1
|
Wu W, Qu X, Hu C, Zhu X, Wan M, Zhou Y, Cheng H. Gypenoside LXXV Alleviates Colitis by Reprograming Macrophage Polarization via the Glucocorticoid Receptor Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20444-20457. [PMID: 39250600 DOI: 10.1021/acs.jafc.4c04784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
An imbalance in the macrophage phenotype is closely related to various inflammatory diseases. Here, we discovered that gypenoside LXXV (GP-75), a type of saponin from Gynostemma pentaphyllum, can reprogram M1-like macrophages into M2-like ones. On a mechanistic level, GP-75 inhibits NF-κB-COX2 signaling by targeting the glucocorticoid receptor (GR). Administration of GP-75, either orally or by intraperitoneal injection, significantly alleviates ulcerative colitis in mice, a pathogenesis associated with macrophage polarization. Clodronate liposomes, which deplete macrophages in mice, as well as GR antagonist RU486, abrogate the anticolitis effect of GP-75, thus confirming the pivotal role of macrophages in GP-75 function. We also showed that GP-75 has no toxicity in mice. Overall, this is the first report that demonstrates the effect of GP-75 on macrophage reprograming and as an agent against colitis. Because G. pentaphyllum is gaining popularity as a functional food, our findings offer new perspectives on the use of gypenosides as potential nutraceuticals for medical purposes.
Collapse
Affiliation(s)
- Wenjing Wu
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Xian Qu
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Chenxing Hu
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Xuepeng Zhu
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Mengqi Wan
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Yifa Zhou
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Hairong Cheng
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
2
|
Zhou Y, Zhou Z, Zheng L, Gong Z, Li Y, Jin Y, Huang Y, Chi M. Urinary Tract Infections Caused by Uropathogenic Escherichia coli: Mechanisms of Infection and Treatment Options. Int J Mol Sci 2023; 24:10537. [PMID: 37445714 DOI: 10.3390/ijms241310537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Urinary tract infections (UTIs) are common bacterial infections that represent a severe public health problem. They are often caused by Escherichia coli (E. coli), Klebsiella pneumoniae (K. pneumonia), Proteus mirabilis (P. mirabilis), Enterococcus faecalis (E. faecalis), and Staphylococcus saprophyticus (S. saprophyticus). Among these, uropathogenic E. coli (UPEC) are the most common causative agent in both uncomplicated and complicated UTIs. The adaptive evolution of UPEC has been observed in several ways, including changes in colonization, attachment, invasion, and intracellular replication to invade the urothelium and survive intracellularly. While antibiotic therapy has historically been very successful in controlling UTIs, high recurrence rates and increasing antimicrobial resistance among uropathogens threaten to greatly reduce the efficacy of these treatments. Furthermore, the gradual global emergence of multidrug-resistant UPEC has highlighted the need to further explore its pathogenesis and seek alternative therapeutic and preventative strategies. Therefore, a thorough understanding of the clinical status and pathogenesis of UTIs and the advantages and disadvantages of antibiotics as a conventional treatment option could spark a surge in the search for alternative treatment options, especially vaccines and medicinal plants. Such options targeting multiple pathogenic mechanisms of UPEC are expected to be a focus of UTI management in the future to help combat antibiotic resistance.
Collapse
Affiliation(s)
- Yang Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
- School of Pharmaceutical Sciences, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| | - Zuying Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
- School of Pharmaceutical Sciences, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| | - Lin Zheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
- School of Pharmaceutical Sciences, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| | - Zipeng Gong
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| | - Yueting Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| | - Yang Jin
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| | - Yong Huang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
- School of Pharmaceutical Sciences, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| | - Mingyan Chi
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
- School of Pharmaceutical Sciences, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| |
Collapse
|
3
|
Li J, Wang RF, Zhou Y, Hu HJ, Yang YB, Yang L, Wang ZT. Dammarane-type triterpene oligoglycosides from the leaves and stems of Panax notoginseng and their antiinflammatory activities. J Ginseng Res 2019; 43:377-384. [PMID: 31308809 PMCID: PMC6606971 DOI: 10.1016/j.jgr.2017.11.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 09/22/2017] [Accepted: 11/16/2017] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Inflammation is widespread in the clinical pathology and closely associated to the progress of many diseases. Triterpenoid saponins as a key group of active ingredients in Panax notoginseng (Burk.) F.H. Chen were demonstrated to show antiinflammatory effects. However, the chemical structures of saponins in the leaves and stems of Panax notoginseng (PNLS) are still not fully clear. Herein, the isolation, purification and further evaluation of the antiinflammatory activity of dammarane-type triterpenoid saponins from PNLS were conducted. METHODS Silica gel and reversed-phase C8 column chromatography were used. Furthermore, preparative HPLC was used as a final purification technique to obtain minor saponins with high purities. MS, NMR experiments, and chemical methods were used in the structural identifications. The antiinflammatory activities of the isolated saponins were assessed by measuring the nitric oxide production in RAW 264.7 cells stimulated by lipopolysaccharides. Real-time reverse transcription polymerase chain reaction was used to measure the gene expressions of inflammation-related gene. RESULTS Eight new minor dammarane-type triterpene oligoglycosides, namely notoginsenosides LK1-LK8 (1-8) were obtained from PNLS, along with seven known ones. Among the isolated saponins, gypenoside IX significantly suppressed the nitric oxide production and inflammatory cytokines including tumor necrosis factor-α, interleukin 10, interferon-inducible protein 10 and interleukin-1β. CONCLUSION The eight saponins may enrich and expand the chemical library of saponins in Panax genus. Moreover, it is reported for the first time that gypenoside IX showed moderate antiinflammatory activity.
Collapse
Affiliation(s)
- Juan Li
- Department of Pharmacognosy, China Pharmaceutical University, Nanjing, China
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM, Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ru-Feng Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM, Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Zhou
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM, Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hai-Jun Hu
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM, Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying-Bo Yang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM, Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Yang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM, Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zheng-Tao Wang
- Department of Pharmacognosy, China Pharmaceutical University, Nanjing, China
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM, Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
4
|
Kamolvit W, Nilsén V, Zambrana S, Mohanty S, Gonzales E, Östenson CG, Brauner A. Lupinus mutabilis Edible Beans Protect against Bacterial Infection in Uroepithelial Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:1098015. [PMID: 30643523 PMCID: PMC6311276 DOI: 10.1155/2018/1098015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 11/06/2018] [Accepted: 11/15/2018] [Indexed: 01/11/2023]
Abstract
Lupinus mutabilis is a South American herb with edible beans, known to reduce serum glucose levels in diabetic patients. Furthermore, L. mutabilis contains phytochemicals known to decrease bacterial load. Based on the increased urinary tract infections experienced among patients with diabetes, we investigated the effect of L. mutabilis on bladder epithelial cells in the protection of E. coli infection during normal and high glucose concentrations. We did not observe any direct antibacterial effect by L. mutabilis extract. Instead we observed an influence on the host cells, with indirect impact on bacteria and their possibility of causing infection. L. mutabilis extract decreased adhesion to bladder epithelial cells of uropathogenic bacteria, including drug-resistant strains. Moreover, uroplakin1a, involved in adhesion, was downregulated while the antimicrobial peptide RNase 7 was upregulated in L. mutabilis treated cells irrespectively of glucose concentration. This supports an early effect fighting bacteria. Additionally, L. mutabilis prevented bacterial biofilm formation, which is used by bacteria to evade the immune system and antibiotics. In summary, L. mutabilis protects against bacterial infection in uroepithelial cells by preventing adhesion through alteration of the cell surface, increasing antimicrobial peptide expression, and reducing biofilm formation. Together, this promotes bacterial clearance, suggesting that L. mutabilis as extract or as a dietary item can contribute to the prevention of urinary tract infections, which is of importance in an era of increasing antibiotic resistance.
Collapse
Affiliation(s)
- Witchuda Kamolvit
- Department of Microbiology, Tumor and Cell Biology, Division of Clinical Microbiology, Karolinska Institutet and Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Vera Nilsén
- Department of Microbiology, Tumor and Cell Biology, Division of Clinical Microbiology, Karolinska Institutet and Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Silvia Zambrana
- Department of Molecular Medicine and Surgery, Karolinska Institutet and Karolinska University Hospital, 17176 Stockholm, Sweden
- Area de Farmacologia, Instituto de Investigaciones Farmaco Bioquimicas, Facultad de Ciencias Farmacéuticas y Bioquimicas, Universidad Mayor de San Andres, La Paz, Bolivia
| | - Soumitra Mohanty
- Department of Microbiology, Tumor and Cell Biology, Division of Clinical Microbiology, Karolinska Institutet and Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Eduardo Gonzales
- Area de Farmacologia, Instituto de Investigaciones Farmaco Bioquimicas, Facultad de Ciencias Farmacéuticas y Bioquimicas, Universidad Mayor de San Andres, La Paz, Bolivia
| | - Claes-Göran Östenson
- Department of Molecular Medicine and Surgery, Karolinska Institutet and Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Annelie Brauner
- Department of Microbiology, Tumor and Cell Biology, Division of Clinical Microbiology, Karolinska Institutet and Karolinska University Hospital, 17176 Stockholm, Sweden
| |
Collapse
|
5
|
Chen Z, Shu G, Taarji N, Barrow CJ, Nakajima M, Khalid N, Neves MA. Gypenosides as natural emulsifiers for oil-in-water nanoemulsions loaded with astaxanthin: Insights of formulation, stability and release properties. Food Chem 2018; 261:322-328. [PMID: 29739600 DOI: 10.1016/j.foodchem.2018.04.054] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 11/30/2022]
Abstract
The formulation, physicochemical stability and bioaccessibility of astaxanthin (AST) loaded oil-in-water nanoemulsions fabricated using gypenosides (GPs) as natural emulsifiers was investigated and compared with a synthetic emulsifier (Tween 20) that is commonly applied in food industry. GPs were capable of producing nanoemulsions with a small volume mean diameter (d4,3 = 125 ± 2 nm), which was similar to those prepared using Tween 20 (d4,3 = 145 ± 6 nm) under the same high-pressure homogenization conditions. GPs-stabilized nanoemulsions were stable against droplet growth over a range of pH (6-8) and thermal treatments (60-120 °C). Conversely, instability occurred under acidic (pH 3-5) and high ionic strength (25-100 mM CaCl2) conditions. In comparison with Tween 20, GPs were more effective at inhibiting AST from degradation during 30 days of storage at both 5 and 25 °C. However, GPs led to lower lipid digestion and AST bioaccessibility from nanoemulsions than did Tween 20.
Collapse
Affiliation(s)
- Zhang Chen
- Tsukuba Life Science Innovation Program (T-LSI), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Gaofeng Shu
- Tsukuba Life Science Innovation Program (T-LSI), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Noamane Taarji
- Tsukuba Life Science Innovation Program (T-LSI), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Colin J Barrow
- Center for Chemistry and Biotechnology, Deakin University, Waurn Ponds, Victoria 3217, Australia
| | - Mitsutoshi Nakajima
- Tsukuba Life Science Innovation Program (T-LSI), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Nauman Khalid
- Center for Chemistry and Biotechnology, Deakin University, Waurn Ponds, Victoria 3217, Australia; School of Food and Agricultural Sciences, University of Management and Technology, Lahore 54000, Pakistan.
| | - Marcos A Neves
- Tsukuba Life Science Innovation Program (T-LSI), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|
6
|
Shi L, Tan DH, Yan TC, Jiang DH, Hou MX. Cytotoxic triterpenes from the acid hydrolyzate of Gynostemma pentaphyllum saponins. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2018; 20:182-187. [PMID: 28463530 DOI: 10.1080/10286020.2017.1322070] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Accepted: 04/19/2017] [Indexed: 06/07/2023]
Abstract
One new dammarane-type triterpene, gypsapogenin A (1), was isolated from the acid hydrolyzate of total saponins from Gynostemma pentaphyllum (Thunb.) Makino, together with two known compounds, (20S,24S)-3β,20,21β,23β,25-pentahydroxy-21,24-cyclodammarane (2) and (23S)-3β-hydroxydammar-20,24-dien-21-oic acid 21,23-lactone (3). Its structural elucidations were accomplished mainly on the basis of the interpretation of spectroscopic data, such as IR, HR-TOF-MS, and NMR. The cytotoxic activities were evaluated against HepG2 and A549 human cancer cell lines.
Collapse
Affiliation(s)
- Lin Shi
- a College of Food Science, Shenyang Agricultural University , Shenyang 110866 , China
- b Laboratory of Rescue Center of Severe Wound and Trauma PLA, Department of Emergency Medicine , General Hospital of Shenyang Military Command , Shenyang 110016 , China
| | - De-Hong Tan
- a College of Food Science, Shenyang Agricultural University , Shenyang 110866 , China
| | - Ting-Cai Yan
- a College of Food Science, Shenyang Agricultural University , Shenyang 110866 , China
| | - Dong-Hua Jiang
- a College of Food Science, Shenyang Agricultural University , Shenyang 110866 , China
| | - Ming-Xiao Hou
- b Laboratory of Rescue Center of Severe Wound and Trauma PLA, Department of Emergency Medicine , General Hospital of Shenyang Military Command , Shenyang 110016 , China
| |
Collapse
|
7
|
Effect of light quality on total gypenosides accumulation and related key enzyme gene expression in Gynostemma pentaphyllum. CHINESE HERBAL MEDICINES 2018. [DOI: 10.1016/j.chmed.2017.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
8
|
Terlizzi ME, Gribaudo G, Maffei ME. UroPathogenic Escherichia coli (UPEC) Infections: Virulence Factors, Bladder Responses, Antibiotic, and Non-antibiotic Antimicrobial Strategies. Front Microbiol 2017; 8:1566. [PMID: 28861072 PMCID: PMC5559502 DOI: 10.3389/fmicb.2017.01566] [Citation(s) in RCA: 366] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/02/2017] [Indexed: 12/21/2022] Open
Abstract
Urinary tract infections (UTIs) are one of the most common pathological conditions in both community and hospital settings. It has been estimated that about 150 million people worldwide develop UTI each year, with high social costs in terms of hospitalizations and medical expenses. Among the common uropathogens associated to UTIs development, UroPathogenic Escherichia coli (UPEC) is the primary cause. UPEC strains possess a plethora of both structural (as fimbriae, pili, curli, flagella) and secreted (toxins, iron-acquisition systems) virulence factors that contribute to their capacity to cause disease, although the ability to adhere to host epithelial cells in the urinary tract represents the most important determinant of pathogenicity. On the opposite side, the bladder epithelium shows a multifaceted array of host defenses including the urine flow and the secretion of antimicrobial substances, which represent useful tools to counteract bacterial infections. The fascinating and intricate dynamics between these players determine a complex interaction system that needs to be revealed. This review will focus on the most relevant components of UPEC arsenal of pathogenicity together with the major host responses to infection, the current approved treatment and the emergence of resistant UPEC strains, the vaccine strategies, the natural antimicrobial compounds along with innovative anti-adhesive and prophylactic approaches to prevent UTIs.
Collapse
Affiliation(s)
| | | | - Massimo E. Maffei
- Department of Life Sciences and Systems Biology, University of TurinTorino, Italy
| |
Collapse
|
9
|
Lüthje P, Brauner A. Novel Strategies in the Prevention and Treatment of Urinary Tract Infections. Pathogens 2016; 5:E13. [PMID: 26828523 PMCID: PMC4810134 DOI: 10.3390/pathogens5010013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 08/05/2015] [Accepted: 01/21/2016] [Indexed: 01/15/2023] Open
Abstract
Urinary tract infections are one of the most common bacterial infections, especially in women and children, frequently treated with antibiotics. The alarming increase in antibiotic resistance is a global threat to future treatment of infections. Therefore, alternative strategies are urgently needed. The innate immune system plays a fundamental role in protecting the urinary tract from infections. Antimicrobial peptides form an important part of the innate immunity. They are produced by epithelial cells and neutrophils and defend the urinary tract against invading bacteria. Since efficient resistance mechanisms have not evolved among bacterial pathogens, much effort has been put into exploring the role of antimicrobial peptides and possibilities to utilize them in clinical practice. Here, we describe the impact of antimicrobial peptides in the urinary tract and ways to enhance the production by hormones like vitamin D and estrogen. We also discuss the potential of medicinal herbs to be used in the prophylaxis and the treatment of urinary tract infections.
Collapse
Affiliation(s)
- Petra Lüthje
- Department of Microbiology, Tumor and Cell Biology, Division of Clinical Microbiology, Karolinska Institutet and Karolinska University Hospital, Stockholm SE-171 76, Sweden.
| | - Annelie Brauner
- Department of Microbiology, Tumor and Cell Biology, Division of Clinical Microbiology, Karolinska Institutet and Karolinska University Hospital, Stockholm SE-171 76, Sweden.
| |
Collapse
|