1
|
Shirkhan F, Safaei F, Mirdamadi S, Zandi M. The Role of Probiotics in Skin Care: Advances, Challenges, and Future Needs. Probiotics Antimicrob Proteins 2024; 16:2132-2149. [PMID: 38965196 DOI: 10.1007/s12602-024-10319-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2024] [Indexed: 07/06/2024]
Abstract
The skin, being the largest organ in the human body, plays a pivotal role in safeguarding the body against invasive pathogens. Therefore, it is essential to reinforce and protect this vital organ. Current research supports the impact of probiotics on skin health and their ability to alleviate various skin disorders. However, the effectiveness and probable side effects of probiotics in skin care remain a subject of debate, necessitating further investigation and analysis. Hence, this study aims to highlight existing gaps and future needs in the current research on probiotics in skin care and pave the way for future investigations. Therefore, we scrutinized the effects of oral (fermented foods and dietary supplements) and non-oral/topical probiotics on skin care, and the mechanism of probiotics that affect skin health. The results of most studies showed that fermented foods containing probiotics, particularly dairy products, positively impact skin health. The research results regarding the efficacy of probiotic supplements and live strains in treating skin disorders show promising potential. However, safety evaluations are crucial, to identify any potential adverse effects. While research has identified numerous potential mechanisms by which probiotics may influence skin health, a complete understanding of their precise mode of action remains elusive. However, it seems that probiotics can exert their positive effects through the gut-skin and gut-skin-brain axis on the human body. Therefore, following the identification of safe probiotics, additional studies should be carried out to establish optimal dosages, potential side effects, suitable regulatory guidelines, and validation methods.
Collapse
Affiliation(s)
- Faezeh Shirkhan
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, 19496-35881, Iran
| | - Fatemeh Safaei
- Iranian Research Organization for Science and Technology, Microbial Biotechnology Student in Iranian Research Organization for Science and Technology, Microbial biotechnology, Tehran, 3353511, Iran
| | - Saeed Mirdamadi
- Department of Biotechnology, Iranian Research Organization for Science & Technology (IROST), Tehran, 33131-93685, Iran.
| | - Mohammad Zandi
- Department of Agriculture, Iranian Research Organization for Science and Technology (IROST), Tehran, 3353511, Iran.
| |
Collapse
|
2
|
Lee JS, Min JW, Gye SB, Kim YW, Kang HC, Choi YS, Seo WS, Lee BY. Suppression of UVB-Induced MMP-1 Expression in Human Skin Fibroblasts Using Lysate of Lactobacillus iners Derived from Korean Women's Skin in Their Twenties. Curr Issues Mol Biol 2024; 46:513-526. [PMID: 38248335 PMCID: PMC10814086 DOI: 10.3390/cimb46010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 01/23/2024] Open
Abstract
The process of skin aging is intricate, involving intrinsic aging, influenced by internal factors, and extrinsic aging, mainly caused by exposure to UV radiation, resulting in photoaging. Photoaging manifests as skin issues such as wrinkles and discoloration. The skin microbiome, a diverse community of microorganisms on the skin's surface, plays a crucial role in skin protection and can be affected by factors like humidity and pH. Probiotics, beneficial microorganisms, have been investigated for their potential to enhance skin health by regulating the skin microbiome. This can be accomplished through oral probiotics, impacting the gut-skin axis, or topical applications introducing live bacteria to the skin. Probiotics mitigate oxidative stress, suppress inflammation, and maintain the skin's extracellular matrix, ultimately averting skin aging. However, research on probiotics derived from human skin is limited, and there is no established product for preventing photoaging. The mechanism by which probiotics shield the skin microbiome and skin layers from UV radiation remains unclear. Recently, researchers have discovered Lactobacillus in the skin, with reports indicating a decrease in this microorganism with age. In a recent study, scientists isolated Lactobacillus iners KOLBM20 from the skin of individuals in their twenties and confirmed its effectiveness. A comparative analysis of genetic sequences revealed that strain KOLBM20 belongs to the Lactobacillus genus and closely relates to L. iners DSM13335(T) with a 99.20% similarity. Importantly, Lactobacillus iners KOLBM20 displayed anti-wrinkle properties by inhibiting MMP-1. This investigation demonstrated the inhibitory effect of KOLBM20 strain lysate on MMP-1 expression. Moreover, the data suggest that KOLBM20 strain lysate may prevent UVB-induced MMP-1 expression by inhibiting the activation of the ERK, JNK, and p38 signaling pathways induced by UVB. Consequently, KOLBM20 strain lysate holds promise as a potential therapeutic agent for preventing and treating skin photoaging.
Collapse
Affiliation(s)
- Jin-Sung Lee
- Department of Applied Biotechnology, Ajou University, Suwon 16499, Republic of Korea;
- R&D Complex, Kolmar Korea, 61, 8-gil, Heolleung-ro, Seocho-gu, Seoul 06800, Republic of Korea; (S.-B.G.); (Y.-W.K.)
| | - Jin-Woo Min
- Green & Biome Customizing Laboratory, GFC Co., Ltd., Hwaseong 18471, Republic of Korea; (J.-W.M.); (H.-C.K.)
| | - Seong-Bong Gye
- R&D Complex, Kolmar Korea, 61, 8-gil, Heolleung-ro, Seocho-gu, Seoul 06800, Republic of Korea; (S.-B.G.); (Y.-W.K.)
| | - Yong-Woo Kim
- R&D Complex, Kolmar Korea, 61, 8-gil, Heolleung-ro, Seocho-gu, Seoul 06800, Republic of Korea; (S.-B.G.); (Y.-W.K.)
| | - Hee-Cheol Kang
- Green & Biome Customizing Laboratory, GFC Co., Ltd., Hwaseong 18471, Republic of Korea; (J.-W.M.); (H.-C.K.)
| | - Yoon-Seo Choi
- Graduate School-Interdisciplinary Program in Biocosmetics, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Won-Sang Seo
- Green & Biome Customizing Laboratory, GFC Co., Ltd., Hwaseong 18471, Republic of Korea; (J.-W.M.); (H.-C.K.)
| | - Bun-Yeoul Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| |
Collapse
|
3
|
Ho YT, Liu IH, Chang ST, Wang SY, Chang HT. In Vitro and In Vivo Antimelanogenesis Effects of Leaf Essential Oil from Agathis dammara. Pharmaceutics 2023; 15:2269. [PMID: 37765238 PMCID: PMC10536972 DOI: 10.3390/pharmaceutics15092269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Agathis species are widely distributed around Southeast Asia, Australasia, South Pacific islands, and etc. Traditionally, Agathis species have been used as the folk medicines, the common ethnopharmacological uses of Agathis genus are the treatments of headache and myalgia. This study aims to investigate the chemical composition of Agathis dammara (Lamb.) Rich. leaf essential oil and to explore its antimelanogenesis effect. The chemical constituents of leaf essential oil are analyzed using gas chromatography-mass spectrometry (GC-MS), the major constituents of leaf essential oil are sesquiterpenoids. The major constituents are δ-cadinene (16.12%), followed by γ-gurjunene (15.57%), 16-kaurene (12.43%), β-caryophyllene (8.58%), germacrene D (8.53%), and γ-cadinene (5.33%). As for the in vitro antityrosinase activity, leaf essential oil inhibit the tyrosinase activity of mushroom when the substrate is 3,4-dihydroxyphenylalanine (L-DOPA). Leaf essential oil prevents tyrosinase from acting as diphenolase and catalyzing L-DOPA to dopaquinone, and converting into dark melanin pigments. A. dammara leaf essential oil also exhibits the in vivo antimelanogenesis effect, leaf essential oil reduces 43.48% of melanin formation in zebrafish embryos at the concentration of 50 μg/mL. Results reveal A. dammara leaf essential oil has the potential for developing the skin whitening drug and depigmentation ingredient for hyperpigmentary disorders.
Collapse
Affiliation(s)
- Yu-Tung Ho
- School of Forestry and Resource Conservation, National Taiwan University, Taipei 10617, Taiwan; (Y.-T.H.); (S.-T.C.)
| | - I-Hsuan Liu
- Department of Animal Science and Technology, National Taiwan University, Taipei 10617, Taiwan;
| | - Shang-Tzen Chang
- School of Forestry and Resource Conservation, National Taiwan University, Taipei 10617, Taiwan; (Y.-T.H.); (S.-T.C.)
| | - Sheng-Yang Wang
- Department of Forestry, National Chung Hsing University, Taichung 40227, Taiwan;
- Special Crop and Metabolome Discipline Cluster, Academy Circle Economy, National Chung Hsing University, Taichung 40227, Taiwan
| | - Hui-Ting Chang
- School of Forestry and Resource Conservation, National Taiwan University, Taipei 10617, Taiwan; (Y.-T.H.); (S.-T.C.)
| |
Collapse
|
4
|
Hu Y, Zhou Y, Hu X, Chen Q, Shi Y, Zhuang J, Wang Q. Cefotaxime sodium inhibited melanogenesis in B16F10 cells by cAMP/PKA/CREB pathways. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Huang HC, Lee IJ, Huang C, Chang TM. Lactic Acid Bacteria and Lactic Acid for Skin Health and Melanogenesis Inhibition. Curr Pharm Biotechnol 2020; 21:566-577. [DOI: 10.2174/1389201021666200109104701] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/26/2019] [Accepted: 12/11/2019] [Indexed: 12/21/2022]
Abstract
Lactic acid bacteria are beneficial to human health. Lactic acid bacteria have wide applications
in food, cosmetic and medicine industries due to being Generally Recognized As Safe (GRAS)
and a multitude of therapeutic and functional properties. Previous studies have reported the beneficial
effects of lactic acid bacteria, their extracts or ferments on skin health, including improvements in skin
conditions and the prevention of skin diseases. Lipoteichoic acid isolated from Lactobacillus plantarum
was reported to inhibit melanogenesis in B16F10 melanoma cells. In particular, lipoteichoic acid
also exerted anti-photoaging effects on human skin cells by regulating the expression of matrix metalloproteinase-
1. The oral administration of Lactobacillus delbrueckii and other lactic acid bacteria has
been reported to inhibit the development of atopic diseases. Additionally, the clinical and histologic
evidence indicates that the topical application of lactic acid is effective for depigmentation and improving
the surface roughness and mild wrinkling of the skin caused by environmental photo-damage. This
review discusses recent findings on the effects of lactic acid bacteria on skin health and their specific
applications in skin-whitening cosmetics.
Collapse
Affiliation(s)
- Huey-Chun Huang
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - I. Jung Lee
- Department of Kampo Medicine, Yokohama University of Pharmacy, Yokohama, Japan
| | - Chen Huang
- Office of Paradigm Industrial- Academic R & D Headquarter, Hungkuang University, Taichung, Taiwan
| | - Tsong-Min Chang
- Department of Applied Cosmetology, Hungkuang University, Taichung City, Taiwan
| |
Collapse
|
6
|
Elsbaey M, Sallam A, El-Metwally M, Nagata M, Tanaka C, Shimizu K, Miyamoto T. Melanogenesis Inhibitors from the Endophytic Fungus Aspergillus amstelodami. Chem Biodivers 2019; 16:e1900237. [PMID: 31241824 DOI: 10.1002/cbdv.201900237] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 06/25/2019] [Indexed: 01/24/2023]
Abstract
Two new compounds, named 3,4-dimethoxyphenyl α-d-ribofuranoside (1) and 3β-(β-d-glucopyranosyloxy)olean-12-ene-23,28,30-trioic acid (2), together with thirteen known compounds, were isolated from the white beans culture of the marine derived endophytic fungus Aspergillus amstelodami. Structure elucidation of the new compounds was carried out by one-, two-dimensional spectroscopy, and high resolution electrospray ionization mass. The antimelanogenic and anti-allergic activity of the isolated compounds were investigated. Compounds 4, 7, 1, 3, 11, 6 and 9 selectively suppressed melanin production in B16 melanoma cells, using arbutin as a positive control. Their IC50 values were 30.8±5.57, 38.5±6.08, 52.6±6.64, 98.0±1.16, 100.4±3.05, 112.0±0.22 and 144.7±2.35 μm, respectively, while that of arbutin was 151.7±1.27 μm. The tested compounds did not show any significant anti-allergic activity in RBL-2H3 cells, as compared to quercetin.
Collapse
Affiliation(s)
- Marwa Elsbaey
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.,Department of Natural Products Chemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Amal Sallam
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Mohamed El-Metwally
- Division of Marine Environment, National Institute of Oceanography and Fisheries, Hurghada, 84511, Egypt
| | - Maki Nagata
- Department of Agro-environmental Sciences, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Chiaki Tanaka
- Department of Natural Products Chemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Kuniyoshi Shimizu
- Department of Agro-environmental Sciences, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Tomofumi Miyamoto
- Department of Natural Products Chemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| |
Collapse
|
7
|
Chen YM, Su WC, Li C, Shi Y, Chen QX, Zheng J, Tang DL, Chen SM, Wang Q. Anti-melanogenesis of novel kojic acid derivatives in B16F10 cells and zebrafish. Int J Biol Macromol 2019; 123:723-731. [DOI: 10.1016/j.ijbiomac.2018.11.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/06/2018] [Accepted: 11/06/2018] [Indexed: 01/20/2023]
|
8
|
Cai ZN, Li W, Mehmood S, Pan WJ, Wu QX, Chen Y, Lu YM. Effect of polysaccharide FMP-1 from Morchella esculenta on melanogenesis in B16F10 cells and zebrafish. Food Funct 2019; 9:5007-5015. [PMID: 30188555 DOI: 10.1039/c8fo01267a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Polysaccharides from Morchella esculenta are known to exhibit diverse bioactivities, while an anti-melanogenesis effect has been barely addressed. Herein, the anti-melanogenesis activity of a heteropolysaccharide from M. esculenta (FMP-1) was investigated in vitro and in vivo. FMP-1 had no significant cytotoxic effect on B16F10 melanoma cells as well as zebrafish larvae, but did reduce melanin contents and tyrosinase activities in both of them. Treatment with FMP-1 also effectively suppressed the expression of melanogenesis-related proteins, including MC1R, MITF, TRP-1 and TRP-2, through decreasing the phosphorylation of cyclic adenosine monophosphate response element-binding protein (CREB). Moreover, the mitogen-activated protein kinase (MAPK) pathway was observed mediating FMP-1's inhibitory effect against melanin production. Specifically, FMP-1 treatment markedly inhibited the activation of phosphorylation of p38 mitogen-activated protein kinase. These results suggested that FMP-1's inhibitory effect against melanogenesis is mediated by the inhibition of CREB and p38 signaling pathways, thereby resulting in the downstream repression of melanogenesis-related proteins and the subsequent melanin production. These data provide insight into FMP-1's potential anti-melanogenesis effect in food and cosmetic industries.
Collapse
Affiliation(s)
- Zheng-Nan Cai
- School of Life Sciences and Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei 230601, Anhui, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
9
|
Azam MS, Choi J, Lee MS, Kim HR. Hypopigmenting Effects of Brown Algae-Derived Phytochemicals: A Review on Molecular Mechanisms. Mar Drugs 2017; 15:E297. [PMID: 28946635 PMCID: PMC5666405 DOI: 10.3390/md15100297] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 09/11/2017] [Accepted: 09/20/2017] [Indexed: 12/29/2022] Open
Abstract
There is a rapid increase in the demand for natural hypopigmenting agents from marine sources for cosmeceutical and pharmaceutical applications. Currently, marine macroalgae are considered as a safe and effective source of diverse bioactive compounds. Many research groups are exploring marine macroalgae to discover and characterize novel compounds for cosmeceutical, nutraceutical, and pharmaceutical applications. Many types of bioactive secondary metabolites from marine algae, including phlorotannins, sulfated polysaccharides, carotenoids, and meroterpenoids, have already been documented for their potential applications in the pharmaceutical industry. Among these metabolites, phlorotannins from brown algae have been widely screened for their pharmaceutical and hypopigmenting effects. Unfortunately, the majority of these articles did not have detailed investigations on molecular targets, which is critical to fulfilling the criteria for their cosmeceutical and pharmaceutical use. Very recently, a few meroterpenoids have been discovered from Sargassum sp., with the examination of their anti-melanogenic properties and mechanisms. Despite the scarcity of in vivo and clinical investigations of molecular mechanistic events of marine algae-derived hypopigmenting agents, identifying the therapeutic targets and their validation in humans has been a major challenge for future studies. In this review, we focused on available data representing molecular mechanisms underlying hypopigmenting properties of potential marine brown alga-derived compounds.
Collapse
Affiliation(s)
- Mohammed Shariful Azam
- Department of Food Science and Nutrition, Pukyong National University, 45 Yongso-Ro, Nam-Gu, Busan 48513, Korea.
| | - Jinkyung Choi
- Department of Foodservice Management, Woosong University, Daejeon 34606, Korea.
| | - Min-Sup Lee
- Department of Food Science and Nutrition, Pukyong National University, 45 Yongso-Ro, Nam-Gu, Busan 48513, Korea.
| | - Hyeung-Rak Kim
- Department of Food Science and Nutrition, Pukyong National University, 45 Yongso-Ro, Nam-Gu, Busan 48513, Korea.
| |
Collapse
|
10
|
|
11
|
Sun L, Guo Y, Zhang Y, Zhuang Y. Antioxidant and Anti-tyrosinase Activities of Phenolic Extracts from Rape Bee Pollen and Inhibitory Melanogenesis by cAMP/MITF/TYR Pathway in B16 Mouse Melanoma Cells. Front Pharmacol 2017; 8:104. [PMID: 28337140 PMCID: PMC5343546 DOI: 10.3389/fphar.2017.00104] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 02/21/2017] [Indexed: 12/22/2022] Open
Abstract
Rape bee pollen possesses many nutritional and therapeutic properties because of its abundant nutrimental and bioactive components. In this study, free (FPE) and bound (BPE) phenolic extracts of rape bee pollen were obtained, phenolic and flavonoid contents were determined, and composition of phenolic acids was analyzed. In vitro antioxidant and anti-tyrosinase (TYR) activities of FPE and BPE were compared, and inhibitory melanogenesis of FPE was further evaluated. Results showed FPE and BPE contain total phenolic contents of 11.76 and 0.81 mg gallic acid equivalents/g dry weight (DW) and total flavonoid contents of 19.24 and 3.65 mg rutin equivalents/g DW, respectively. Phenolic profiling showed FPE and BPE fractions contained 12 and 9 phenolic acids, respectively. FPE contained the highest rutin content of 774.87 μg/g. FPE and BPE showed the high antioxidant properties in vitro and high inhibitory activities for mushroom TYR. Higher activities of FPE than those of BPE can be attributed to difference in their phenolic compositions. Inhibitory melanogenesis activities of FPE against B16 were further evaluated. Results showed suppressed intracellular TYR activity, reduced melanin content, and promoted glutathione synthesis (p < 0.05) in FPE-treated cells. FPE reduced mRNA expression of TYR, TYR-related protein (TRP)-1 and TRP-2, and significantly suppressed cyclic adenosine monophosphate (cAMP) levels through down-regulation of melanocortin 1 receptor gene expression (p < 0.05). FPE reduced mRNA expression of microphthalmia-associated transcription factor (MITF), significantly inhibiting intracellular melanin synthesis (p < 0.05). Hence, FPE regulates melanogenesis of B16 cells involved in cAMP/MITF/TYR pathway. These results revealed that FPE can be used as pharmaceutical agents and cosmetics to protect cells from abnormal melanogenesis.
Collapse
Affiliation(s)
- Liping Sun
- Yunnan Institute of Food Safety, Kunming University of Science and Technology Kunming, China
| | - Yan Guo
- Yunnan Institute of Food Safety, Kunming University of Science and Technology Kunming, China
| | - Yanxin Zhang
- Yunnan Institute of Food Safety, Kunming University of Science and Technology Kunming, China
| | - Yongliang Zhuang
- Yunnan Institute of Food Safety, Kunming University of Science and Technology Kunming, China
| |
Collapse
|
12
|
Liu TH, Tsai TY. Effects of equol on deoxycorticosterone acetate salt-induced hypertension and associated vascular dementia in rats. Food Funct 2016; 7:3444-57. [PMID: 27435368 DOI: 10.1039/c6fo00223d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Oxidative stress is the major cause of neuronal cell degeneration observed in neurodegenerative diseases including vascular dementia (VaD), and hypertension has been found to increase the probability of VaD. Here, we investigated the effects of equol in deoxycorticosterone acetate (DOCA)-salt-induced hypertensive rats (DHRs) and the associated VaD. The systolic blood pressure of rats treated with low- (10 mg per kg body weight) and high-dose (20 mg per kg body weight) equol for 4 weeks was lower than that of the control group by 12.18 and 17.48% in a dose-dependent manner, respectively (p < 0.05), which was regulated by inhibiting angiotensin-converting enzyme (ACE) activity and increasing the nitric oxide (NO) production. Equol-treated DHRs showed a significant decrease in both the swimming distance and time required to reach the escape platform (78.20 to 82.56%, p < 0.05). In addition, the probe trial session and working memory test indicated that equol improved the long- and short-term memory of the rats. Moreover, the brain antioxidant activity was increased by elevating the activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) levels, and the malondialdehyde (MDA) content and acetylcholinesterase (AChE) activity were decreased, indicating that equol suppressed oxidative stress. In conclusion, we demonstrated that equol exhibited comparable blood pressure (BP)-lowering and VaD-improving effects with the clinically used drug, lisinopril in DHRs while there was a positive correlation between the doses. Therefore, this bioactive compound may be useful for developing functional foods, thereby extending the application of equol-containing crops.
Collapse
Affiliation(s)
- Te-Hua Liu
- Department of Food Science, Fu Jen Catholic University, New Taipei City, Taiwan.
| | | |
Collapse
|
13
|
Effects of Lactobacillus plantarum TWK10-Fermented Soymilk on Deoxycorticosterone Acetate-Salt-Induced Hypertension and Associated Dementia in Rats. Nutrients 2016; 8:nu8050260. [PMID: 27144579 PMCID: PMC4882673 DOI: 10.3390/nu8050260] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/25/2016] [Accepted: 04/26/2016] [Indexed: 12/22/2022] Open
Abstract
Oxidative stress resulting from excessive production of reactive oxygen species is the major mediator of neuronal cell degeneration observed in neurodegenerative diseases, such as Alzheimer’s disease (AD) and vascular dementia (VaD). Additionally, hypertension has been shown to be a positive risk factor for VaD. Therefore, the objective of this study was to investigate the effects of Lactobacillus plantarum strain TWK10 (TWK10)-fermented soymilk on the protection of PC-12 cells in H2O2-, oxygen-glucose deprivation (OGD)- and deoxycorticosterone acetate (DOCA)-salt-induced rat models of VaD. Notably, the viabilities of H2O2-treated PC-12 cells and OGD model were significantly increased by treatment with TWK10-fermented soymilk ethanol extract (p < 0.05). In addition, oral administration of TWK10-fermented soymilk extract in DOCA-salt hypertension-induced VaD rats resulted in a significant decrease in blood pressure (p < 0.05), which was regulated by inhibiting ACE activity and promoting NO production, in addition to decreased escape latency and increased target crossing (p < 0.05). In conclusion, these results demonstrated that TWK10-fermented soymilk extract could improve learning and memory in DOCA-salt hypertension-induced VaD rats by acting as a blood pressure-lowering and neuroprotective agent.
Collapse
|
14
|
Antimelanogenic effects of the novel melanogenic inhibitors daidzein and equol, derived from soymilk fermented with Lactobacillus plantarum strain TWK10, in B16F0 mouse melanoma cells. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.01.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
15
|
Sun A, Ren G, Deng C, Zhang J, Luo X, Wu X, Mani S, Dou W, Wang Z. C-glycosyl flavonoid orientin improves chemically induced inflammatory bowel disease in mice. J Funct Foods 2016. [DOI: 10.1016/j.jff.2015.12.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
16
|
Liu YY, Zeng SY, Leu YL, Tsai TY. Antihypertensive Effect of a Combination of Uracil and Glycerol Derived from Lactobacillus plantarum Strain TWK10-Fermented Soy Milk. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:7333-7342. [PMID: 26266546 DOI: 10.1021/acs.jafc.5b01649] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We previously demonstrated that angiotensin-converting enzyme (ACE) could be inhibited by soy milk that had been fermented with the Lactobacillus plantarum strain TWK10, suggesting great potential for the development of antihypertensive products. In this work, the bioactive ACE inhibitors in TWK10-fermented soy milk water extracts were isolated, and a combination of uracil and glycerol (CUG) was identified as one of the ACE inhibitors. We then examined the physiological effects of CUG treatment in short-term and long-term studies using spontaneously hypertensive rats (SHRs) as an experimental model. The results revealed that the fermented soy milk extracts and CUG decreased blood pressure by 11.97 ± 3.71 to 19.54 ± 9.54 mmHg, 8 h after oral administration, and exhibited antihypertensive effects in SHRs in a long-term study. In addition, CUG was shown to decrease blood pressure by suppressing either the renin activity or the ACE activity and, thus, decreasing the downstream vasoconstricting peptide angiotensin II and the hormone aldosterone. CUG also promoted nitric oxide production, resulting in vasodilation and further improvement to hypertension. This important finding suggests that TWK10-fermented soy milk and its functional ingredients, uracil and glycerol, exhibit antihypertensive effects via multiple pathways and provide a healthier and more natural antihypertensive functional food.
Collapse
Affiliation(s)
- Yi-Yen Liu
- Department of Food Science, Fu Jen Catholic University , New Taipei City, Taiwan
| | - Shih-Yu Zeng
- Department of Food Science, Fu Jen Catholic University , New Taipei City, Taiwan
| | - Yann-Lii Leu
- Graduate Institute of Natural Products, Chang Gung University , Taoyuan City, Taiwan
| | - Tsung-Yu Tsai
- Department of Food Science, Fu Jen Catholic University , New Taipei City, Taiwan
| |
Collapse
|