1
|
Coelho VS, Aguiar LL, Grancieri M, Lourenço JMP, Braga DP, Saraiva SH, Costa AGV, Silva PI. Incorporation of microencapsulated polyphenols from jabuticaba peel (Plinia spp.) into a dairy drink: stability, in vitro bioaccessibility, and glycemic response. Food Res Int 2024; 189:114567. [PMID: 38876609 DOI: 10.1016/j.foodres.2024.114567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/20/2024] [Accepted: 05/26/2024] [Indexed: 06/16/2024]
Abstract
This work incorporated bioactives extracted from jabuticaba peel in the form of concentrated extract (JBE) and microencapsulated powders with maltodextrin (MDP) and gum arabic (GAP) in a dairy drink, evaluating its stability, in vitro bioaccessibility, and glycemic response. We evaluated the pH, acidity, colorimetry, total phenolics and anthocyanins, antioxidant capacity, degradation kinetics and half-life of anthocyanins, bioaccessibility, and postprandial glycemic physicochemical characteristics response in healthy individuals. The drinks incorporated with polyphenols (JBE, GAP, and MDP) and the control dairy drink (CDD) maintained stable pH and acidity over 28 days. In color, the parameter a*, the most relevant to the study, was reduced for all formulations due to degradation of anthocyanins. Phenolic and antioxidant content remained constant. In bioaccessibility, we found that after the gastrointestinal simulation, there was a decrease in phenolics and anthocyanins in all formulations. In the glycemic response, we observed that the smallest incremental areas of glucose were obtained for GAP and JBE compared to CDD, demonstrating that polyphenols reduced glucose absorption. Then, the bioactives from jabuticaba peel, incorporated into a dairy drink, showed good storage stability and improved the product's functional aspects.
Collapse
Affiliation(s)
- Vinicius Serafim Coelho
- Postgraduate Program in Food Science and Technology, Centre of Agricultural and Engineering Sciences, Federal University of Espírito Santo (UFES), zip code: 29500-000, Alegre-ES, Brazil
| | - Lara Louzada Aguiar
- Postgraduate Program in Food Science and Technology, Centre of Agricultural and Engineering Sciences, Federal University of Espírito Santo (UFES), zip code: 29500-000, Alegre-ES, Brazil
| | - Mariana Grancieri
- Postgraduate Program in Food Science and Technology, Centre of Agricultural and Engineering Sciences, Federal University of Espírito Santo (UFES), zip code: 29500-000, Alegre-ES, Brazil
| | | | | | - Sergio Henriques Saraiva
- Postgraduate Program in Food Science and Technology, Centre of Agricultural and Engineering Sciences, Federal University of Espírito Santo (UFES), zip code: 29500-000, Alegre-ES, Brazil; Food Engineering Department, UFES, zip code: 29500-000, Alegre-ES, Brazil
| | - André Gustavo Vasconcelos Costa
- Postgraduate Program in Food Science and Technology, Centre of Agricultural and Engineering Sciences, Federal University of Espírito Santo (UFES), zip code: 29500-000, Alegre-ES, Brazil; Pharmacy and Nutrition Department, UFES, zip code: 29500-000, Alegre-ES, Brazil
| | - Pollyanna Ibrahim Silva
- Postgraduate Program in Food Science and Technology, Centre of Agricultural and Engineering Sciences, Federal University of Espírito Santo (UFES), zip code: 29500-000, Alegre-ES, Brazil; Food Engineering Department, UFES, zip code: 29500-000, Alegre-ES, Brazil.
| |
Collapse
|
2
|
Chemical Profile and Hematoprotective Activity of Artisanal Jabuticaba (Plinia jabuticaba) Wine and Derived Extracts. FERMENTATION 2023. [DOI: 10.3390/fermentation9020157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The alcoholic fermentation of jabuticaba berries (Plinia spp.) originates from a beverage with an intense taste and aroma, popularly known as jabuticaba wine (JW). In addition, polyphenols transferred from fruit peels to the final product turn this beverage into a promising source of bioactive agents. Here, the chemical profile and antioxidant potential of artisanal JW and derivative extracts were determined. Volatile organic compounds were determined by HS-SPME/GC-MS analysis. The wine was dried by lyophilization and subjected to liquid-liquid partitioning (water: ethyl acetate), resulting in three fractions (JWF1-3). ABTS•+ and DPPH•+ scavenging assays were performed to evaluate the antioxidant capacity. In addition, the extracts’ hematoprotective activity was evaluated against oxidative stress. Finally, the extracts were analyzed by LC-HRMS/MS. HS-SPME/GC-MS analysis highlighted 1,8-cineole as the main compound that contributes to the camphor/mint flavor. JWF2 and JWF3 displayed the highest antioxidant capacity. JWF2 stood out for preventing oxidative damage in red blood cells at 7.8 µg·mL−1 The maximal protection of ascorbic acid occurred at 8.8 µg·mL−1. The LC-HRMS/MS analysis allowed the annotation of seventeen compounds, most of them with recognized antioxidant activity such as anthocyanins, catechins, flavanols, and phenolic acids. The results presented herein reinforce JW as a pleasant beverage with bioactive potential.
Collapse
|
3
|
Phytochemical Profile, Preliminary Toxicity, and Antioxidant Capacity of the Essential Oils of Myrciaria floribunda (H. West ex Willd.) O. Berg. and Myrcia sylvatica (G. Mey) DC. (Myrtaceae). Antioxidants (Basel) 2022; 11:antiox11102076. [PMID: 36290799 PMCID: PMC9658195 DOI: 10.3390/antiox11102076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/11/2022] [Accepted: 10/18/2022] [Indexed: 11/17/2022] Open
Abstract
The essential oils (EOs) of Myrciaria floribunda (Mflo) and Myrcia sylvatica (Msyl) (Myrtaceae) were obtained by hydrodistillation. The analysis of volatile constituents was performed by GC/MS. Preliminary toxicity was assessed on Artemia salina Leach. The antioxidant capacity was measured by the ABTS•+ and DPPH• radical inhibitory activities. The results indicate that the Mflo EO had the highest yield (1.02%), and its chemical profile was characterized by high levels of hydrocarbon (65.83%) and oxygenated (25.74%) monoterpenes, especially 1,8-cineole (23.30%), terpinolene (22.23%) and α-phellandrene (22.19%). Regarding the Msyl EO, only hydrocarbon (51.60%) and oxygenated (46.52%) sesquiterpenes were identified in the sample, with (Z)-α-trans-bergamotene (24.57%), α-sinensal (13.44%), and (Z)-α-bisabolene (8.33%) at higher levels. The EO of Mflo exhibited moderate toxicity against A. salina (LC50 = 82.96 ± 5.20 µg.mL−1), while the EO of Msyl was classified as highly toxic (LC50 = 2.74 ± 0.50 µg.mL−1). In addition, relative to Trolox, the EOs of Mflo and Msyl showed significant inhibitory effects (p < 0.0001) against the DPPH• radical. This study contributes to the expansion of chemical and biological knowledge on the EOs of Myrtaceae species from the Amazon region.
Collapse
|
4
|
Bao Y, Zhang M, Chen W, Chen H, Chen W, Zhong Q. Screening and evaluation of suitable non-Saccharomyces yeast for aroma improvement of fermented mango juice. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
5
|
Keșa AL, Pop CR, Mudura E, Salanță LC, Pasqualone A, Dărab C, Burja-Udrea C, Zhao H, Coldea TE. Strategies to Improve the Potential Functionality of Fruit-Based Fermented Beverages. PLANTS (BASEL, SWITZERLAND) 2021; 10:2263. [PMID: 34834623 PMCID: PMC8623731 DOI: 10.3390/plants10112263] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/13/2021] [Accepted: 10/17/2021] [Indexed: 06/01/2023]
Abstract
It is only recently that fermentation has been facing a dynamic revival in the food industry. Fermented fruit-based beverages are among the most ancient products consumed worldwide, while in recent years special research attention has been granted to assess their functionality. This review highlights the functional potential of alcoholic and non-alcoholic fermented fruit beverages in terms of chemical and nutritional profiles that impact on human health, considering the natural occurrence and enrichment of fermented fruit-based beverages in phenolic compounds, vitamins and minerals, and pro/prebiotics. The health benefits of fruit-based beverages that resulted from lactic, acetic, alcoholic, or symbiotic fermentation and specific daily recommended doses of each claimed bioactive compound were also highlighted. The latest trends on pre-fermentative methods used to optimize the extraction of bioactive compounds (maceration, decoction, and extraction assisted by supercritical fluids, microwave, ultrasound, pulsed electric fields, high pressure homogenization, or enzymes) are critically assessed. As such, optimized fermentation processes and post-fermentative operations, reviewed in an industrial scale-up, can prolong the shelf life and the quality of fermented fruit beverages.
Collapse
Affiliation(s)
- Ancuța-Liliana Keșa
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (A.-L.K.); (E.M.)
| | - Carmen Rodica Pop
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (C.R.P.); (L.C.S.)
| | - Elena Mudura
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (A.-L.K.); (E.M.)
| | - Liana Claudia Salanță
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (C.R.P.); (L.C.S.)
| | - Antonella Pasqualone
- Department of Soil, Plant and Food Sciences, University of Bari ‘Aldo Moro’, Via Amendola, 165/A, 70126 Bari, Italy;
| | - Cosmin Dărab
- Department of Electric Power Systems, Faculty of Electrical Engineering, Technical University of Cluj-Napoca, 400027 Cluj-Napoca, Romania;
| | - Cristina Burja-Udrea
- Industrial Engineering and Management Department, Faculty of Engineering, Lucian Blaga University of Sibiu, 10 Victoriei Blv., 550024 Sibiu, Romania;
| | - Haifeng Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China;
- Research Institute for Food Nutrition and Human Health, Guangzhou 510640, China
| | - Teodora Emilia Coldea
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (A.-L.K.); (E.M.)
| |
Collapse
|
6
|
Inada KOP, Leite IB, Martins ABN, Fialho E, Tomás-Barberán FA, Perrone D, Monteiro M. Jaboticaba berry: A comprehensive review on its polyphenol composition, health effects, metabolism, and the development of food products. Food Res Int 2021; 147:110518. [PMID: 34399496 DOI: 10.1016/j.foodres.2021.110518] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/04/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022]
Abstract
Jaboticaba, a popular Brazilian berry, has been studied due to its relevant polyphenol composition, health benefits and potential use for the development of derived food products. Considering that around 200 articles have been published in recent years, this review aims to provide comprehensive and updated information, as well as a critical discussion on: (i) jaboticaba polyphenolic composition and extraction methods for their accurate determination; (ii) jaboticaba polyphenol's metabolism; (iii) biological effects of the fruit and the relationship with its polyphenols and their metabolites; (iv) challenges in the development of jaboticaba derived products. The determination of jaboticaba polyphenols should employ hydrolysis procedures during extraction, followed by liquid chromatographic analysis. Jaboticaba polyphenols, mainly anthocyanins and ellagitannins, are extensively metabolized, and their metabolites are probably the most important contributors to the relevant health effects associated with the fruit, such as antioxidant, anti-inflammatory, antidiabetic, hepatoprotective and hypolipidemic. Most of the technological processing of jaboticaba fruit and its residues is related to their application as a colorant, antioxidant, antimicrobial and source of polyphenols. The scientific literature still lacks studies on the metabolism and bioactivity of polyphenols from jaboticaba in humans, as well as the effect of technological processes on these issues.
Collapse
Affiliation(s)
- Kim Ohanna Pimenta Inada
- Laboratório de Alimentos Funcionais, Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, CCS, Bloco J, 2° andar, sala 16, 21941-902 Rio de Janeiro, Brazil; Laboratório de Bioquímica Nutricional e de Alimentos, Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, CT, Bloco A, sala 528A, 21941-909 Rio de Janeiro, Brazil; Instituto de Nutrição, Universidade Estadual do Rio de Janeiro, R. São Francisco Xavier, 524, Pavilhão João Lyra Filho, 12° andar, Bloco D, sala 12.002, 20550-900 Rio de Janeiro, Brazil.
| | - Iris Batista Leite
- Laboratório de Alimentos Funcionais, Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, CCS, Bloco J, 2° andar, sala 16, 21941-902 Rio de Janeiro, Brazil
| | - Ana Beatriz Neves Martins
- Laboratório de Bioquímica Nutricional e de Alimentos, Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, CT, Bloco A, sala 528A, 21941-909 Rio de Janeiro, Brazil
| | - Eliane Fialho
- Laboratório de Alimentos Funcionais, Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, CCS, Bloco J, 2° andar, sala 16, 21941-902 Rio de Janeiro, Brazil.
| | - Francisco A Tomás-Barberán
- Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, P.O. Box 164, 30100 Campus de Espinardo, Murcia, Spain.
| | - Daniel Perrone
- Laboratório de Bioquímica Nutricional e de Alimentos, Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, CT, Bloco A, sala 528A, 21941-909 Rio de Janeiro, Brazil.
| | - Mariana Monteiro
- Laboratório de Alimentos Funcionais, Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, CCS, Bloco J, 2° andar, sala 16, 21941-902 Rio de Janeiro, Brazil.
| |
Collapse
|
7
|
Benvenutti L, Zielinski AAF, Ferreira SRS. Jaboticaba (Myrtaceae cauliflora) fruit and its by-products: Alternative sources for new foods and functional components. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
8
|
Muhialdin BJ, Meor Hussin AS, Kadum H, Abdul Hamid A, Jaafar AH. Metabolomic changes and biological activities during the lacto-fermentation of jackfruit juice using Lactobacillus casei ATCC334. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110940] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
9
|
de Andrade Neves N, César Stringheta P, Ferreira da Silva I, García-Romero E, Gómez-Alonso S, Hermosín-Gutiérrez I. Identification and quantification of phenolic composition from different species of Jabuticaba (Plinia spp.) by HPLC-DAD-ESI/MS n. Food Chem 2021; 355:129605. [PMID: 33799238 DOI: 10.1016/j.foodchem.2021.129605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/07/2021] [Accepted: 03/09/2021] [Indexed: 02/04/2023]
Abstract
The aim of this study was to investigate phenolic compounds in peel, pulp and seeds of five different jabuticabas - Plinia trunciflora, "cabinho", P. cauliflora, cultivars "paulista" and "canaã-açu", P. jaboticaba, "sabará" and P. phitrantha, "branca-vinho". In addition to the commonly reported cyanidin-3-glucoside and delphinidin3-glucoside, it was also found the unreported cyanidin-3-coumaroylglucoside in the peels. Flavonols derived from quercetin and myricetin were also detected in jaboticaba peels, along with a wide variety of derivatives of ellagic acid and methyl ellagic acid. The latter derivatives occurred in acylated forms, which were not usually found in jabuticabas. The pulps and seeds of jabuticabas contained large amounts of ellagitannins vescalagin and castalagin, as well as gallic and ellagic acids. The jabuticabas showed small amounts of catechin and gallocatechin. P. jaboticaba showed the highest levels of anthocyanins and flavonols derived from myricetin, and P. phitrantha presented the highest concentration of ellagitannins and flavan-3-ols.
Collapse
Affiliation(s)
- Nathália de Andrade Neves
- Universidade Federal de Viçosa, Department of Food Technology, Avenida Peter Henry Rolfs, s/n, Viçosa, MG 36570-000, Brazil.
| | - Paulo César Stringheta
- Universidade Federal de Viçosa, Department of Food Technology, Avenida Peter Henry Rolfs, s/n, Viçosa, MG 36570-000, Brazil
| | - Isadora Ferreira da Silva
- Universidade Federal de Viçosa, Department of Biochemistry and Molecular Biology, Avenida Peter Henry Rolfs, s/n, Viçosa, MG 36570-000, Brazil
| | - Esteban García-Romero
- Instituto de la Vid y el Vino de Castilla-La Mancha, Carretera de Albacete s/n, 13700 Tomelloso, Spain
| | - Sergio Gómez-Alonso
- Universidad de Castilla-La Mancha, Instituto Regional de Investigación Científica Aplicada, Avda, Camilo José Cela s/n, 13071 Ciudad Real, Spain; Parque Científico y Tecnológico Castilla-La Mancha, Paseo de la Innovación, 1, 02006 Albacete, Spain
| | - Isidro Hermosín-Gutiérrez
- Universidad de Castilla-La Mancha, Instituto Regional de Investigación Científica Aplicada, Avda, Camilo José Cela s/n, 13071 Ciudad Real, Spain
| |
Collapse
|
10
|
Inulin/fructooligosaccharides/pectin-based structured systems: Promising encapsulating matrices of polyphenols recovered from jabuticaba peel. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106387] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
11
|
Microencapsulation of jabuticaba extracts (Myrciaria cauliflora): Evaluation of their bioactive and thermal properties in cassava starch biscuits. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110460] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Valero-Cases E, Cerdá-Bernad D, Pastor JJ, Frutos MJ. Non-Dairy Fermented Beverages as Potential Carriers to Ensure Probiotics, Prebiotics, and Bioactive Compounds Arrival to the Gut and Their Health Benefits. Nutrients 2020; 12:E1666. [PMID: 32503276 PMCID: PMC7352914 DOI: 10.3390/nu12061666] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 12/17/2022] Open
Abstract
In alignment with Hippocrates' aphorisms "Let food be your medicine and medicine be your food" and "All diseases begin in the gut", recent studies have suggested that healthy diets should include fermented foods to temporally enhance live microorganisms in our gut. As a result, consumers are now demanding this type of food and fermented food has gained popularity. However, certain sectors of population, such as those allergic to milk proteins, lactose intolerant and strict vegetarians, cannot consume dairy products. Therefore, a need has arisen in order to offer consumers an alternative to fermented dairy products by exploring new non-dairy matrices as probiotics carriers. Accordingly, this review aims to explore the benefits of different fermented non-dairy beverages (legume, cereal, pseudocereal, fruit and vegetable), as potential carriers of bioactive compounds (generated during the fermentation process), prebiotics and different probiotic bacteria, providing protection to ensure that their viability is in the range of 106-107 CFU/mL at the consumption time, in order that they reach the intestine in high amounts and improve human health through modulation of the gut microbiome.
Collapse
Affiliation(s)
- Estefanía Valero-Cases
- Research Group on Quality and Safety, Food Technology Department, Miguel Hernández University, 03312 Orihuela, Spain; (E.V.-C.); (D.C.-B.)
| | - Débora Cerdá-Bernad
- Research Group on Quality and Safety, Food Technology Department, Miguel Hernández University, 03312 Orihuela, Spain; (E.V.-C.); (D.C.-B.)
| | | | - María-José Frutos
- Research Group on Quality and Safety, Food Technology Department, Miguel Hernández University, 03312 Orihuela, Spain; (E.V.-C.); (D.C.-B.)
| |
Collapse
|
13
|
Leonarski E, Fernando Dos Santos D, Kuasnei M, Lenhani GC, Quast LB, Zanella Pinto V. Development, Chemical, and Sensory Characterization of Liqueurs from Brazilian Native Fruits. JOURNAL OF CULINARY SCIENCE & TECHNOLOGY 2020. [DOI: 10.1080/15428052.2020.1747035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Eduardo Leonarski
- Food Engineering, Universidade Federal Da Fronteira Sul (UFFS), Laranjeiras Do Sul, PR, Brazil
| | | | - Mayara Kuasnei
- Food Engineering, Universidade Federal Da Fronteira Sul (UFFS), Laranjeiras Do Sul, PR, Brazil
| | - Gabriela Caroline Lenhani
- Graduate Program in Science and Food Technology (PPGCTAL), Universidade Federal Da Fronteira Sul (UFFS), Laranjeiras Do Sul, PR, Brazil
| | - Leda Battestin Quast
- Food Engineering, Universidade Federal Da Fronteira Sul (UFFS), Laranjeiras Do Sul, PR, Brazil
- Graduate Program in Science and Food Technology (PPGCTAL), Universidade Federal Da Fronteira Sul (UFFS), Laranjeiras Do Sul, PR, Brazil
| | - Vânia Zanella Pinto
- Food Engineering, Universidade Federal Da Fronteira Sul (UFFS), Laranjeiras Do Sul, PR, Brazil
- Graduate Program in Science and Food Technology (PPGCTAL), Universidade Federal Da Fronteira Sul (UFFS), Laranjeiras Do Sul, PR, Brazil
| |
Collapse
|
14
|
Inada KOP, Silva TBR, Lobo LA, Domingues RMCP, Perrone D, Monteiro M. Bioaccessibility of phenolic compounds of jaboticaba (Plinia jaboticaba) peel and seed after simulated gastrointestinal digestion and gut microbiota fermentation. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103851] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
15
|
Combination of Lactobacillus plantarum and Saccharomyces cerevisiae DV10 as Starter Culture to Produce Mango Slurry: Microbiological, Chemical Parameters and Antioxidant Activity. Molecules 2019; 24:molecules24234349. [PMID: 31795169 PMCID: PMC6930673 DOI: 10.3390/molecules24234349] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to develop a nondairy fermented product based on mango slurry. Lactobacillus plantarum and Saccharomyces cerevisiae DV10 were used as starter cultures in single and co-cultivations. The microbial populations and metabolites produced during mango slurry fermentation were investigated. At the end of all fermentations, the bacterial populations were higher than 6.0 log CFU/mL. Lactic acid was the main organic acid produced, achieving up to 6.12 g/L after 24 h in co-culture with L. plantarum and S. cerevisiae DV10. Volatile compounds were determined after 24 h of fermentation, the co-cultures of L. plantarum and S. cerevisiae DV10 could decrease terpenes and produce alcohols and esters. The co-cultivations obtained the most total phenolics as well as showed the strongest 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonate) (ABTS) radical scavenging activity, ferric-reducing antioxidant power (FRAP) and low-density lipoprotein (LDL) oxidation inhibition. Hence, a high-bioactivity probiotic product was successfully obtained via mango slurry fermentation inoculated with a co-culture of L. plantarum and S. cerevisiae DV10.
Collapse
|
16
|
Physicochemical and Sensory Characteristics of a Chagalapoli Fruit ( Ardisia compressa) Beverage Fermented Using Saccharomyces cerevisiae. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2019; 2019:9687281. [PMID: 31737651 PMCID: PMC6815555 DOI: 10.1155/2019/9687281] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/28/2019] [Indexed: 11/21/2022]
Abstract
Chagalapoli fruit (Ardisia compressa) is similar to Vaccinium myrtillus (berries) with high-polyphenol content. The objective of this study was to evaluate the physicochemical properties of Chagalapoli fruit and to determine the conditions for the preparation of a fermented beverage using Saccharomyces cerevisiae yeast, evaluating the impact on sensory properties. The fermentation process lasted 4 days at 27°C, with absence of light and a fixed pH of 3.8. The phenolic contents obtained in samples were 1.27 epicatechin mg/mL in filtered juice, 1.59 epichatechin mg/mL in filtered fermented beverage, 1.91 epichatechin mg/mL in partially filtered juice and 3.19 epichatechin mg/mL in partially filtered fermented beverage. An affective test was carried out to determine the sensory acceptability of the final product, evaluating the flavor, color and aroma parameters. The fermented beverage with the greatest preference on color and flavor attributes was the partially filtered fermented beverage.
Collapse
|
17
|
Chen L, Li K, Liu Q, Quiles JL, Filosa R, Kamal MA, Wang F, Kai G, Zou X, Teng H, Xiao J. Protective effects of raspberry on the oxidative damage in HepG2 cells through Keap1/Nrf2-dependent signaling pathway. Food Chem Toxicol 2019; 133:110781. [PMID: 31465820 DOI: 10.1016/j.fct.2019.110781] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 02/05/2023]
Abstract
The aim of the present study was to explore the protective effects of raspberry and its bioactive compound cyanidin 3-O-glucoside against H2O2-induced oxidative stress in HepG2 cells. We established a model of oxidative stress in HepG2 cells induced by H2O2 and examined the protein expression of Keap1/Nrf2. The antioxidant activity of raspberry extract was carried out measuring the level of reactive oxygen species (ROS), and the changes of phase II detoxification elements such as GSH level and CAT activity. Also the expression of proteins related to the Keap1/Nrf2 signaling was tested. The results revealed that raspberry extract significantly reduced the ROS levels in oxidative injured cells, increased GSH content and CAT activity, and activated the expression of proteins Keap1, Nrf2, HO-1, NQO1, and γ-GCS. These results taken together indicated that raspberry treatment could ameliorate H2O2-induced oxidative stress in HepG2 cells via Keap1/Nrf2 pathway.
Collapse
Affiliation(s)
- Lei Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Kang Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Qian Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - José L Quiles
- Department of Physiology, Institute of Nutrition and Food Technology "Jose Mataix", Biomedical Research Centre, University of Granada, Armilla, 18100, Granada, Spain.
| | - Rosanna Filosa
- Department of Experimental Medicine, University of Campania, Via L. De Crecchio 7, Naples, 80138, Italy.
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah, 21589, Saudi Arabia; Enzymoics, 7 Peterlee Place, Hebersham, NSW, 2770, Australia; Novel Global Community Educational Foundation, Australia.
| | - Fang Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, 210023, China.
| | - Guoyin Kai
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 311402, China.
| | - Xiaobo Zou
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China.
| | - Hui Teng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Jianbo Xiao
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
18
|
Siebert DA, de Mello F, Alberton MD, Vitali L, Micke GA. Determination of acetylcholinesterase and α-glucosidase inhibition by electrophoretically-mediated microanalysis and phenolic profile by HPLC-ESI-MS/MS of fruit juices from Brazilian Myrtaceae Plinia cauliflora (Mart.) Kausel and Eugenia uniflora L. Nat Prod Res 2019; 34:2683-2688. [PMID: 30618311 DOI: 10.1080/14786419.2018.1550760] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Alzheimer's disease and diabetes mellitus are contemporary diseases of great concern. Phenolic compounds are linked to several health benefits and could lead to novel strategies to combat these ailments. The objective of this study was to evaluate by electrophoretically-mediated microanalysis the potential inhibitory activity of the fruit juices from Plinia cauliflora ("jaboticaba") and Eugenia uniflora ("pitanga") toward acetylcholinesterase (AChE) and α-glucosidase, target enzymes in strategies for the treatment of these diseases. The phenolic profiles of the samples were also investigated. Jaboticaba and pitanga juices inhibited 85.90 ± 1.73 and 52.67 ± 1.24% of AChE activity at 5 mg mL-1, and 57.91 ± 2.60 and 69.47 ± 2.89% of α-glucosidase activity at 1 mg mL-1, respectively. Total phenolic content of the juices were 303.54 ± 28.28 and 367.00 ± 11.42 mgGA L-1, respectively. The observed inhibitory activity can be explained, at least in part, by the presence of the phenolic compounds.
Collapse
Affiliation(s)
| | - Flávia de Mello
- Departamento de Ciências Farmacêuticas, Universidade Regional de Blumenau, Blumenau, SC, Brazil
| | | | - Luciano Vitali
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Gustavo Amadeu Micke
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| |
Collapse
|
19
|
de Souza AC, Fernandes AC, Silva MS, Schwan RF, Dias DR. Antioxidant activities of tropical fruit wines. JOURNAL OF THE INSTITUTE OF BREWING 2018. [DOI: 10.1002/jib.511] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | | | - Monique S. Silva
- Department of Biology; Federal University of Lavras (UFLA); Brazil
| | - Rosane F. Schwan
- Department of Biology; Federal University of Lavras (UFLA); Brazil
| | - Disney R. Dias
- Department of Food Science; Federal University of Lavras (UFLA); Brazil
| |
Collapse
|
20
|
Comparative Evaluation of the Antioxidant Capacities, Organic Acids, and Volatiles of Papaya Juices Fermented by Lactobacillus acidophilus and Lactobacillus plantarum. J FOOD QUALITY 2018. [DOI: 10.1155/2018/9490435] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Fermentation of foods by lactic acid bacteria is a useful way to improve the nutritional value of foods. In this study, the health-promoting effects of fermented papaya juices by two species, Lactobacillus acidophilus and Lactobacillus plantarum, were determined. Changes in pH, reducing sugar, organic acids, and volatile compounds were determined, and the vitamin C, total phenolic content, and flavonoid and antioxidant capacities during the fermentation process were investigated. Juices fermented by Lactobacillus acidophilus and Lactobacillus plantarum had similar changes in pH and reducing sugar content during the 48 h fermentation period. Large amounts of aroma-associated compounds and organic acids were produced, especially lactic acid, which increased significantly (p<0.05) (543.18 mg/100 mL and 571.29 mg/100 mL, resp.), improving the quality of the beverage. In contrast, the production of four antioxidant capacities in the fermented papaya juices showed different trends after 48 hours’ fermentation by two bacteria. Lactobacillus plantarum generated better antioxidant activities compared to Lactobacillus acidophilus after 48 h of fermentation. These results indicate that fermentation of papaya juice can improve its utilization and nutritional effect.
Collapse
|
21
|
Oliveira Neto JR, de Oliveira TS, Ghedini PC, Vaz BG, Gil EDS. Antioxidant and vasodilatory activity of commercial beers. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.04.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
22
|
Morales P, Barros L, Dias MI, Santos-Buelga C, Ferreira IC, Ramirez Asquieri E, Berrios JDJ. Non-fermented and fermented jabuticaba (Myrciaria cauliflora Mart.) pomaces as valuable sources of functional ingredients. Food Chem 2016; 208:220-7. [DOI: 10.1016/j.foodchem.2016.04.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 03/14/2016] [Accepted: 04/05/2016] [Indexed: 12/23/2022]
|
23
|
de Oliveira LP, da Silva DPB, Florentino IF, Fajemiroye JO, de Oliveira TS, Marcelino RIDÁ, Pazini F, Lião LM, Ghedini PC, de Moura SS, Valadares MC, de Carvalho VV, Vaz BG, Menegatti R, Costa EA. New pyrazole derivative 5-[1-(4-fluorophenyl)-1H-pyrazol-4-yl]-2H-tetrazole: synthesis and assessment of some biological activities. Chem Biol Drug Des 2016; 89:124-135. [DOI: 10.1111/cbdd.12838] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/28/2016] [Accepted: 08/06/2016] [Indexed: 11/26/2022]
Affiliation(s)
- Lanussy Porfiro de Oliveira
- Laboratory of Pharmacology of Natural and Synthetic Products; Department of Pharmacology; Institute of Biological Sciences; Federal University of Goiás; Goiânia GO Brazil
| | - Daiany Priscilla Bueno da Silva
- Laboratory of Pharmacology of Natural and Synthetic Products; Department of Pharmacology; Institute of Biological Sciences; Federal University of Goiás; Goiânia GO Brazil
| | - Iziara Ferreira Florentino
- Laboratory of Pharmacology of Natural and Synthetic Products; Department of Pharmacology; Institute of Biological Sciences; Federal University of Goiás; Goiânia GO Brazil
| | - James Oluwagbamigbe Fajemiroye
- Laboratory of Pharmacology of Natural and Synthetic Products; Department of Pharmacology; Institute of Biological Sciences; Federal University of Goiás; Goiânia GO Brazil
| | - Thiago Sardinha de Oliveira
- Laboratory of Biochemistry and Molecular Pharmacology; Department of Pharmacology; Institute of Biological Sciences; Federal University of Goiás; Goiânia GO Brazil
| | - Renato Ivan de Ávila Marcelino
- Laboratory of Cellular Pharmacology and Toxicology; FarmaTec; College of Pharmacy; Federal University of Goiás; Goiânia GO Brazil
| | - Francine Pazini
- Laboratory of Medicinal Pharmaceutical Chemistry; College of Pharmacy; Federal University of Goiás; Goiânia GO Brazil
| | | | - Paulo César Ghedini
- Laboratory of Biochemistry and Molecular Pharmacology; Department of Pharmacology; Institute of Biological Sciences; Federal University of Goiás; Goiânia GO Brazil
| | - Soraia Santana de Moura
- Laboratory of Cellular Pharmacology and Toxicology; FarmaTec; College of Pharmacy; Federal University of Goiás; Goiânia GO Brazil
| | - Marize Campos Valadares
- Laboratory of Cellular Pharmacology and Toxicology; FarmaTec; College of Pharmacy; Federal University of Goiás; Goiânia GO Brazil
| | | | | | - Ricardo Menegatti
- Laboratory of Medicinal Pharmaceutical Chemistry; College of Pharmacy; Federal University of Goiás; Goiânia GO Brazil
| | - Elson Alves Costa
- Laboratory of Pharmacology of Natural and Synthetic Products; Department of Pharmacology; Institute of Biological Sciences; Federal University of Goiás; Goiânia GO Brazil
| |
Collapse
|
24
|
Overview of Antagonists Used for Determining the Mechanisms of Action Employed by Potential Vasodilators with Their Suggested Signaling Pathways. Molecules 2016; 21:495. [PMID: 27092479 PMCID: PMC6274436 DOI: 10.3390/molecules21040495] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/23/2016] [Accepted: 03/28/2016] [Indexed: 01/04/2023] Open
Abstract
This paper is a review on the types of antagonists and the signaling mechanism pathways that have been used to determine the mechanisms of action employed for vasodilation by test compounds. Thus, we exhaustively reviewed and analyzed reports related to this topic published in PubMed between the years of 2010 till 2015. The aim of this paperis to suggest the most appropriate type of antagonists that correspond to receptors that would be involved during the mechanistic studies, as well as the latest signaling pathways trends that are being studied in order to determine the route(s) that atest compound employs for inducing vasodilation. The methods to perform the mechanism studies were included. Fundamentally, the affinity, specificity and selectivity of the antagonists to their receptors or enzymes were clearly elaborated as well as the solubility and reversibility. All the signaling pathways on the mechanisms of action involved in the vascular tone regulation have been well described in previous review articles. However, the most appropriate antagonists that should be utilized have never been suggested and elaborated before, hence the reason for this review.
Collapse
|
25
|
de Fátima Reis C, de Andrade DML, Neves BJ, de Almeida Ribeiro Oliveira L, Pinho JF, da Silva LP, Cruz JDS, Bara MTF, Andrade CH, Rocha ML. Blocking the L-type Ca2+ channel (Cav 1.2) is the key mechanism for the vascular relaxing effect of Pterodon spp. and its isolated diterpene methyl-6α-acetoxy-7β-hydroxyvouacapan-17β-oate. Pharmacol Res 2015; 100:242-9. [DOI: 10.1016/j.phrs.2015.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 07/14/2015] [Accepted: 08/07/2015] [Indexed: 11/27/2022]
|
26
|
Xu E, Wu Z, Long J, Wang F, Xu X, Jin Z, Jiao A. Improved bioaccessibility of phenolics and antioxidant activity of glutinous rice and its fermented Chinese rice wine by simultaneous extrusion and enzymatic hydrolysis. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.05.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
27
|
Ramos AS, Souza ROS, Boleti APDA, Bruginski ERD, Lima ES, Campos FR, Machado MB. Chemical characterization and antioxidant capacity of the araçá-pera (Psidium acutangulum): An exotic Amazon fruit. Food Res Int 2015; 75:315-327. [PMID: 28454962 DOI: 10.1016/j.foodres.2015.06.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 06/12/2015] [Accepted: 06/17/2015] [Indexed: 11/25/2022]
Abstract
The "araçá-pera" (Psidium acutangulum DC) is an exotic guava consumed by the Brazilian Amazon population. This paper describes 22 compounds from this fruit by UHPLC-HRMS and NMR methods, being one disaccharide, five monosaccharides, two organic acids, one trihydroxycinnamic acid glucopyranosyl, one tannine digalloyl glucopyranosyl, five triterpenoid acids, and six fatty acids. It also quantifies the level of ascorbic acid (AA) by HPLC-MS (74.32±1.23mg/100g of fresh fruit), and defines the chemical antioxidant activities by DPPH and ABTS+ assays (24.96±0.75, 90.57±0.63mg of vitamin C/100g fresh fruit, respectively), and a cell-based assays (76-100%). These results have shown that this exotic guava can be consumed as a nutraceutical ingredient, as well as be used in the production of functional foods in the Amazonian diet to prevent chronic and oxidative diseases.
Collapse
Affiliation(s)
- Andrezza S Ramos
- Departamento de Química, Universidade Federal do Amazonas, 69077-000, Manaus, AM, Brazil
| | - Rodrigo O S Souza
- Faculdade de Ciências Farmacêuticas, Universidade Federal do Amazonas, 69077-000, Manaus, AM, Brazil
| | - Ana Paula de A Boleti
- Faculdade de Ciências Farmacêuticas, Universidade Federal do Amazonas, 69077-000, Manaus, AM, Brazil
| | - Estevan R D Bruginski
- Departamento de Farmácia, Universidade Federal do Paraná, 80210-170, Curitiba, PR, Brazil
| | - Emerson S Lima
- Faculdade de Ciências Farmacêuticas, Universidade Federal do Amazonas, 69077-000, Manaus, AM, Brazil
| | - Francinete R Campos
- Departamento de Farmácia, Universidade Federal do Paraná, 80210-170, Curitiba, PR, Brazil
| | - Marcos B Machado
- Departamento de Química, Universidade Federal do Amazonas, 69077-000, Manaus, AM, Brazil.
| |
Collapse
|
28
|
Corbo MR, Bevilacqua A, Petruzzi L, Casanova FP, Sinigaglia M. Functional Beverages: The Emerging Side of Functional Foods. Compr Rev Food Sci Food Saf 2014. [DOI: 10.1111/1541-4337.12109] [Citation(s) in RCA: 254] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Maria Rosaria Corbo
- Dept. of the Science of Agriculture; Food and Environment; Univ. of Foggia; Via Napoli 25 71122 Foggia Italy
| | - Antonio Bevilacqua
- Dept. of the Science of Agriculture; Food and Environment; Univ. of Foggia; Via Napoli 25 71122 Foggia Italy
| | - Leonardo Petruzzi
- Dept. of the Science of Agriculture; Food and Environment; Univ. of Foggia; Via Napoli 25 71122 Foggia Italy
| | - Francesco Pio Casanova
- Dept. of the Science of Agriculture; Food and Environment; Univ. of Foggia; Via Napoli 25 71122 Foggia Italy
| | - Milena Sinigaglia
- Dept. of the Science of Agriculture; Food and Environment; Univ. of Foggia; Via Napoli 25 71122 Foggia Italy
| |
Collapse
|