1
|
Chen L, Li X, Li W, Hao X, Wu S, Zhang M, Zheng F, Zhang N. Structural, physicochemical, and digestive properties of enzymatic debranched rice starch modified by phenolic compounds with varying structures. Int J Biol Macromol 2024; 274:133262. [PMID: 38901511 DOI: 10.1016/j.ijbiomac.2024.133262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/11/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
The physicochemical properties of starch and phenolic acid (PA) complexes largely depend on the effect of non-covalent interactions on the microstructure of starch. However, whether there are differences and commonalities in the interactions between various types of PAs and starch remains unclear. The physicochemical properties and digestive characteristics of the complexes were investigated by pre-gelatinization of 16 structurally different PAs and pullulanase-modified rice starches screened. FT-IR and XRD results revealed that PA complexed with debranched rice starch (DRS) through hydrogen bonding and hydrophobic interaction. Benzoic/phenylacetic acid with polyhydroxy groups could enter the helical cavities of the starch chains to promote the formation of V-shaped crystals, and cinnamic acid with p-hydroxyl structure acted between starch chains in a bridging manner, both of which increased the relative crystallinity of DRS, with DRS-ellagic acid increasing to 20.03 %. The digestion and hydrolysis results indicated that the acidification and methoxylation of PA synergistically decreased the enzyme activity leading to a decrease in the digestibility of the complexes, and the resistant starch content of the DRS-vanillic acid complexes increased from 28.27 % to 71.67 %. Therefore, the selection of structurally appropriate PAs can be used for the targeted preparation of starch-based foods and materials.
Collapse
Affiliation(s)
- Linlin Chen
- College of Food Engineering, Harbin University of Commerce, Harbin, 150028, China.
| | - Xintong Li
- College of Food Engineering, Harbin University of Commerce, Harbin, 150028, China
| | - Wei Li
- College of Food Engineering, Harbin University of Commerce, Harbin, 150028, China
| | - Xi Hao
- College of Food Engineering, Harbin University of Commerce, Harbin, 150028, China
| | - Songyao Wu
- College of Food Engineering, Harbin University of Commerce, Harbin, 150028, China
| | - Ming Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin, 150028, China
| | - Fengming Zheng
- College of Food Engineering, Harbin University of Commerce, Harbin, 150028, China
| | - Na Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin, 150028, China.
| |
Collapse
|
2
|
Roy S, Sarkar T, Upadhye VJ, Chakraborty R. Comprehensive Review on Fruit Seeds: Nutritional, Phytochemical, Nanotechnology, Toxicity, Food Biochemistry, and Biotechnology Perspective. Appl Biochem Biotechnol 2024; 196:4472-4643. [PMID: 37755640 DOI: 10.1007/s12010-023-04674-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 09/28/2023]
Abstract
Fruit seeds are leftovers from a variety of culinary sectors. They are generally unutilized and contribute greatly to global disposals. These seeds not only possess various nutritional attributes but also have many heath-beneficial properties. One way to make use of these seeds is to extract their bioactive components and create fortified food items. Nowadays, researchers are highly interested in creating innovative functional meals and food components from these unconventional resources. The main objective of this manuscript was to determine the usefulness of seed powder from 70 highly consumed fruits, including Apple, Apricot, Avocado, Banana, Blackberry, Blackcurrant, Blueberry, Cherry, Common plum, Cranberry, Gooseberry, Jackfruit, Jamun, Kiwi, Lemon, Mahua, Mango, Melon, Olive, Orange, and many more have been presented. The nutritional attributes, phytochemical composition, health advantages, nanotechnology applications, and toxicity of these fruit seeds have been fully depicted. This study also goes into in-depth detailing on creating useful food items out of these seeds, such as bakery goods, milk products, cereal-based goods, and meat products. It also identifies enzymes purified from these seeds along with their biochemical applications and any research openings in this area.
Collapse
Affiliation(s)
- Sarita Roy
- Department of Food Technology and Biochemical Engineering, Jadavpur University, Kolkata, 700032, India
| | - Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Govt. of West Bengal, Malda, 732102, India.
| | | | - Runu Chakraborty
- Department of Food Technology and Biochemical Engineering, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
3
|
Zhao R, Zhang Y, Chen J, Zhang L, Chen C, Ma G, Shi X. Inhibitory effects of longan seed extract on polycyclic aromatic hydrocarbons formation and muscle oxidation in baked mutton kebabs. Food Chem X 2023; 20:100973. [PMID: 38144775 PMCID: PMC10740070 DOI: 10.1016/j.fochx.2023.100973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 10/16/2023] [Accepted: 10/29/2023] [Indexed: 12/26/2023] Open
Abstract
Longan seeds, rich in phenolic compounds with antioxidant properties, are an underestimated by-product of longan processing. Polycyclic aromatic hydrocarbons (PAHs), which are carcinogenic and mutagenic, are produced during the cooking of meat products at high temperatures. The effects of different concentrations of longan seed extract (LSE, 0.2, 0.6, 1.0 mg/mL) on the formation of PAHs and muscle oxidation in mutton kebabs were investigated. Mutton kebabs were baked at 150, 200, 250 °C for 20 min, respectively, and the contents of PAHs, the degree of lipid and protein oxidation were evaluated. The results showed that LSE exhibited positive effects in inhibiting total PAHs formation (range from 14.9 to 48.8 %), decreasing the thiobarbituric acid reactive substances (TBARS) values (range from 17.1 to 39.1 %), reducing carbonyl content (range from 22.0 to 51.2 %) and increasing sulfhydryl content (range from 18.6 to 51.8 %). This study provided a guidance and potential solution for reducing the content of PAHs and muscle oxidation levels in baked meat.
Collapse
Affiliation(s)
- Ruina Zhao
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yongsheng Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Jingjing Chen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Li Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Cheng Chen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Guoyuan Ma
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Xixiong Shi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
4
|
Timilsina AP, Raut BK, Huo C, Khadayat K, Budhathoki P, Ghimire M, Budhathoki R, Aryal N, Kim KH, Parajuli N. Metabolomics and molecular networking approach for exploring the anti-diabetic activity of medicinal plants. RSC Adv 2023; 13:30665-30679. [PMID: 37869390 PMCID: PMC10585453 DOI: 10.1039/d3ra04037b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/04/2023] [Indexed: 10/24/2023] Open
Abstract
Metabolomics and molecular networking approaches have expanded rapidly in the field of biological sciences and involve the systematic identification, visualization, and high-throughput characterization of bioactive metabolites in natural products using sophisticated mass spectrometry-based techniques. The popularity of natural products in pharmaceutical therapies has been influenced by medicinal plants with a long history of ethnobotany and a vast collection of bioactive compounds. Here, we selected four medicinal plants Cleistocalyx operculatus, Terminalia chebula, Ficus lacor, and Ficus semicordata, the biochemical characteristics of which remain unclear owing to the inherent complexity of their plant metabolites. In this study, we aimed to evaluate the potential of these aforementioned plant extracts in inhibiting the enzymatic activity of α-amylase and α-glucosidase, respectively, followed by the annotation of secondary metabolites. The methanol extract of Ficus semicordata exhibited the highest α-amylase inhibition with an IC50 of 46.8 ± 1.8 μg mL-1, whereas the water fraction of Terminalia chebula fruits demonstrated the most significant α-glucosidase inhibition with an IC50 value of 1.07 ± 0.01 μg mL-1. The metabolic profiling of plant extracts was analyzed through Liquid Chromatography-Mass Spectrometry (LC-HRMS) of the active fractions, resulting in the annotation of 32 secondary metabolites. Furthermore, we applied the Global Natural Product Social Molecular Networking (GNPS) platform to evaluate the MS/MS data of Terminalia chebula (bark), revealing that there were 205 and 160 individual ion species observed as nodes in the methanol and ethyl acetate fractions, respectively. Twenty-two metabolites were tentatively identified from the network map, of which 11 compounds were unidentified during manual annotation.
Collapse
Affiliation(s)
- Arjun Prasad Timilsina
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kirtipur Kathmandu 44618 Nepal +977-1-4332034
| | - Bimal Kumar Raut
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kirtipur Kathmandu 44618 Nepal +977-1-4332034
| | - Chen Huo
- School of Pharmacy, Sungkyunkwan University Suwon 16419 Republic of Korea +82-31-290-7700
| | - Karan Khadayat
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kirtipur Kathmandu 44618 Nepal +977-1-4332034
| | - Prakriti Budhathoki
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kirtipur Kathmandu 44618 Nepal +977-1-4332034
| | - Mandira Ghimire
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kirtipur Kathmandu 44618 Nepal +977-1-4332034
| | - Rabin Budhathoki
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kirtipur Kathmandu 44618 Nepal +977-1-4332034
| | - Niraj Aryal
- Department of Biology, University of Florida Gainesville FL 32611 USA
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University Suwon 16419 Republic of Korea +82-31-290-7700
| | - Niranjan Parajuli
- Biological Chemistry Lab, Central Department of Chemistry, Tribhuvan University Kirtipur Kathmandu 44618 Nepal +977-1-4332034
| |
Collapse
|
5
|
Sai-Ut S, Kingwascharapong P, Mazumder MAR, Rawdkuen S. Optimization of Ethanolic Extraction of Phenolic Antioxidants from Lychee and Longan Seeds Using Response Surface Methodology. Foods 2023; 12:2827. [PMID: 37569096 PMCID: PMC10417469 DOI: 10.3390/foods12152827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/17/2023] [Accepted: 07/22/2023] [Indexed: 08/13/2023] Open
Abstract
Lychee seeds (LS) and longan seeds (LoS) are excellent sources of phenolic compounds (PCs) with strong antioxidant activity (AOA). The aim of this study was to optimize the extraction conditions regarding extraction yield (EY), extractable phenolic compound (EPC), and AOA from LS and LoS using surface response methodology (RSM). Solvent concentration, extraction temperature, time, and solid to liquid ratio were optimized using RSM. Increasing the solid to solvent ratio from 1:05 to 1:40 (w/v), increased EY for LoS, however, EY did not change from 1:20 to 1:40 for LS. Solid-liquid ratio 1:20 was chosen for this study. Increasing the quantity of solvent leads to higher EPC and FRAP. The results showed that LoS exhibited higher AOA than LS measured as DPPH, ABTS, and FRAP, respectively. Ethanol concentrations and temperatures significantly (p < 0.05) affect EY, EPC, and AOA. The results (R2 > 0.85) demonstrated a good fit to the suggested models and a strong correlation between the extraction conditions and the phenolic antioxidant responses. The ethanol concentrations of 41 and 53%, temperatures of 51 and 58 °C, and the corresponding times of 139 and 220 min were the optimal conditions that maximized the EY, EPC, and AOA from LS and LoS.
Collapse
Affiliation(s)
- Samart Sai-Ut
- Department of Food Science, Faculty of Science, Burapha University, Chonburi 20131, Thailand;
| | | | - Md. Anisur Rahman Mazumder
- Food Science and Technology Program, School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Department of Food Technology and Rural Industries, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Saroat Rawdkuen
- Food Science and Technology Program, School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Unit of Innovative Food Packaging and Biomaterials, School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand
| |
Collapse
|
6
|
Ruckthong L, Pretzler M, Kampatsikas I, Rompel A. Biochemical characterization of Dimocarpus longan polyphenol oxidase provides insights into its catalytic efficiency. Sci Rep 2022; 12:20322. [PMID: 36434079 PMCID: PMC9700842 DOI: 10.1038/s41598-022-20616-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/15/2022] [Indexed: 11/27/2022] Open
Abstract
The "dragon-eye" fruits produced by the tropical longan tree are rich in nutrients and antioxidants. They suffer from post-harvest enzymatic browning, a process for which mainly the polyphenol oxidase (PPO) family of enzymes is responsible. In this study, two cDNAs encoding the PPO have been cloned from leaves of Dimocarpus longan (Dl), heterologously expressed in Escherichia coli and purified by affinity chromatography. The prepro-DlPPO1 contains two signal peptides at its N-terminal end that facilitate transportation of the protein into the chloroplast stroma and to the thylakoid lumen. Removal of the two signal peptides from prepro-DlPPO1 yields pro-DlPPO1. The prepro-DlPPO1 exhibited higher thermal tolerance than pro-DlPPO1 (unfolding at 65 °C vs. 40 °C), suggesting that the signal peptide may stabilize the fold of DlPPO1. DlPPO1 can be classified as a tyrosinase because it accepts both monophenolic and diphenolic substrates. The pro-DlPPO1 exhibited the highest specificity towards the natural diphenol (-)-epicatechin (kcat/KM of 800 ± 120 s-1 mM-1), which is higher than for 4-methylcatechol (590 ± 99 s-1 mM-1), pyrogallol (70 ± 9.7 s-1 mM-1) and caffeic acid (4.3 ± 0.72 s-1 mM-1). The kinetic efficiencies of prepro-DlPPO1 are 23, 36, 1.7 and 4.7-fold lower, respectively, than those observed with pro-DlPPO1 for the four aforementioned diphenolic substrates. Additionally, docking studies showed that (-)-epicatechin has a lower binding energy than any other investigated substrate. Both kinetic and in-silico studies strongly suggest that (-)-epicatechin is a good substrate of DlPPO1 and ascertain the affinity of PPOs towards specific flavonoid compounds.
Collapse
Affiliation(s)
- Leela Ruckthong
- Fakultät für Chemie, Institut für Biophysikalische Chemie, Universität Wien, Josef-Holaubek-Platz 2, 1090, Wien, Austria
- Faculty of Science, Department of Chemistry, King Mongkut's University of Technology Thonburi (KMUTT), Thung Kru, Bangkok, 10140, Thailand
| | - Matthias Pretzler
- Fakultät für Chemie, Institut für Biophysikalische Chemie, Universität Wien, Josef-Holaubek-Platz 2, 1090, Wien, Austria
| | - Ioannis Kampatsikas
- Fakultät für Chemie, Institut für Biophysikalische Chemie, Universität Wien, Josef-Holaubek-Platz 2, 1090, Wien, Austria
| | - Annette Rompel
- Fakultät für Chemie, Institut für Biophysikalische Chemie, Universität Wien, Josef-Holaubek-Platz 2, 1090, Wien, Austria.
| |
Collapse
|
7
|
Lin Y, Tang D, Liu X, Cheng J, Wang X, Guo D, Zou J, Yang H. Phenolic profile and antioxidant activity of longan pulp of different cultivars from South China. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
8
|
Wannavijit S, Outama P, Le Xuan C, Lumsangkul C, Lengkidworraphiphat P, Tongsiri S, Chitmanat C, Doan HV. Modulatory effects of longan seed powder on growth performance, immune response, and immune-antioxidant related gene expression in Nile tilapia (Oreochromis niloticus) raised under biofloc system. FISH & SHELLFISH IMMUNOLOGY 2022; 123:460-468. [PMID: 35339660 DOI: 10.1016/j.fsi.2022.03.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
This study evaluates the effects of longan seed powder (LS) on the growth performance, immunological response, and immune-antioxidant related gene expression of Nile tilapia (Oreochromis niloticus). Three hundred fish (13.82 ± 0.06 g) were divided into five experiments and fed 5 diets, including the basal diet (control without LS) and basal diet containing 10 (LS10), 20 (LS20), 40 (LS40), and 80 (LS80) g kg-1 LS for eight weeks. A completely randomized design (CRD) with three replications was utilised. The growth performance and immune response were measured at weeks 4 and 8 post feeding, while the gene expressions were determined at the end of the feeding trial. The results revealed that administration of LS could significantly (P < 0.05) improve specific growth rate (SGR), weight gain (WG), and feed conversion ratio (FCR) in Nile tilapia as compared to the control group. However, no significant differences (P > 0.05) were observed in survival rates among treatments. LS-supplemented diets showed enhanced serum peroxidase activity (SPA), serum lysozyme activity (SLA), skin mucus lysozyme activity (MLA), and skin mucus peroxidase activity (MPA) at weeks 4 and 8 post-feeding, with the highest values observed in the LS20 diet (P < 0.05). Additionally, LS-supplemented diets significantly up-regulated (P < 0.05) immune and antioxidant related gene expressions (IL1, IL8, LBP, GSTa, GPX, and GSR) in the liver and intestine, with highest values observed in the LS20 treatment. The present results confirmed the beneficial effects of LS as a functional feed additive and immunostimulant for Nile Tilapia culture in a biofloc system.
Collapse
Affiliation(s)
- Supreya Wannavijit
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Piyatida Outama
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chinh Le Xuan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chompunut Lumsangkul
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Phattawin Lengkidworraphiphat
- Science and Technology Research Institute, Chiang Mai University, 239 Huay Keaw Rd., Suthep, Muang, Chiang Mai, 50200, Thailand
| | - Sudaporn Tongsiri
- Faculty of Fisheries Technology and Aquatic Resources, Maejo University, Chiang Mai, 50290, Thailand
| | - Chanagun Chitmanat
- Faculty of Fisheries Technology and Aquatic Resources, Maejo University, Chiang Mai, 50290, Thailand
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand; Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
9
|
BÖLEK S. Valorization of roasted longan stone in production of functional biscuits with high antioxidant activity and dietary fiber. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.69820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Exhaustive Plant Profile of “Dimocarpus longan Lour” with Significant Phytomedicinal Properties: A Literature Based-Review. Processes (Basel) 2021. [DOI: 10.3390/pr9101803] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: “Dimocarpus longan Lour” is a tropical and subtropical evergreen tree species mainly found in China, India, and Thailand; this plant, found naturally in Bangladesh, even locally, is used as “kaviraj” medication for treating different diseases, such as gastrointestinal disorders, wounds, fever, snake bites, menstrual problem, chickenpox, bone fractures, neurological disorders, and reproductive health. Different parts of this plant, especially juice pulp, pericarp, seeds, leaves, and flowers, contain a diverse group of botanical phytocompounds, and nutrient components which are directly related to alleviating numerous diseases. This literature-based review provides the most up-to-date data on the ethnomedicinal usages, phytochemical profiling, and bio-pharmacological effects of D. longan Lour based on published scientific articles. Methodology: A literature-based review was conducted by collecting information from various published papers in reputable journals and cited organizations. ChemDraw, a commercial software package, used to draw the chemical structure of the phytochemicals. Results: Various phytochemicals such as flavonoids, tannins, and polyphenols were collected from the various sections of the plant, and other compounds like vitamins and minerals were also obtained from this plant. As a treating agent, this plant displayed many biologicals activities, such as anti-proliferative, antioxidant, anti-cancer, anti-tyrosinase, radical scavenging activity, anti-inflammatory activity, anti-microbial, activation of osteoblast differentiation, anti-fungal, immunomodulatory, probiotic, anti-aging, anti-diabetic, obesity, neurological issues, and suppressive effect on macrophages cells. Different plant parts have displayed better activity in different disease conditions. Still, the compounds, such as gallic acid, ellagic acid, corilagin acid, quercetin, 4-O-methyl gallic acid, and (-)-epicatechin showed better activity in the biological system. Gallic acid, corilagin, and ellagic acid strongly exhibited anti-cancer activity in the HepG2, A549, and SGC 7901 cancer cell lines. Additionally, 4-O-methyl gallic acid and (-)-epicatechin have displayed outstanding antioxidant activity as well as anti-cancer activity. Conclusion: This plant species can be considered an alternative source of medication for some diseases as it contains a potential group of chemical constituents.
Collapse
|
11
|
Li Z, Lan Y, Miao J, Chen X, Chen B, Liu G, Wu X, Zhu X, Cao Y. Phytochemicals, antioxidant capacity and cytoprotective effects of jackfruit (Artocarpus heterophyllus Lam.) axis extracts on HepG2 cells. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.100933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
12
|
He T, Wang K, Zhao L, Chen Y, Zhou W, Liu F, Hu Z. Interaction with longan seed polyphenols affects the structure and digestion properties of maize starch. Carbohydr Polym 2021; 256:117537. [PMID: 33483053 DOI: 10.1016/j.carbpol.2020.117537] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/01/2022]
Abstract
This study investigated effects of longan seed polyphenols (LSPs) on the structure and digestion properties of starch, and discussed the interaction mechanism between starch and LSPs. The results showed cooking with 20 % LSPs did not change amylopectin chain length distribution of normal maize starch, however, the amylose content was reduced from 21.60 to 14.03 %. This suggests LSPs may interact with starch via non-covalent bond. Isothermal titration microcalorimetry and XRD results confirmed the existence of non-covalent interaction, and indicated that LSPs may enter the hydrophobic cavity of amylose, forming V-type inclusion complex. LSPs did not affect gelatinization temperatures of maize starch, whereas 20 % LSPs decreased the enthalpy change by about 26 %. The digestion results indicate significant inhibition effect of LSPs on the digestion of cooked starch, attributing to the interaction of LSPs with starch. These suggest potential applications of LSPs as functional ingredients in modulating postprandial glycemic response of starchy food.
Collapse
Affiliation(s)
- Ting He
- College of Food Science, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Kai Wang
- College of Food Science, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Lei Zhao
- College of Food Science, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Yan Chen
- College of Food Science, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Wanxia Zhou
- College of Food Science, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Fangmei Liu
- College of Food Science, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China; Tea and Tourism Industry Development Service Center of Anhua County, Yiyang, Hunan, 413500, China
| | - Zhuoyan Hu
- College of Food Science, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
13
|
Wang Z, Wu Z, Zuo G, Lim SS, Yan H. Defatted Seeds of Oenothera biennis as a Potential Functional Food Ingredient for Diabetes. Foods 2021; 10:foods10030538. [PMID: 33807644 PMCID: PMC8002154 DOI: 10.3390/foods10030538] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/22/2021] [Accepted: 03/02/2021] [Indexed: 12/23/2022] Open
Abstract
The defatted seeds of Oenothera biennis (DSOB) are a by-product of evening primrose oil production that are currently not effectively used. In this study, α-glucosidase inhibition, aldose reductase inhibition, antioxidant capacity, polyphenol composition, and nutritional value (carbohydrates, proteins, minerals, fat, organic acid, and tocopherols) of DSOB were evaluated using the seeds of Oenothera biennis (SOB) as a reference. DSOB was an excellent inhibitor of α-glucosidase (IC50 = 3.31 μg/mL) and aldose reductase (IC50 = 2.56 μg/mL). DSOB also showed considerable antioxidant capacities (scavenging of 2,2-diphenyl-1-picrylhydrazyl, 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid, nitric oxide, peroxynitrite, and hydroxyl radicals). DSOB was a reservoir of polyphenols, and 25 compounds in DSOB were temporarily identified by liquid chromatography coupled with electrospray ionization–quadrupole time of flight–mass spectrometry analysis. Moreover, the carbohydrate, protein, and mineral content of DSOB were increased compared to that of SOB. DSOB contained large amounts of fiber and low levels of sugars, and was rich in calcium and iron. These results imply that DSOB may be a potential functional food ingredient for diabetes, providing excellent economic and environmental benefits.
Collapse
Affiliation(s)
- Zhiqiang Wang
- Key Laboratory of Public Health Safety of Hebei Province, College of Public Health, Hebei University, Baoding 071002, China;
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
- Correspondence: (Z.W.); (H.Y.); Tel.: +86-312-5079010 (Z.W.); +86-312-5078507 (H.Y.)
| | - Zhaoyang Wu
- Key Laboratory of Public Health Safety of Hebei Province, College of Public Health, Hebei University, Baoding 071002, China;
| | - Guanglei Zuo
- Department of Food Science and Nutrition, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Korea; (G.Z.); (S.S.L.)
| | - Soon Sung Lim
- Department of Food Science and Nutrition, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Korea; (G.Z.); (S.S.L.)
| | - Hongyuan Yan
- Key Laboratory of Public Health Safety of Hebei Province, College of Public Health, Hebei University, Baoding 071002, China;
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
- Correspondence: (Z.W.); (H.Y.); Tel.: +86-312-5079010 (Z.W.); +86-312-5078507 (H.Y.)
| |
Collapse
|
14
|
Chen J, Yan Y, Zhang L, Zheng J, Guo J, Li R, Zeng J. Purification of novel antioxidant peptides from myofibrillar protein hydrolysate of chicken breast and their antioxidant potential in chemical and H 2O 2-stressed cell systems. Food Funct 2021; 12:4897-4908. [PMID: 34100502 DOI: 10.1039/d1fo00579k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Myofibrillar protein accounting for about 60% of total muscle proteins is expected to be a promising source of bioactive peptides. The purpose of the present study was to purify antioxidant peptides from myofibrillar protein hydrolysate of chicken breast by ultrafiltration and gel filtration chromatography, and evaluate their chemical antioxidant activities and protective effects in H2O2-stressed NIH-3T3 cells. Four major peptides were identified using nano-LC-ESI-MS/MS as ITTNPYDY, IGWSPLGSL, ITTNPYDYHY, and LRVAPEEHPTL. The sequenced peptides were synthesized and exhibited remarkable radical-scavenging ability, ORAC (108.2-133.5 μM TE per mg peptide), and FRAP (75.4-92.5 mM Fe2+ per mg peptide). Structure-activity relationship indicated that the antioxidant capacity of the peptides was more related to the presence of hydrophobic and antioxidant amino acids (including Trp, Val, Ile, Leu, Ala, Pro, Gly, Asp, His, and Tyr) in the sequences as well as their molecular structures. Moreover, they protected NIH-3T3 cells against oxidative damage through inhibiting ROS generation and lipid peroxidation. Especially, the antioxidant peptides ITTNPYDY and IGWSPLGSL significantly (p < 0.05) elevated intracellular glutathione level and antioxidant enzyme activities, and suppressed apoptosis by blocking caspase-3 activation. This work highlights that the selected peptides may serve as functional food ingredients with antioxidant and cytoprotective characteristics.
Collapse
Affiliation(s)
- Jinyu Chen
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China. and Tianjin Key Laboratory of Food Biotechnology, Tianjin 300134, China
| | - Yijun Yan
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China.
| | - Leilei Zhang
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China.
| | - Jiayu Zheng
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China.
| | - Jinting Guo
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China.
| | - Ruohan Li
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China.
| | - Jiayu Zeng
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China.
| |
Collapse
|
15
|
Tandee K, Kittiwachana S, Mahatheeranont S. Antioxidant activities and volatile compounds in longan (Dimocarpus longan Lour.) wine produced by incorporating longan seeds. Food Chem 2020; 348:128921. [PMID: 33540299 DOI: 10.1016/j.foodchem.2020.128921] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 01/15/2023]
Abstract
The seeds of dried longan, one of the major processed fruits in Thailand, contain several bioactive compounds. In this study, we developed longan wine by incorporating its seeds during juice preparation and evaluated the antioxidant activities and volatile compounds in different conditions. The results suggested that Saccharomyces cerevisiae EC-1118 was suitable for fermentation of longan juice supplemented with 50% seed and 20% initial soluble solids at an optimal temperature of 30 °C. Different yeast strains showed various extents of antioxidant activities; however, the fermentation temperature and initial soluble solids of longan juice had little effect on the inhibition of reactive species. Antioxidant activities were significantly increased with increasing seed content. Dominant volatile compounds, which were independent of the winemaking conditions, were found to be phenethyl alcohol, 2,3-butylene glycol, 5-hydroxymethyl-2-furaldehyde, ethyl hydrogen succinate, and 4-hydroxyphenethyl alcohol. These compounds highly influenced the antioxidant activities of longan wine produced by incorporating the seeds.
Collapse
Affiliation(s)
- Kanokwan Tandee
- Faculty of Engineering and Agro-Industry, Maejo University, Chiang Mai 50290, Thailand
| | - Sila Kittiwachana
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Research Center on Chemistry for the Development of Health-Promoting Products from Northern Resources, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sugunya Mahatheeranont
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Research Center on Chemistry for the Development of Health-Promoting Products from Northern Resources, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
16
|
Lan H, Cheng Y, Mu J, Huang Y, Chen H, Zhao L, Wang K, Hu Z. Glucose-rich polysaccharide from dried 'Shixia' longan activates macrophages through Ca 2+ and CR3- mediated MAPKs and PI3K-AKT pathways. Int J Biol Macromol 2020; 167:845-853. [PMID: 33181209 DOI: 10.1016/j.ijbiomac.2020.11.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/25/2020] [Accepted: 11/06/2020] [Indexed: 11/19/2022]
Abstract
A water-soluble glucose-rich polysaccharide from dried 'Shixia' longan pulp (LPsx) has been isolated for the first time, and its structure and immuno-regulatory mechanism were studied. LPsx is a hetero-polysaccharide with the average molecular weight 4102 g/mol. It was mainly consisted of glucose (95.9%), and small proportions of arabinose (2.1%), galactose (1.0%), mannose (0.6%), and xylose (0.4%). As analyzed by NMR, LPsx was mainly composed of (1 → 6)-α-d-glucose and (1 → 6)-β-d-glucose, branched with α-d-glucose-(1→. The immunomodulatory activity study showed that LPsx significantly increased the phagocytosis of macrophages, and strongly promoted the production of NO, IL-1β, IL-6 and TNF-α. Moreover, LPsx could inhibit the inflammatory response induced by lipopolysaccharide. The immuno-regulatory mechanism of LPsx was studied using RNA- sequencing and receptors activity analyses. It was found that LPsx induced macrophage activation via Ca2+ and CR3-mediated MAPKs and PI3K-AKT signaling pathways. The results would be helpful for revealing the health promoting mechanism of dried 'Shixia' longan in traditional Chinese medicine.
Collapse
Affiliation(s)
- Haibo Lan
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yongxia Cheng
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jingjing Mu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yanfen Huang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Huifang Chen
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Lei Zhao
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Kai Wang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Zhuoyan Hu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
17
|
Phytochemical constituents and biological activities of longan (Dimocarpus longan Lour.) fruit: a review. FOOD SCIENCE AND HUMAN WELLNESS 2020. [DOI: 10.1016/j.fshw.2020.03.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Rakariyatham K, Zhou D, Rakariyatham N, Shahidi F. Sapindaceae (Dimocarpus longan and Nephelium lappaceum) seed and peel by-products: Potential sources for phenolic compounds and use as functional ingredients in food and health applications. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103846] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
19
|
Yang KM, Chiang PY. Effects of smoking process on the aroma characteristics and sensory qualities of dried longan. Food Chem 2019; 287:133-138. [PMID: 30857682 DOI: 10.1016/j.foodchem.2019.02.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 02/03/2019] [Accepted: 02/05/2019] [Indexed: 01/17/2023]
Abstract
In this study, the effects on the sensory quality and flavor profile of dried longan resulting from smoking it for 104 h were investigated. The results showed that, in terms of the quality of the dried longan. The smoking time influenced the fruit's water activity (0.70-0.92), soluble solids (30-60 。Brix), pH (6.13-6.71), and tendency to change from yellow to brown hues (ΔE: 3.13-12.83). We detected 42 volatile compound variations during smoking, of which 3-methyl-1-butanol, 3,7-dimethyl-1,3,6-octatriene, hydroxy butanone, and 1-octen-3-ol perceived aroma for longan. Aroma characteristics were evaluated smoky effect by agglomerative hierarchical cluster and principal component analysis. Forasmuch phenolic derivatives (smoky flavor) form lignin degradation correlated for the time, and organic compounds via oxidation (or hydrolyzation). We found get the smoky flavor and intermediate moisture of longan in smoked 72 h, which extended sensory and preservation that is beneficial to longan producers.
Collapse
Affiliation(s)
- Kai-Min Yang
- Department of Hospitality Management, Mingdao Unicersity, 369, Wen-Hua Rd, ChangHua 52345, Taiwan
| | - Po-Yuan Chiang
- Department of Food Science and Biotechnology, National Chung Hsing University, 250 Kuokuang Road, Taichung 40227, Taiwan.
| |
Collapse
|
20
|
Nguyen NMP, Le TT, Vissenaekens H, Gonzales GB, Van Camp J, Smagghe G, Raes K. In vitroantioxidant activity and phenolic profiles of tropical fruit by‐products. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14093] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Nhat Minh Phuong Nguyen
- Department of Food Technology, Safety and Health Ghent University Coupure Links 653 Ghent 9000 Belgium
- Department of Food Engineering Faculty of Food Science and Technology Nong Lam University Block 6, Ward Linh Trung, Thu Duc District Ho Chi Minh City Vietnam
- Department of Food Technology College of Agriculture Can Tho University Campus 2, 3/2 Street, Ward An Khanh, Ninh Kieu District Can Tho City Vietnam
| | - Thien Trung Le
- Department of Food Engineering Faculty of Food Science and Technology Nong Lam University Block 6, Ward Linh Trung, Thu Duc District Ho Chi Minh City Vietnam
| | - Hanne Vissenaekens
- Department of Food Technology, Safety and Health Ghent University Coupure Links 653 Ghent 9000 Belgium
- Department of Plants and Crops Ghent University Coupure Links 653 Ghent 9000 Belgium
| | - Gerard Bryan Gonzales
- Department of Food Technology, Safety and Health Ghent University Coupure Links 653 Ghent 9000 Belgium
| | - John Van Camp
- Department of Food Technology, Safety and Health Ghent University Coupure Links 653 Ghent 9000 Belgium
| | - Guy Smagghe
- Department of Plants and Crops Ghent University Coupure Links 653 Ghent 9000 Belgium
| | - Katleen Raes
- Department of Food Technology, Safety and Health Ghent University Coupure Links 653 Ghent 9000 Belgium
| |
Collapse
|
21
|
Zhao L, Wang K, Li W, Soteyome T, Xiao H, Hu Z. Protective effects of polyphenolic extracts from longan seeds promote healing of deep second-degree burn in mice. Food Funct 2019; 10:1433-1443. [DOI: 10.1039/c8fo02330a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The objective of this study was to evaluate the ability of a polyphenolic extract from longan seeds as a wound-healing material for deep second-degree burn wounds.
Collapse
Affiliation(s)
- Lei Zhao
- College of Food Science
- South China Agricultural University
- Guangzhou 510642
- P.R. China
| | - Kai Wang
- College of Food Science
- South China Agricultural University
- Guangzhou 510642
- P.R. China
| | - Weichao Li
- Intensive Care Unit
- Sun Yat-sen Memorial Hospital
- Sun Yat-sen University
- Guangzhou 510120
- P.R. China
| | - Thanapop Soteyome
- Department of Food Science and Technology
- Faculty of Home Economics Technology
- Rajamangala University of Technology
- Bangkok
- Thailand
| | - Hang Xiao
- Department of Food Science
- University of Massachusetts
- Amherst
- USA
| | - Zhuoyan Hu
- College of Food Science
- South China Agricultural University
- Guangzhou 510642
- P.R. China
| |
Collapse
|
22
|
Neves NDA, Stringheta PC, Gómez-Alonso S, Hermosín-Gutiérrez I. Flavonols and ellagic acid derivatives in peels of different species of jabuticaba (Plinia spp.) identified by HPLC-DAD-ESI/MSn. Food Chem 2018; 252:61-71. [DOI: 10.1016/j.foodchem.2018.01.078] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/05/2017] [Accepted: 01/10/2018] [Indexed: 12/20/2022]
|
23
|
Zhang R, Khan SA, Lin Y, Guo D, Pan X, Liu L, Wei Z, Zhang Y, Deng Y, Zhang M. Phenolic profiles and cellular antioxidant activity of longan pulp of 24 representative Chinese cultivars. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2018. [DOI: 10.1080/10942912.2018.1425705] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Ruifen Zhang
- Key Laboratory of Functional Foods, Ministry of Agriculture, Guangdong Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou, PR China
| | - Sher Ali Khan
- Key Laboratory of Functional Foods, Ministry of Agriculture, Guangdong Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou, PR China
| | - Yaosheng Lin
- Key Laboratory of Functional Foods, Ministry of Agriculture, Guangdong Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou, PR China
| | - Dongliang Guo
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, PR China
| | - Xuewen Pan
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, PR China
| | - Lei Liu
- Key Laboratory of Functional Foods, Ministry of Agriculture, Guangdong Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou, PR China
| | - Zhencheng Wei
- Key Laboratory of Functional Foods, Ministry of Agriculture, Guangdong Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou, PR China
| | - Yan Zhang
- Key Laboratory of Functional Foods, Ministry of Agriculture, Guangdong Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou, PR China
| | - Yuanyuan Deng
- Key Laboratory of Functional Foods, Ministry of Agriculture, Guangdong Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou, PR China
| | - Mingwei Zhang
- Key Laboratory of Functional Foods, Ministry of Agriculture, Guangdong Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou, PR China
| |
Collapse
|
24
|
Comparison of structural and functional properties of starches from five fruit kernels. Food Chem 2018; 257:75-82. [PMID: 29622233 DOI: 10.1016/j.foodchem.2018.03.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 03/01/2018] [Accepted: 03/01/2018] [Indexed: 01/12/2023]
Abstract
Starch was isolated from the kernels of jackfruit, longan, loquat, litchi, and mango fruits, which contained approximately 56, 59, 71, 53, and 64% starch, respectively, indicating that these fruit kernels are good starch sources. The structural and functional properties of these isolated starches were investigated and compared. The starches had irregular, truncated, spherical, and elliptical shapes with central hila and exhibited different sizes, with mango starch being the largest and jackfruit and longan starches being the smallest. The five starches had similar amylose contents but exhibited significantly different crystalline properties including crystalline type, relative crystallinity, short-range ordered structure, and lamellar intensity. Among the five starches, the jackfruit and loquat starches had the highest and lowest gelatinization temperature and enthalpy, respectively, and the litchi and mango starches had the highest and lowest pasting viscosity, respectively. The longan and loquat starches were more susceptible to enzyme hydrolysis than the other starches.
Collapse
|
25
|
Cerulli A, Masullo M, Mari A, Balato A, Filosa R, Lembo S, Napolitano A, Piacente S. Phenolics from Castanea sativa leaves and their effects on UVB-induced damage. Nat Prod Res 2017; 32:1170-1175. [PMID: 28539059 DOI: 10.1080/14786419.2017.1331225] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The phytochemical investigation of the methanol extract of the leaves of Castanea sativa Mill., source of the Italian PGI (Protected Geographical Indication) product 'Marrone di Roccadaspide' (Campania region) afforded as main compounds crenatin (1), chestanin (2), gallic acid (3), cretanin (4), 5-O-p-coumaroylquinic acid (5), p-methylgallic acid (6) and quercetin-3-O-glucoside (7). To quantify the isolated compounds a LC-ESI(QqQ)MS method working with a very sensitive and selective mass tandem experiment called Multiple Reaction Monitoring (MRM) has been developed. Moreover the antioxidant capacity by TEAC assay and the ability of compounds 1-7 to protect HaCaT human keratinocytes from UVB-induced damage has been investigated.
Collapse
Affiliation(s)
- Antonietta Cerulli
- a Department of Pharmacy , University of Salerno , Fisciano , Italy.,b PhD Program in Drug Discovery and Development , Università degli Studi di Salerno , Fisciano , Italy
| | - Milena Masullo
- a Department of Pharmacy , University of Salerno , Fisciano , Italy
| | - Angela Mari
- a Department of Pharmacy , University of Salerno , Fisciano , Italy
| | - Anna Balato
- c Department of Advanced Biomedical Sciences , University of Naples Federico II , Naples , Italy
| | - Rosanna Filosa
- d Department of Experimental Medicine , Second University of Naples , Naples , Italy
| | - Serena Lembo
- e Department of Medicine , Surgery and Dentistry "Scuola Medica Salernitana" , Baronissi , Italy
| | | | - Sonia Piacente
- a Department of Pharmacy , University of Salerno , Fisciano , Italy
| |
Collapse
|
26
|
Antonio AL, Pereira E, Pinela J, Heleno S, Pereira C, Ferreira IC. Determination of Antioxidant Compounds in Foodstuff. Food Saf (Tokyo) 2016. [DOI: 10.1002/9781119160588.ch6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
27
|
Chen J, Xu Z, Zhu W, Nie R, Li CM. Novel proanthocyanidin dimer analogues with the C-ring-opened diaryl-propan-2-gallate structural unit and enhanced antioxidant activities. J Funct Foods 2016. [DOI: 10.1016/j.jff.2015.12.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|