOs could be used as an antioxidant for gut heath improvement through modulating the p38/JNK-Nrf2 signaling pathway and gut microbiota. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenwen Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Herbivorous Livestock Feed Engineering and Technology Research Center, Hohhot, China
| | - Yuan Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Herbivorous Livestock Feed Engineering and Technology Research Center, Hohhot, China
| | - Yuanxiao Duan
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Herbivorous Livestock Feed Engineering and Technology Research Center, Hohhot, China
| | - Ziqi Meng
- Institute of Animal Nutrition and Feed in Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Xiaoping An
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Herbivorous Livestock Feed Engineering and Technology Research Center, Hohhot, China
| | - Jingwei Qi
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Herbivorous Livestock Feed Engineering and Technology Research Center, Hohhot, China
| |
Collapse
|
8
|
Santos D, Pintado M, Lopes da Silva JA. Potential nutritional and functional improvement of extruded breakfast cereals based on incorporation of fruit and vegetable by-products - A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Zeng B, Zhao S, Zhou R, Zhou Y, Jin W, Yi Z, Zhang G. Engineering and screening of novel β-1,3-xylanases with desired hydrolysate type by optimized ancestor sequence reconstruction and data mining. Comput Struct Biotechnol J 2022; 20:3313-3321. [PMID: 35832630 PMCID: PMC9251504 DOI: 10.1016/j.csbj.2022.06.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 11/03/2022] Open
Abstract
A novel integrative strategy for engineering β-1,3-xylanases with desired products. AncXyl10 is the first successful example of ASR to shift the hydrolysate types. The hydrolysates of AncXyl10 was only β-1,3-xylobiose and β-1,3-xylotriose. The underlying mechanism laid a new groundwork towards hydrolase engineering.
Engineering of hydrolases to shift their hydrolysate types has not been attempted so far, though computer-assisted enzyme design has been successful. A novel integrative strategy for engineering and screening the β-1,3-xylanase with desired hydrolysate types was proposed, with the purpose to solve problems that the separation and preparation of β-1,3-xylo-oligosaccharides was in high cost yet in low yield as monosaccharides existed in the hydrolysates. By classifying the hydrolysate types and coding them into numerical values, two robust mathematical models with five selected attributes from molecular docking were established based on LogitBoost and partial least squares regression with overall accuracy of 83.3% and 100%, respectively. Then, they were adopted for efficient screening the potential mutagenesis library of β-1,3-xylanases that only product oligosaccharides. The virtually designed AncXyl10 was selected and experimentally verified to produce only β-1,3-xylobiose (60.38%) and β-1,3-xylotriose (39.62%), which facilitated the preparation of oligosaccharides with high purity. The underlying mechanism of AncXyl10 may associated with the gap processing and ancestral amino acid substitution in the process of ancestral sequence reconstruction. Since many carbohydrate-active enzymes have highly conserved active sites, the strategy and their biomolecular basis will shield a new light for engineering carbohydrates hydrolase to produce specific oligosaccharides.
Collapse
|
10
|
Younes A, Li M, Karboune S. Cocoa bean shells: a review into the chemical profile, the bioactivity and the biotransformation to enhance their potential applications in foods. Crit Rev Food Sci Nutr 2022; 63:9111-9135. [PMID: 35467453 DOI: 10.1080/10408398.2022.2065659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
During processing, cocoa bean shells (CBS) are de-hulled from the bean and discarded as waste. Undermined by its chemical and bioactive composition, CBS is abundant in dietary fiber and phenolic compounds that may serve the valorization purpose of this by-product material into prebiotic and functional ingredients. In addition, the cell-wall components of CBS can be combined through enzymatic feruloylation to obtain feruloylated oligo- and polysaccharides (FOs), further enhancing the techno-functional properties. FOs have attracted scientific attention due to their prebiotic, antimicrobial, anti-inflammatory and antioxidant functions inherent to their structural features. This review covers the chemical and bioactive compositions of CBS as well as their modifications upon cocoa processing. Physical, chemical, and enzymatic approaches to extract and bio-transform bioactive components from the cell wall matrix of CBS were also discussed. Although nonspecific to CBS, studies were compiled to investigate efforts done to extract and produce feruloylated oligo- and polysaccharides from the cell wall materials.
Collapse
Affiliation(s)
- Amalie Younes
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, Montreal, Québec, Canada
| | - Mingqin Li
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, Montreal, Québec, Canada
| | - Salwa Karboune
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, Montreal, Québec, Canada
| |
Collapse
|
11
|
Lin S. Dietary fiber in bakery products: Source, processing, and function. ADVANCES IN FOOD AND NUTRITION RESEARCH 2022; 99:37-100. [PMID: 35595397 DOI: 10.1016/bs.afnr.2021.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bakery products are prevalently consumed foods in the world, and they have been regarded as convenient dietary vehicles for delivering nutritive ingredients into people's diet, of which, dietary fiber (DF) is one of the most popular items. The food industry attempts to produce fiber-enriched bakery products with both increasing nutritional value and appealing palatability. As many new sources of DFs become available, and consumers are moving towards healthier diets, studies of using these DFs as functional ingredients in baked goods are becoming vast. Besides, the nutrition value of DF is commonly accepted, and many investigations have also revealed the health benefits of fiber-enriched bakery products. Thus, this chapter presents an overview of (1) trends in supplementation of DF from various sources, (2) impact of DF on dough processing, quality and physiological functionality of bakery products, and (3) technologies used to improve the compatibility of DF in bakery products.
Collapse
Affiliation(s)
- Suyun Lin
- Key Lab for Natural Products and Functional Foods of Jiangxi Province, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, China.
| |
Collapse
|
12
|
Wang J, Bai J, Wang Y, Zhang K, Li Y, Qian H, Zhang H, Wang L. Feruloylated arabinoxylan from wheat bran inhibited M1-macrophage activation and enhanced M2-macrophage polarization. Int J Biol Macromol 2022; 194:993-1001. [PMID: 34848238 DOI: 10.1016/j.ijbiomac.2021.11.158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/16/2021] [Accepted: 11/23/2021] [Indexed: 11/05/2022]
Abstract
The effects of feruloylated arabinoxylan (AX) on typically activated inflammatory macrophages (M1) and alternatively anti-inflammatory macrophages (M2) and its possible mechanisms were investigated. The results revealed that feruloylated AX was composed of 37.63% arabinose and 52.23% xylose, with a weight-average molecular weight of 1.1374 × 104 Da, and bound ferulic acid content of 10.84 mg/g. Besides, feruloylated AX (50-1000 μg/mL) markedly downregulated the mRNA expressions of NO, IL-1β, TNF-α, IL-6, and IL-23a, and reduced the phosphorylation levels of p38, ERK, and JNK in M1. In contrast, the mRNA expressions of Arg-1, Mrc-1, and CCL22 were significantly upregulated by feruloylated AX (50-1000 μg/mL), and the phosphorylation level of AKT was significantly increased in M2. Overall, our results indicated that feruloylated AX could have an inhibitory or a promoting effect on already activated macrophages, and MAPK or PI3K signaling pathways might be involved in this regulation.
Collapse
Affiliation(s)
- Jing Wang
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Junying Bai
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Yu Wang
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Kuiliang Zhang
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Yan Li
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Haifeng Qian
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Hui Zhang
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Li Wang
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| |
Collapse
|
13
|
De Villa R, Roasa J, Mine Y, Tsao R. Impact of solid-state fermentation on factors and mechanisms influencing the bioactive compounds of grains and processing by-products. Crit Rev Food Sci Nutr 2021:1-26. [PMID: 34955050 DOI: 10.1080/10408398.2021.2018989] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Cereal and legume grains and their processing by-products are rich sources of bioactives such as phenolics with considerable health potential, but these bioactives suffer from low bioaccessibility and bioavailability, resulting in limited use. Several studies have demonstrated that solid-state fermentation (SSF) with food-grade microorganisms is effective in releasing bound phenolic compounds in cereal and legume products. In this review, we discuss the effect of SSF on cereal and legume grains and their by-products by examining the role of specific microorganisms, their hydrolytic enzymes, fermentability of agri-food substrates, and the potential health benefits of SSF-enhanced bioactive compounds. SSF with fungi (Aspergillus spp. and Rhizopus spp.), bacteria (Bacillus subtilis and lactic acid bacteria (LAB) spp.) and yeast (Saccharomyces cerevisiae) significantly increased the bioactive phenolics and antioxidant capacities in cereal and legume grains and by-products, mainly through carbohydrate-cleaving enzymes. Increased bioactive phenolic and peptide contents of SSF-bioprocessed cereal and legume grains have been implicated for improved antioxidant, anti-inflammatory, anti-carcinogenic, anti-diabetic, and angiotensin-converting-enzyme (ACE) inhibitory effects in fermented agri-food products, but these remain as preliminary results. Future research should focus on the microbial mechanisms, suitability of substrates, and the physiological health benefits of SSF-treated grains and by-products.
Collapse
Affiliation(s)
- Ray De Villa
- Guelph Research & Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada.,Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Joy Roasa
- Guelph Research & Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada.,Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Yoshinori Mine
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Rong Tsao
- Guelph Research & Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| |
Collapse
|
14
|
Pazo-Cepeda M, Aspromonte S, Alonso E. Extraction of ferulic acid and feruloylated arabinoxylo-oligosaccharides from wheat bran using pressurized hot water. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Bioactive feruloylated xylooligosaccharides derived from Pearl millet (Pennisetum glaucum) bran with antiglycation and antioxidant properties. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01139-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Nathu H, Mbuyama KR, Adarkwah-Yiadom M, Serem JC, Ibrahim MA, Duodu KG, Gaspar ARM, Bester MJ. Antioxidant properties and inhibition of lipid formation in 3T3-L1 adipocytes of in vitro digested mageu, a commercial sample. J Food Biochem 2021; 45:e13929. [PMID: 34519069 DOI: 10.1111/jfbc.13929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 11/29/2022]
Abstract
Mageu is a fermented, non-alcoholic maize-derived product unique to southern Africa. The aim of this study was to identify the health benefits of a polyphenolic extract of commercially produced mageu related to the antioxidant properties and effects on lipid accumulation in differentiated 3T3-L1 adipocytes. A pooled sample of mageu Number 1 brand (original non-flavored) was subjected to in vitro gastroduodenal digestion (GDD). Reverse phase high-performance liquid chromatography of unfractionated undigested (UD) and GDD mageu revealed that with digestion there was an increased extraction of 1.2, 1.83, 1.45, 4.86, and 3.17-fold of caffeic acid, 3,4-dihydroxybenzoic acid, p-coumaric acid, 4 hydroxybenzoic acid and ferulic acid, respectively. An associated increase in the total phenolic acid content and antioxidant activity in the <3 kDa fraction was obtained. In contrast with digestion, inhibition of advanced glycation end products formation and low-density lipoprotein oxidation was found in the <30 kDa fraction indicating the contribution of larger, possibly feruloylated polysaccharides, to activity. Cellular antioxidant activity in Caco-2 cells was >90% for all UD fractions, but with GDD was reduced. All fractions had low scavenging of nitric oxide in the lipopolysaccharide/murine cell model. Exposure of 3T3-L1 adipocytes to all the UD and GDD mageu fractions (at 1% and 10% concentrations) during differentiation resulted in at least a 35% reduction in lipid accumulation, which was not associated with a loss of cellular viability. In conclusion, mageu, UD, and subjected to GDD contains phenolic acids with beneficial bioactive properties that contribute to antioxidant activity and reduces lipid accumulation in adipocytes. PRACTICAL APPLICATIONS: Mageu is a non-alcoholic fermented maize product which when digested has increased bioactivity. Its reported health benefits are due to its caloric content therefore the practical application of this research is to validate the scientific benefits of this food and encourage increased consumption of this functional food. This is especially important in the context of the South African population where this product is widely consumed as increasing obesity is associated with an increased risk of non-communicable disease. Furthermore, as a non-alcoholic drink, consumption can be promoted for all ages' groups and religions, and a commercialized manufacture processes can be optimized to increase phenolic acid release.
Collapse
Affiliation(s)
- Haleema Nathu
- Department of Anatomy, University of Pretoria, Pretoria, South Africa
| | - Kabuzi R Mbuyama
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Martin Adarkwah-Yiadom
- Department of Consumer and Food Sciences, University of Pretoria, Pretoria, South Africa
| | - June C Serem
- Department of Anatomy, University of Pretoria, Pretoria, South Africa
| | | | - Kwaku G Duodu
- Department of Consumer and Food Sciences, University of Pretoria, Pretoria, South Africa
| | - Anabella R M Gaspar
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Megan J Bester
- Department of Anatomy, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
17
|
Feruloylation of polysaccharides from cranberry and characterization of their prebiotic properties. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Petry AL, Huntley NF, Bedford MR, Patience JF. Xylanase increased the energetic contribution of fiber and improved the oxidative status, gut barrier integrity, and growth performance of growing pigs fed insoluble corn-based fiber. J Anim Sci 2020; 98:5873899. [PMID: 32687554 PMCID: PMC7392531 DOI: 10.1093/jas/skaa233] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/14/2020] [Indexed: 11/13/2022] Open
Abstract
The experimental objective was to investigate the impact of xylanase on the bioavailability of energy, oxidative status, and gut function of growing pigs fed a diet high in insoluble fiber and given a longer adaptation time than typically reported. Three replicates of 20 gilts with an initial body weight (BW) of 25.43 ± 0.88 kg were blocked by BW, individually housed, and randomly assigned to one of four dietary treatments: a low-fiber control (LF) with 7.5% neutral detergent fiber (NDF), a 30% corn bran without solubles high-fiber control (HF; 21.9% NDF), HF + 100 mg/kg xylanase (HF + XY; Econase XT 25P), and HF + 50 mg/kg arabinoxylan-oligosaccharide (HF + AX). Gilts were fed ad libitum for 36 d across two dietary phases. Pigs and feeders were weighed on days 0, 14, 27, and 36. On day 36, pigs were housed in metabolism crates for a 10-d period, limit fed (80% of average ad libitum intake), and feces and urine were collected the last 72 h to determine the digestible energy (DE) and metabolizable energy (ME). On day 46, serum and ileal and colonic tissue were collected. Data were analyzed as a linear mixed model with block and replication as random effects, and treatment, time, and treatment × time as fixed effects. There was a significant treatment × time interaction for BW, average daily gain (ADG), and gain to feed (G:F; P < 0.001). By design, BW at day 0 did not differ; at day 14, pigs fed LF were 3.5% heavier, and pigs fed HF + XY, when compared with HF, were 4% and 4.2% heavier at days 27 and 36, respectively (P < 0.001). From day 14 to 27 and day 27 to 36, when compared with HF, HF + XY improved ADG by 12.4% and 10.7% and G:F by 13.8% and 8.8%, respectively (P < 0.05). Compared with LF, HF decreased DE and ME by 0.51 and 0.42 Mcal/kg, respectively, but xylanase partially mitigated that effect by increasing DE and ME by 0.15 and 0.12 Mcal/kg, over HF, respectively (P < 0.05). Pigs fed HF + XY had increased total antioxidant capacity in the serum and ileum (P < 0.05) and tended to have less circulating malondialdehyde (P = 0.098). Pigs fed LF had increased ileal villus height, and HF + XY and HF + AX had shallower intestinal crypts (P < 0.001). Pigs fed HF + XY had increased ileal messenger ribonucleic acid abundance of claudin 4 and occludin (P < 0.05). Xylanase, but not AX, improved the growth performance of pigs fed insoluble corn-based fiber. This was likely a result of the observed increase in ME, improved antioxidant capacity, and enhanced gut barrier integrity, but it may require increased adaptation time to elicit this response.
Collapse
Affiliation(s)
- Amy L Petry
- Department of Animal Science, Iowa State University, Ames, IA
| | | | | | - John F Patience
- Department of Animal Science, Iowa State University, Ames, IA
| |
Collapse
|
19
|
Liu J, Yu LL, Wu Y. Bioactive Components and Health Beneficial Properties of Whole Wheat Foods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12904-12915. [PMID: 32324395 DOI: 10.1021/acs.jafc.0c00705] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Epidemiological studies have found that whole wheat consumption is inversely associated with the risk of chronic diseases, such as obesity, type 2 diabetes, cardiovascular diseases, and cancer. The health benefits of whole wheat foods are attributed to their bioactive components, including phytochemicals and dietary fiber. In this review, the current studies regarding bioactive components and their health-promoting roles and the underlying mechanisms were summarized and discussed. The current research advances in processing technologies capable of potentially enhancing the nutritional quality of wheat and wheat-based foods were also included. This review may promote the research, development, and consumption of whole wheat foods in reducing the risk of human chronic diseases.
Collapse
Affiliation(s)
- Jie Liu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing 100048, People's Republic of China
| | - Liangli Lucy Yu
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, United States
| | - Yanbei Wu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing 100048, People's Republic of China
| |
Collapse
|
20
|
Zhang Z, Yu X, Geng X. Protective role of three differently processed corn bran on glucose and lipid concentrations in d-galactose-induced mice model. J Food Biochem 2020; 44:e13281. [PMID: 32557758 DOI: 10.1111/jfbc.13281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 04/05/2020] [Accepted: 04/15/2020] [Indexed: 11/28/2022]
Abstract
In this research, the effects of three differently processed corn bran (corn bran soluble hemicellulose (HEM), hemicellulose hydrolyzed by oxalic acid (HOA), Amberlite XAD-2 eluate (XE)) on the changes of glucose and lipid concentrations of d-galactose (d-gal)-induced mice were investigated. The mice were divided into five groups and intragastric administration HEM, HOA, and XE at 200 mg/kg Body Weight (BW) for continuously 6 weeks. Mice were submitted under oral glucose tolerance test (OGTT).Then, the serum insulin, glucagon-like peptide-1(GLP-1), serum C-peptide, hepatic glycogen (HG), muscle glycogen (MG), total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C) of all the mice were detected. As we can see, by inducing with d-gal, the glucose and lipid concentrations of aging mice could be effectively regulated by HEM, HOA, and XE. High degree of esterification feruloylated oligosaccharides has the most obvious effect of regulating glucose and lipid concentrations. PRACTICAL APPLICATIONS: Corn bran has not been fully paid attention owing to the rough taste and the poor water solubility. Actually, corn bran, a renewable resource available in a large quantity, could be a goods source of valuable consumer products. The results of this study indicated that three differently processed corn brans could regulate glucose and lipid concentrations and XE had the most obvious effect of regulating glucose and lipid concentrations. Corn bran could advantage as a new type of environmentally and inexpensive food supplements on reducing blood glucose and lipid concentrations.
Collapse
Affiliation(s)
- Zhiyu Zhang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Xiaorong Yu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Xin Geng
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
21
|
Feruloylated oligosaccharides and ferulic acid alter gut microbiome to alleviate diabetic syndrome. Food Res Int 2020; 137:109410. [PMID: 33233097 DOI: 10.1016/j.foodres.2020.109410] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/30/2020] [Accepted: 06/03/2020] [Indexed: 01/06/2023]
Abstract
Gut microbiome has been proven to be involved in the development of type 2 diabetes (T2D). Additionally, increasing evidence showed that the composition of gut microbiome is highly associated with the outcome of T2D therapy. Previously we demonstrated that feruloylated oligosaccharides (FOs) and ferulic acid (FA) alleviated diabetic syndrome in rats, but the detailed mechanism has not been explored yet. In this study we strived to characterize how FOs and FA altered the gut microbiome and related metabolome in diabetic rats by using high-throughput sequencing of 16S rRNA and gas chromatography (GC). Our results showed that FOs reduced the abundance of Lactobacillus, Ruminococcus, Oscillibacter, and Desulfovibrio, but increased the abundance of Akkermansia, Phascolarctobacterium and Turicibacter. The structure of gut microbiome in FOs treated rats was similar with healthy rats rather than diabetic rats. Likewise, FA decreased the portion of Lactobacillus, Ruminococcus, but promoted the growth of Bacteroides, Blautia, Faecalibacterium, Parabacteroides and Phascolarctobacterium. Additionally, the short-chain fatty acids (SCFAs) and branched-chain fatty acids (BCFAs), the main bacterial lipid metabolites in gut mediating host glucose metabolism, was dramatically elevated along with FOs and FA treatment. Our findings indicated that FOs and FA attenuated diabetic syndrome in rats most likely by modulating the composition and metabolism of gut microbiome. The study gives new insight into the mechanism underlying the anti-diabetes effect of functional foods as well as facilitates the development of dietary supplements for diabetic patients.
Collapse
|
22
|
Coelho MN, Soares PAG, Frattani FS, Camargo LMM, Tovar AMF, de Aguiar PF, Zingali RB, Mourão PAS, Costa SS. Polysaccharide composition of an anticoagulant fraction from the aqueous extract of Marsypianthes chamaedrys (Lamiaceae). Int J Biol Macromol 2020; 145:668-681. [PMID: 31883887 DOI: 10.1016/j.ijbiomac.2019.12.176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/16/2019] [Accepted: 12/19/2019] [Indexed: 10/25/2022]
Abstract
Marsypianthes chamaedrys (Lamiaceae) is a medicinal plant popularly used against envenomation by snakebite. Pharmacological studies have shown that extracts of M. chamaedrys have antiophidic, anti-inflammatory and anticoagulant properties, supporting the ethnopharmacological use. In this study, an aqueous extract of aerial parts of M. chamaedrys showed anticoagulant activity in the activated partial thromboplastin time assay (0.54 IU/mg). The bioassay-guided fractionation using ethanol precipitation and gel filtration chromatography on Sephadex G-50 and Sephadex G-25 resulted in a water-soluble fraction with increased anticoagulant activity (Fraction F2-A; 2.94 IU/mg). A positive correlation was found between the amount of uronic acids and the anticoagulant potential of the active samples. Chemical and spectroscopic analyses indicated that F2-A contained homogalacturonan, type I rhamnogalacturonan, type II arabinogalactan and α-glucan. UV and FT-IR spectra indicated the possible presence of ferulic acid. Pectic polysaccharides and type II arabinogalactans may be contributing to the anticoagulant activity of the aqueous extract of M. chamaedrys in the APTT assay.
Collapse
Affiliation(s)
- Mariana N Coelho
- Laboratório de Química de Produtos Naturais Bioativos (LPN-Bio), Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Centro de Ciências da Saúde, Cidade Universitária, Rio de Janeiro, RJ 21941-902, Brazil.
| | - Paulo A G Soares
- Laboratório de Tecido Conjuntivo, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rua Rodolpho Paulo Rocco, 255, Cidade Universitária, Rio de Janeiro, RJ 21941-913, Brazil.
| | - Flávia S Frattani
- Laboratório de Hemostasia e Trombose (LHT), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Centro de Ciências da Saúde, Cidade Universitária, Rio de Janeiro, RJ 21941-902, Brazil.
| | - Luiza M M Camargo
- Laboratório de Química de Produtos Naturais Bioativos (LPN-Bio), Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Centro de Ciências da Saúde, Cidade Universitária, Rio de Janeiro, RJ 21941-902, Brazil.
| | - Ana M F Tovar
- Laboratório de Tecido Conjuntivo, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rua Rodolpho Paulo Rocco, 255, Cidade Universitária, Rio de Janeiro, RJ 21941-913, Brazil.
| | - Paula F de Aguiar
- Laboratório de Quimiometria (LABQUIM), Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos, 149, Centro de Tecnologia, Cidade Universitária, Rio de Janeiro, RJ, 21941-909, Brazil.
| | - Russolina B Zingali
- Laboratório de Hemostase e Venenos, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Centro de Ciências da Saúde, Cidade Universitária, Rio de Janeiro, RJ 21941-902, Brazil.
| | - Paulo A S Mourão
- Laboratório de Tecido Conjuntivo, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rua Rodolpho Paulo Rocco, 255, Cidade Universitária, Rio de Janeiro, RJ 21941-913, Brazil.
| | - Sônia S Costa
- Laboratório de Química de Produtos Naturais Bioativos (LPN-Bio), Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Centro de Ciências da Saúde, Cidade Universitária, Rio de Janeiro, RJ 21941-902, Brazil.
| |
Collapse
|
23
|
Mendez-Encinas MA, Valencia-Rivera DE, Carvajal-Millan E, Astiazaran-Garcia H, Rascón-Chu A, Brown-Bojorquez F. Electrosprayed highly cross-linked arabinoxylan particles: effect of partly fermentation on the inhibition of Caco-2 cells proliferation. AIMS BIOENGINEERING 2020. [DOI: 10.3934/bioeng.2021006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
24
|
GUO N, WANG Q, SHEN L, WANG L, ZHAO Y. An effective and economic method to produce re-ripe honey with honeybee colonies. FOOD SCIENCE AND TECHNOLOGY 2019. [DOI: 10.1590/fst.23618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Nana GUO
- Chinese Academy of Agricultural Sciences, China
| | - Qingyu WANG
- Chinese Academy of Agricultural Sciences, China
| | - Lei SHEN
- Fuzhou Jin'an District Shenshi Beekeeping Cooperatives, China
| | - Lu WANG
- Inspection and Testing Center of Shouguang City, China
| | - Yazhou ZHAO
- Chinese Academy of Agricultural Sciences, China
| |
Collapse
|
25
|
Gong L, Wang H, Wang T, Liu Y, Wang J, Sun B. Feruloylated oligosaccharides modulate the gut microbiota in vitro via the combined actions of oligosaccharides and ferulic acid. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103453] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
26
|
Huang J, Ren J, Tao G, Chen Y, Yao S, Han D, Qiu R. Maize bran feruloylated oligosaccharides inhibited AGEs formation in glucose/amino acids and glucose/BSA models. Food Res Int 2019; 122:443-449. [DOI: 10.1016/j.foodres.2019.04.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 04/13/2019] [Accepted: 04/17/2019] [Indexed: 01/03/2023]
|
27
|
Verón HE, Gauffin Cano P, Fabersani E, Sanz Y, Isla MI, Fernández Espinar MT, Gil Ponce JV, Torres S. Cactus pear (Opuntia ficus-indica) juice fermented with autochthonous Lactobacillus plantarum S-811. Food Funct 2019; 10:1085-1097. [PMID: 30720817 DOI: 10.1039/c8fo01591k] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The present study aimed at investigating the lactic fermentation of cactus pear (Opuntia ficus-indica) fruit juice with the autochthonous and potentially probiotic strain Lactobacillus plantarum S-811. L. plantarum S-811 was able to quickly acidify the juice with a decrease in the pH from 5.5 to 3.7 and a production of 5.06 g l-1 of lactic acid. Fermentation of cactus pear juice led to conservation of its health-promoting properties and it markedly promoted antioxidant mechanisms in yeast cells, showing in a Saccharomyces cerevisiae model a protective effect of up to 11 times against H2O2 (4 mM), compared to yeasts not supplemented with the fermented juice. Administration of fermented juice to obese mice caused a significant decrease in the body weight gain and ameliorated the insulin resistance, hyperglycemia, and hyperlipemia that characterize obesity. These results reveal the potential of the cactus pear juice fermented with L. plantarum S-811 as a functional beverage for the prevention of obesity and related pathologies.
Collapse
Affiliation(s)
- Hernán E Verón
- Instituto de Bioprospección y Fisiología Vegetal (INBIOFIV) - CONICET, San Miguel de Tucumán, Tucumán, Argentina.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Wang Y, Meng Z, Guo J, Wang W, Duan Y, Hao X, Wang R, An X, Qi J. Effect of wheat bran feruloyl oligosaccharides on the performance, blood metabolites, antioxidant status and rumen fermentation of lambs. Small Rumin Res 2019. [DOI: 10.1016/j.smallrumres.2019.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
29
|
Schimpf U, Schulz R. Industrial by-products from white-rot fungi production. Part II: Application in anaerobic digestion for enzymatic treatment of hay and straw. Process Biochem 2019. [DOI: 10.1016/j.procbio.2018.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
30
|
Antioxidant properties of feruloylated oligosaccharides of different degrees of polymerization from wheat bran. Glycoconj J 2018; 35:547-559. [DOI: 10.1007/s10719-018-9847-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/05/2018] [Accepted: 10/08/2018] [Indexed: 11/28/2022]
|
31
|
Composition, thermal and rheological properties of polysaccharides from amadumbe (Colocasia esculenta) and cactus (Opuntia spp.). Carbohydr Polym 2018; 195:163-169. [DOI: 10.1016/j.carbpol.2018.04.062] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/24/2018] [Accepted: 04/16/2018] [Indexed: 11/21/2022]
|
32
|
Mendez-Encinas MA, Carvajal-Millan E, Rascon-Chu A, Astiazaran-Garcia HF, Valencia-Rivera DE. Ferulated Arabinoxylans and Their Gels: Functional Properties and Potential Application as Antioxidant and Anticancer Agent. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2314759. [PMID: 30186541 PMCID: PMC6116397 DOI: 10.1155/2018/2314759] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 05/19/2018] [Accepted: 07/02/2018] [Indexed: 12/29/2022]
Abstract
In the last years, biomedical research has focused its efforts in the development of new oral delivery systems for the treatment of different diseases. Ferulated arabinoxylans are polysaccharides from cereals that have been gaining attention in the pharmaceutical field due to their prebiotic, antioxidant, and anticancer properties. The antioxidant and anticancer properties of these polysaccharides make them attractive compounds for the treatment of cancer, particularly colon cancer. In addition, ferulated arabinoxylans can form covalent gels through the cross-linking of their ferulic acids. Due to their particular characteristics, ferulated arabinoxylan gels represent an excellent alternative as colon-targeted drug delivery systems. The aim of the present work is to review the physicochemical and functional properties of ferulated arabinoxylans and their gels and to present the future perspectives for potential application as antioxidant and anticancer agents.
Collapse
Affiliation(s)
- Mayra Alejandra Mendez-Encinas
- Biopolymers, Research Center for Food and Development, CIAD, A.C. Carretera a La Victoria Km. 0.6, 83304 Hermosillo, SON, Mexico
| | - Elizabeth Carvajal-Millan
- Biopolymers, Research Center for Food and Development, CIAD, A.C. Carretera a La Victoria Km. 0.6, 83304 Hermosillo, SON, Mexico
| | - Agustín Rascon-Chu
- Biotechnology, Research Center for Food and Development, CIAD, A.C. Carretera a La Victoria Km. 0.6, 83304 Hermosillo, SON, Mexico
| | | | - Dora Edith Valencia-Rivera
- Department of Chemical Biological and Agropecuary Sciences, University of Sonora, Avenida Universidad e Irigoyen, 83621 Caborca, SON, Mexico
| |
Collapse
|
33
|
Bader Ul Ain H, Saeed F, Ahmad N, Imran A, Niaz B, Afzaal M, Imran M, Tufail T, Javed A. Functional and health-endorsing properties of wheat and barley cell wall’s non-starch polysaccharides. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2018. [DOI: 10.1080/10942912.2018.1489837] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Huma Bader Ul Ain
- Institute of Home & Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Farhan Saeed
- Institute of Home & Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Nazir Ahmad
- Institute of Home & Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ali Imran
- Institute of Home & Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Bushra Niaz
- Institute of Home & Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Afzaal
- Institute of Home & Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Imran
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore-Lahore, Lahore, Pakistan
| | - Tabussam Tufail
- Institute of Home & Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ahsan Javed
- Institute of Home & Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
34
|
Characterization of Two New Endo-β-1,4-xylanases from Eupenicillium parvum 4–14 and Their Applications for Production of Feruloylated Oligosaccharides. Appl Biochem Biotechnol 2018; 186:816-833. [DOI: 10.1007/s12010-018-2775-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 04/27/2018] [Indexed: 01/14/2023]
|
35
|
Huang J, Wang Y, Yang L, Peng X, Zheng J, Ou S. Effect of maize bran feruloylated oligosaccharides on the formation of endogenous contaminants and the appearance and textural properties of biscuits. Food Chem 2018; 245:974-980. [DOI: 10.1016/j.foodchem.2017.11.075] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/19/2017] [Accepted: 11/20/2017] [Indexed: 12/27/2022]
|
36
|
Huang J, Wang X, Tao G, Song Y, Ho C, Zheng J, Ou S. Feruloylated oligosaccharides from maize bran alleviate the symptoms of diabetes in streptozotocin-induced type 2 diabetic rats. Food Funct 2018; 9:1779-1789. [PMID: 29508881 DOI: 10.1039/c7fo01825h] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This study investigated the therapeutic effect of feruloylated oligosaccharides (FOs) extracted from maize bran on type 2 diabetic rats and its potential mechanism. Streptozotocin (STZ) induced type 2 diabetic male rats were orally administered with different levels of FOs for 8 weeks, and ferulic acid (FA) treatment was conducted as the positive control. Among all the treatments, the oral administration of 600 mg per kg bw per d FOs showed the best therapeutic effects on the diabetic rats by significantly lowering the levels of fasting plasma glucose (FPG), fasting insulin, TG, LDL-c, aspartate transaminase, creatine kinase and lactate dehydrogenase in plasma, while increasing the level of plasma HDL-c. In addition, the intake of FOs at 600 mg per kg bw per d exhibited the best antioxidant effects in the plasma, liver, kidney and heart of the diabetic rats, and the highest inhibitory effects on the formation of AGEs and CML in the organs, which might explain the alleviating effects of FOs on abdominal aorta injury observed in the current study. FOs presented better regulation effects on FPG, plasma lipid and the protection of abdominal aorta than FA under the same administered dosage. Based on these outcomes, FOs from maize bran could be beneficial for prevention or early treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Junqing Huang
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, Guangdong, China
| | - Xiaoqi Wang
- Department of Food Science, Rutgers, The State University of New Jersey, 65 Dudley Road, New Brunswick 08901, USA
| | - Guanyu Tao
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo 79106, USA
| | - Yuan Song
- Out-patient Department of University, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Chitang Ho
- Department of Food Science, Rutgers, The State University of New Jersey, 65 Dudley Road, New Brunswick 08901, USA
| | - Jie Zheng
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, Guangdong, China.
| | - Shiyi Ou
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, Guangdong, China.
| |
Collapse
|
37
|
Zhao C, Wu Y, Liu X, Liu B, Cao H, Yu H, Sarker SD, Nahar L, Xiao J. Functional properties, structural studies and chemo-enzymatic synthesis of oligosaccharides. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.06.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
38
|
Zhao Q, Yao S, Ou SY. Maillard volatiles in baked products as affected by feruloylated oligosaccharides from maize bran. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2017. [DOI: 10.1080/10942912.2017.1285788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Qianzhu Zhao
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Shengwen Yao
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Shi-Yi Ou
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| |
Collapse
|
39
|
Ma Y, Hou CJ, Wu HX, Fa HB, Li JJ, Shen CH, Li D, Huo DQ. Synthesis of maltodextrin-grafted-cinnamic acid and evaluation on its ability to stabilize anthocyanins via microencapsulation. J Microencapsul 2016; 33:554-562. [PMID: 27686628 DOI: 10.1080/02652048.2016.1223201] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In this work, maltodextrin-grafted-cinnamic acid (MD-g-CA) was synthesised and used as wall material to improve the stability of purple sweet potato anthocyanins (PSPa) via microencapsualtion. MD-g-CA was prepared through esterification in a two-step convenient synthesis procedure and characterised using infra-red (IR) spectroscopy. The IR data indicated the typical ester carbonyl stretching at around 1721 cm-1. Moreover, MD-g-CA could give about 40% inhibition of DPPH radical and present excellent UV-absorption, which were notably better than that of native MD. Maltodextrin (MD) and MD-g-CA were used to prepare PSPa microcapsules by spray drying. The stability of PSPa was evaluated by UV-Vis analysis. The microcapsules produced by MD-g-CA showed a spheres-like appearance with some cracks. Storage tests revealed that the degradation rate of PSPa embedded by MD-g-CA was much lower than that of free PSPa under the same condition. Thus, MD-g-CA could be used as an effective wall material to improve stability of anthocyanins.
Collapse
Affiliation(s)
- Yi Ma
- a Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering , Chongqing University , Chongqing , P.R. China.,b Liquor making biology technology and application of key laboratory of Sichuan province , College of Bioengineering, Sichuan University of Science and Engineering , Zigong , P.R. China
| | - Chang-Jun Hou
- a Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering , Chongqing University , Chongqing , P.R. China
| | - Hui-Xiang Wu
- a Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering , Chongqing University , Chongqing , P.R. China
| | - Huan-Bao Fa
- a Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering , Chongqing University , Chongqing , P.R. China
| | - Jun-Jie Li
- a Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering , Chongqing University , Chongqing , P.R. China
| | - Cai-Hong Shen
- c National Engineering Research Centre of Solid-State Brewing , Luzhou Laojiao Group Co.Ltd , Luzhou , Sichuan , P.R. China
| | - Dan Li
- a Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering , Chongqing University , Chongqing , P.R. China
| | - Dan-Qun Huo
- a Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering , Chongqing University , Chongqing , P.R. China
| |
Collapse
|
40
|
Rivière A, Selak M, Lantin D, Leroy F, De Vuyst L. Bifidobacteria and Butyrate-Producing Colon Bacteria: Importance and Strategies for Their Stimulation in the Human Gut. Front Microbiol 2016; 7:979. [PMID: 27446020 PMCID: PMC4923077 DOI: 10.3389/fmicb.2016.00979] [Citation(s) in RCA: 980] [Impact Index Per Article: 122.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/07/2016] [Indexed: 12/11/2022] Open
Abstract
With the increasing amount of evidence linking certain disorders of the human body to a disturbed gut microbiota, there is a growing interest for compounds that positively influence its composition and activity through diet. Besides the consumption of probiotics to stimulate favorable bacterial communities in the human gastrointestinal tract, prebiotics such as inulin-type fructans (ITF) and arabinoxylan-oligosaccharides (AXOS) can be consumed to increase the number of bifidobacteria in the colon. Several functions have been attributed to bifidobacteria, encompassing degradation of non-digestible carbohydrates, protection against pathogens, production of vitamin B, antioxidants, and conjugated linoleic acids, and stimulation of the immune system. During life, the numbers of bifidobacteria decrease from up to 90% of the total colon microbiota in vaginally delivered breast-fed infants to <5% in the colon of adults and they decrease even more in that of elderly as well as in patients with certain disorders such as antibiotic-associated diarrhea, inflammatory bowel disease, irritable bowel syndrome, obesity, allergies, and regressive autism. It has been suggested that the bifidogenic effects of ITF and AXOS are the result of strain-specific yet complementary carbohydrate degradation mechanisms within cooperating bifidobacterial consortia. Except for a bifidogenic effect, ITF and AXOS also have shown to cause a butyrogenic effect in the human colon, i.e., an enhancement of colon butyrate production. Butyrate is an essential metabolite in the human colon, as it is the preferred energy source for the colon epithelial cells, contributes to the maintenance of the gut barrier functions, and has immunomodulatory and anti-inflammatory properties. It has been shown that the butyrogenic effects of ITF and AXOS are the result of cross-feeding interactions between bifidobacteria and butyrate-producing colon bacteria, such as Faecalibacterium prausnitzii (clostridial cluster IV) and Anaerostipes, Eubacterium, and Roseburia species (clostridial cluster XIVa). These kinds of interactions possibly favor the co-existence of bifidobacterial strains with other bifidobacteria and with butyrate-producing colon bacteria in the human colon.
Collapse
Affiliation(s)
| | | | | | | | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit BrusselBrussels, Belgium
| |
Collapse
|
41
|
Ou JY, Huang JQ, Song Y, Yao SW, Peng XC, Wang MF, Ou SY. Feruloylated Oligosaccharides from Maize Bran Modulated the Gut Microbiota in Rats. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2016; 71:123-128. [PMID: 27165128 DOI: 10.1007/s11130-016-0547-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Corn bran is a byproduct produced from corn milling; it is rich in ferulic acid and hemicellulose. In this research, the effects of feruloylated oligosaccharides (FOs) from maize bran on the microbial diversity and profiles in rat feces were investigated through 16S rRNA sequencing. FOs significantly increased bacterial richness and diversity compared with the control and xylooligosaccharides (XOS) alone. In comparison with the control group and the group administrated with XOS, FOs orally administered at 300 mg/kg increased OTU in feces by 57.0 and 24.8 %, and Chao value by 93.4 and 37.6 %, respectively. FOs also influenced obesity- and diabetes-associated bacteria. Oral administration of FOs at 300 mg/kg decreased the ratio of Firmicutes to Bacteroidetes from 477.7:1 to 55.1:1; greatly increased the reads of bacteria that were previously found resistant against diabetes in rats, such as Actinobacteria, Bacteroides, and Lactobacillus; whereas decreased diabetes-prone bacteria, such as Clostridium and Firmicutes.
Collapse
Affiliation(s)
- Juan-Ying Ou
- Food and Nutritional Science Program, School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Jun-Qing Huang
- Institute of Integrated Chinese and Western Medicine, Medical College of Jinan University, Guangzhou, 510632, China
| | - Yuan Song
- Institute of Integrated Chinese and Western Medicine, Medical College of Jinan University, Guangzhou, 510632, China
| | - Sheng-Wen Yao
- Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Xi-Chun Peng
- Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Ming-Fu Wang
- Food and Nutritional Science Program, School of Biological Sciences, The University of Hong Kong, Hong Kong, China
- Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Shi-Yi Ou
- Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong, 510632, China.
| |
Collapse
|
42
|
Govindan B, Johnson AJ, Nair SNA, Gopakumar B, Mallampalli KSL, Venkataraman R, Koshy KC, Baby S. Nutritional properties of the largest bamboo fruit Melocanna baccifera and its ecological significance. Sci Rep 2016; 6:26135. [PMID: 27194218 PMCID: PMC4872145 DOI: 10.1038/srep26135] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 04/27/2016] [Indexed: 01/04/2023] Open
Abstract
Melocanna baccifera is a unique bamboo which produces the largest fruits in the grass family. Its gregarious flowering once in 45-50 years in north east India and adjacent regions is a botanical enigma, resulting in a glut of fruits. Proper utilization of M. baccifera fruits is not extant, and huge quantities of fruits are left underexploited due to lack of scientific information on their chemical composition and nutritional potential. Here we report the nutritional properties of M. baccifera fruits, and the ecological significance of its fruiting. This pear-shaped, fleshy bamboo fruit is rich in amino acids (lysine, glutamic acid), sugars (sucrose, glucose, fructose) and phenolics (ferulic acid). Protein content (free, bound) in M. baccifera fruits is very low. Fruits are rich in saturated fatty acids (palmitic acid), minerals (potassium), and only B series vitamins (B3) are detected in them. Rat feeding experiments showed that M. baccifera fruit alone is not a complete food, but with other protein supplements, it is a valuable food additive. This study could lead to better utilization of M. baccifera fruits during future flowering/fruiting events. These results could also help in the successful management of rodent outbreaks and other ecological problems associated with M. baccifera fruiting.
Collapse
Affiliation(s)
- Balaji Govindan
- Phytochemistry and Phytopharmacology Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Pacha-Palode, Thiruvananthapuram 695 562 Kerala, India
| | - Anil John Johnson
- Phytochemistry and Phytopharmacology Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Pacha-Palode, Thiruvananthapuram 695 562 Kerala, India
| | - Sadasivan Nair Ajikumaran Nair
- Phytochemistry and Phytopharmacology Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Pacha-Palode, Thiruvananthapuram 695 562 Kerala, India
| | - Bhaskaran Gopakumar
- Plant Genetic Resources Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Pacha-Palode, Thiruvananthapuram 695 562 Kerala, India
| | | | - Ramaswamy Venkataraman
- Department of Chemistry, Sri Paramakalyani College (Manonmaniom Sundaranar University, Tirunelveli), Alwarkurichi 627 412, Tamil Nadu, India
| | - Konnath Chacko Koshy
- Plant Genetic Resources Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Pacha-Palode, Thiruvananthapuram 695 562 Kerala, India
| | - Sabulal Baby
- Phytochemistry and Phytopharmacology Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Pacha-Palode, Thiruvananthapuram 695 562 Kerala, India
| |
Collapse
|
43
|
Malunga LN, Beta T. Isolation and identification of feruloylated arabinoxylan mono- and oligosaccharides from undigested and digested maize and wheat. Heliyon 2016; 2:e00106. [PMID: 27441278 PMCID: PMC4946213 DOI: 10.1016/j.heliyon.2016.e00106] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 04/27/2016] [Indexed: 10/28/2022] Open
Abstract
Feruloylated arabinoxylan mono- and oligosaccharides (F-AXOS) are a subject of interest because of their prebiotic and antioxidant properties. We aimed at isolating and identifying F-AXOS from maize, wheat, wheat bran and wheat aleurone using HPLC and LC-MS/MS. Prior to extraction of F-AXOS, samples were subjected to either simulated gastric fluid with enzymes (gastric) or without enzymes (pH) or water (aqueous) at 37 °C. F-AXOS present in all samples were identified as 5-O-feruloyl-α-L- arabinofuranose and possibly 5-O-feruloyl-α-L-arabinofuranosyl-(1 → 3)-O-β-D-xylopyranose. Their mean content, measured as esterified ferulic acid (FA), was 2.5 times higher in maize (10.33 ± 2.40 μg/g) compared to wheat. Digestion under gastric or pH conditions resulted in a two-fold increase in F-AXOS in all samples. The level of F-AXOS produced during gastric or pH condition was positively correlated to the insoluble bound FA content of the sample (R(2) = 0.98). 5-O-Feruloyl-α-L- arabinofuranose was the only identifiable F-AXOS released during gastric digestion. Our results suggest feruloyl arabinose is the most abundant form of F-AXOS in maize and wheat.
Collapse
Affiliation(s)
| | - Trust Beta
- University of Manitoba, Department of Food Science, Winnipeg, Manitoba R3T 2N2, Canada; University of Manitoba, Richardson Centre for Functional Foods and Nutraceuticals, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
44
|
Inhibition of Intestinal α-Glucosidase and Glucose Absorption by Feruloylated Arabinoxylan Mono- and Oligosaccharides from Corn Bran and Wheat Aleurone. J Nutr Metab 2016; 2016:1932532. [PMID: 27073693 PMCID: PMC4814672 DOI: 10.1155/2016/1932532] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/12/2016] [Accepted: 02/23/2016] [Indexed: 01/17/2023] Open
Abstract
The effect of feruloylated arabinoxylan mono- and oligosaccharides (FAXmo) on mammalian α-glucosidase and glucose transporters was investigated using human Caco-2 cells, rat intestinal acetone powder, and Xenopus laevis oocytes. The isolated FAXmo from wheat aleurone and corn bran were identified to have degree of polymerization (DP) of 4 and 1, respectively, by HPLC-MS. Both FAXmo extracts were effective inhibitors of sucrase and maltase functions of the α-glucosidase. The IC50 for FAXmo extracts on Caco-2 cells and rat intestinal α-glucosidase was 1.03–1.65 mg/mL and 2.6–6.5 mg/mL, respectively. Similarly, glucose uptake in Caco-2 cells was inhibited up to 40%. The inhibitory effect of FAXmo was dependent on their ferulic acid (FA) content (R = 0.95). Sodium independent glucose transporter 2 (GLUT2) activity was completely inhibited by FAXmo in oocytes injected to express GLUT2. Our results suggest that ferulic acid and feruloylated arabinoxylan mono-/oligosaccharides have potential for use in diabetes management.
Collapse
|
45
|
Dilokpimol A, Mäkelä MR, Aguilar-Pontes MV, Benoit-Gelber I, Hildén KS, de Vries RP. Diversity of fungal feruloyl esterases: updated phylogenetic classification, properties, and industrial applications. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:231. [PMID: 27795736 PMCID: PMC5084320 DOI: 10.1186/s13068-016-0651-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 10/18/2016] [Indexed: 05/08/2023]
Abstract
Feruloyl esterases (FAEs) represent a diverse group of carboxyl esterases that specifically catalyze the hydrolysis of ester bonds between ferulic (hydroxycinnamic) acid and plant cell wall polysaccharides. Therefore, FAEs act as accessory enzymes to assist xylanolytic and pectinolytic enzymes in gaining access to their site of action during biomass conversion. Their ability to release ferulic acid and other hydroxycinnamic acids from plant biomass makes FAEs potential biocatalysts in a wide variety of applications such as in biofuel, food and feed, pulp and paper, cosmetics, and pharmaceutical industries. This review provides an updated overview of the knowledge on fungal FAEs, in particular describing their role in plant biomass degradation, diversity of their biochemical properties and substrate specificities, their regulation and conditions needed for their induction. Furthermore, the discovery of new FAEs using genome mining and phylogenetic analysis of current publicly accessible fungal genomes will also be presented. This has led to a new subfamily classification of fungal FAEs that takes into account both phylogeny and substrate specificity.
Collapse
Affiliation(s)
- Adiphol Dilokpimol
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584CT Utrecht, The Netherlands
| | - Miia R. Mäkelä
- Division of Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Maria Victoria Aguilar-Pontes
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584CT Utrecht, The Netherlands
| | - Isabelle Benoit-Gelber
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584CT Utrecht, The Netherlands
| | - Kristiina S. Hildén
- Division of Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Ronald P. de Vries
- Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584CT Utrecht, The Netherlands
- Division of Microbiology and Biotechnology, Department of Food and Environmental Sciences, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| |
Collapse
|
46
|
Palani Swamy SK, Govindaswamy V. Therapeutical properties of ferulic acid and bioavailability enhancement through feruloyl esterase. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.06.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
47
|
Patel S. Cereal bran fortified-functional foods for obesity and diabetes management: Triumphs, hurdles and possibilities. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.02.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
48
|
Snelders J, Olaerts H, Dornez E, Van de Wiele T, Aura AM, Vanhaecke L, Delcour JA, Courtin CM. Structural features and feruloylation modulate the fermentability and evolution of antioxidant properties of arabinoxylanoligosaccharides during in vitro fermentation by human gut derived microbiota. J Funct Foods 2014. [DOI: 10.1016/j.jff.2014.05.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
49
|
Song Y, Wu T, Yang Q, Chen X, Wang M, Wang Y, Peng X, Ou S. Ferulic acid alleviates the symptoms of diabetes in obese rats. J Funct Foods 2014. [DOI: 10.1016/j.jff.2014.04.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
50
|
Yao SW, Wen XX, Huang RQ, He RR, Ou SY, Shen WZ, Huang CH, Peng XC. Protection of feruloylated oligosaccharides from corn bran against oxidative stress in PC 12 cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:668-674. [PMID: 24397832 DOI: 10.1021/jf404841c] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Feruloylated oligosaccharides (FOs) were prepared by autoclaving corn bran in oxalic acid (0.6%) solution, and their protection effects against oxidative stress in pheochromocytoma cells (PC 12) cells were investigated. The FOs samples, which comprised a mixture of feruloylated mono- and dipentoses with 4.88% bound ferulic acid (FA), as well as xylose, arabinose, galactose, and glucose amounting to 46.43, 40.46, 3.76, and 8.68% of the total sugars, respectively, were prepared by autoclaving the pretreated corn bran in 0.6% oxalic acid and then further separated. Antioxidant activity was tested by 1,1-diphenyl-2-picrylhydrazyl radical 2,2-diphenyl-1-(2,4,6-trinitrophenyl)hydrazyl (DPPH) scavenging and oxygen radical absorbance capacity (ORAC) methods. Oxidative stress was induced by H2O2 in PC 12 neuronal cell culture model. The results showed that FOs exhibited higher antioxidant activity than free ferulic acid, with an IC50 value of 11 versus 128 μM for DPPH and an ORAC value of 4.77 versus 2.62 μmol Trolox/μmol. Tetrazolium blue assay showed that the addition of FOs with an FA concentration >50 μM significantly increased cell viability after treatment with H2O2. Flow cytometry analysis showed that the addition of FOs at concentrations of 800, 200, and 50 μM significantly decreased the apoptosis rate at the sub-G0 phase from 37.5 to 12.7, 16.2, and 20.9% (P < 0.01), respectively. FOs also significantly decreased the malonic dialdehyde content and lactate dehydrogenase (LDH) activity, but increased superoxide dismutase activity in PC 12 cells treated with H2O2 and prevented the damage of cellular membranes by decreasing the release of LDH to the cultures. The addition of FA at 800 μM showed an effect similar to that of FOs at 200 μM. Therefore, the FOs prepared from corn bran are potential functional ingredients for protection against oxidative stress.
Collapse
Affiliation(s)
- Sheng-wen Yao
- Department of Food Science and Engineering, ‡Scool of Medicine, and #College of Pharmacy, Jinan University , Guangzhou 510632, Guangdong, China
| | | | | | | | | | | | | | | |
Collapse
|