1
|
Meng D, Zhao L, Zhu Y, Sun L, Li M, Wu H, Liang D, Liu Y, Ma Y, Zhao G, Liu S. Analysis of structural composition and antioxidant activity of traditional fermented sour meat peptides. Food Chem 2024; 460:140697. [PMID: 39142200 DOI: 10.1016/j.foodchem.2024.140697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/23/2024] [Accepted: 07/27/2024] [Indexed: 08/16/2024]
Abstract
Chinese traditional fermented sour meat has a unique flavor and nutritional value. The antioxidant activity of sour meat peptides is related to their molecular weights, amino acid compositions, and structural characteristics. Therefore, this study explores the relationships between them. The results indicate that sour meat peptides with molecular weights <1 kDa exhibit significant antioxidant properties both in vitro and in vivo. The smaller the molecular weights, the higher the content of typical amino acids with antioxidant activity (p <0.05), and the characteristic peaks of ultraviolet absorption decrease. The absorption peak at 284.5 nm blue-shifted, and the polarity of the microenvironment increased. The peak intensity and peak area of the Raman characteristic peaks of tyrosine residues and aliphatic amino acids were enhanced. In the secondary structure, there is a high content of β-turns and a low content of α-helix, which are closely related to the enhancement of antioxidant activity.
Collapse
Affiliation(s)
- Dezhen Meng
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, PR China; International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Lijun Zhao
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, PR China; International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou, 450002, PR China.
| | - Yaodi Zhu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, PR China; International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Lingxia Sun
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, PR China; International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Miaoyun Li
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, PR China; International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou, 450002, PR China.
| | - Huilin Wu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, PR China; International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Dong Liang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, PR China; International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Yanxia Liu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, PR China; International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Yangyang Ma
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, PR China; International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Gaiming Zhao
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, PR China; International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Shijie Liu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, PR China; International Joint Laboratory of Meat Processing and Safety in Henan Province, Henan Agricultural University, Zhengzhou, 450002, PR China
| |
Collapse
|
2
|
Senadheera TRL, Hossain A, Dave D, Shahidi F. Antioxidant and ACE-Inhibitory Activity of Protein Hydrolysates Produced from Atlantic Sea Cucumber ( Cucumaria frondosa). Molecules 2023; 28:5263. [PMID: 37446924 DOI: 10.3390/molecules28135263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/04/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Atlantic sea cucumber is a benthic marine echinoderm found in Northwest Atlantic waters and is harvested mainly for its body wall. The body wall, along with internal organs and aquaphyrangeal bulb/flower, is a rich source of proteins, where the latter parts are often considered as processing discards. The objective of this research was to produce protein hydrolysates from sea cucumber tissues (body wall, flower, and internal organs) with bioactive properties associated with antioxidants, DNA and LDL cholesterol oxidation inhibition, and angiotensin-I-converting enzyme (ACE) inhibitory effects. The protein hydrolysates were prepared using food-grade commercial enzymes, namely Alcalase, Corolase, and Flavourzyme, individually and in combination, and found that the combination of enzymes exhibited stronger antioxidant potential than the individual enzymes, as well as their untreated counterparts. Similar trends were also observed for the DNA and LDL cholesterol oxidation inhibition and ACE-inhibitory properties of sea cucumber protein hydrolysates, mainly those that were prepared from the flower. Thus, the findings of this study revealed potential applications of sea cucumber-derived protein hydrolysates in functional foods, nutraceuticals, and dietary supplements, as well as natural therapeutics.
Collapse
Affiliation(s)
- Tharindu R L Senadheera
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Abul Hossain
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Deepika Dave
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
- Marine Bioprocessing Facility, Centre of Aquaculture and Seafood Development, Fisheries and Marine Institute, Memorial University of Newfoundland, St. John's, NL A1C 5R3, Canada
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| |
Collapse
|
3
|
Wang B, Xiao S, Zhou G, Wang J. Novel Casein-Derived Peptide-Zinc Chelate: Zinc Chelation and Transepithelial Transport Characteristics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6978-6986. [PMID: 37129176 DOI: 10.1021/acs.jafc.3c00001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Casein-derived peptides are recognized as promising candidates for improving zinc bioavailability through the form of a peptide-zinc chelate. In the present work, a novel 11-residue peptide TEDELQDKIHP identified from casein hydrolysate in our previous study was synthesized to investigate the zinc chelation characteristics. Meanwhile, the digestion stability and transepithelial transport of TEDELQDKIHP-Zn were also investigated. The obtained results indicated that the carboxyl groups (from Asp and Glu), amino groups (from Lys and His), pyrrole nitrogen group of Pro, and imidazole nitrogen group of His were responsible for zinc chelation. The complexation with zinc resulted in a more ordered structure of TEDELQDKIHP-Zn. In terms of digestion stability, the chelate of TEDELQDKIHP-Zn could remain stable to a large extent after gastric (78.54 ± 0.14%) and intestinal digestion (70.18 ± 0.17%). Moreover, TEDELQDKIHP-Zn was proven to be a well-absorbed biological particle with a Papp value higher than 1 × 10-6 cm/s, and it could be transported across the intestine epithelium through transcytosis. TEDELQDKIHP-Zn exhibited more bioavailable effects on zinc absorption and ALP activity than inorganic zinc sulfate.
Collapse
Affiliation(s)
- Bo Wang
- Engineering Research Center of Health Food Design & Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Shan Xiao
- Engineering Research Center of Health Food Design & Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Guicheng Zhou
- Engineering Research Center of Health Food Design & Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
- College of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jihui Wang
- Engineering Research Center of Health Food Design & Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| |
Collapse
|
4
|
Wang K, Han L, Tan Y, Hong H, Luo Y. Generation of novel antioxidant peptides from silver carp muscle hydrolysate: Gastrointestinal digestion stability and transepithelial absorption property. Food Chem 2023; 403:134136. [DOI: 10.1016/j.foodchem.2022.134136] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/30/2022] [Accepted: 09/03/2022] [Indexed: 12/19/2022]
|
5
|
Okagu IU, Udenigwe CC. Transepithelial transport and cellular mechanisms of food-derived antioxidant peptides. Heliyon 2022; 8:e10861. [PMID: 36217466 PMCID: PMC9547200 DOI: 10.1016/j.heliyon.2022.e10861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 04/23/2022] [Accepted: 09/27/2022] [Indexed: 11/18/2022] Open
Abstract
Considering the involvement of oxidative stress in the etiology of many non-communicable diseases, food-derived antioxidant peptides (FDAPs) are strong candidates for nutraceutical development for disease prevention and management. This paper reviews current evidence on the transepithelial transport and cellular mechanisms of antioxidant activities of FDAPs. Several FDAPs have multiple health benefits such as anti-inflammatory and anti-photoaging activities, in addition to antioxidant properties through which they protect cellular components from oxidative damage. Some FDAPs have been shown to permeate the intestinal epithelium, which could facilitate their bioavailability and physiological bioactivities. Molecular mechanisms of FDAPs include suppression of oxidative stress as evidenced by reduction in intracellular reactive oxygen species production, lipid peroxidation and apoptotic protein activation as well as increase in antioxidant defense mechanisms (enzymatic and non-enzymatic). Since many FDAPs have demonstrated promising antioxidant activity, future investigation should focus on further elucidation of molecular mechanisms and human studies to explore their practical application for the prevention and management of oxidative stress-related diseases.
Collapse
Affiliation(s)
- Innocent U. Okagu
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Chibuike C. Udenigwe
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| |
Collapse
|
6
|
Peng S, Song H, Chen Y, Li S, Guan X. Oral Delivery of Food-derived Bioactive Peptides: Challenges and Strategies. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2062772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Shiyu Peng
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Hongdong Song
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, China
| | - Yaqiong Chen
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Sen Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, China
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
7
|
Fillería SG, Nardo AE, Paulino M, Tironi V. Peptides derived from the gastrointestinal digestion of amaranth 11S globulin: Structure and antioxidant functionality. FOOD CHEMISTRY. MOLECULAR SCIENCES 2021; 3:100053. [PMID: 35415655 PMCID: PMC8991498 DOI: 10.1016/j.fochms.2021.100053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 10/11/2021] [Accepted: 11/15/2021] [Indexed: 12/28/2022]
Abstract
The relationship between structural and physicochemical properties and antioxidant activity of peptides from amaranth 11S-globulin was studied. Peptides AWEEREQGSR, TEVWDSNEQ, IYIEQGNGITGM and YLAGKPQQEH had the greatest in vitro activity (ORAC, HORAC). GDRFQDQHQ, HVIKPPSRA and KFNRPETT were the most active ones against Cu+2/H2O2-induced-LDL oxidation. In a cellular system (H2O2-induced-Caco2-TC7), TEVWDSNEQ, IYIEQGNGITGM, GDRFQDQHQ, LAGKPQQEHSGEHQ and KFNRPETT were the most effective in decreasing ROS, while the effects on SOD, GPx, and GSH were variable. To understand the structure-antioxidant activity relationships, the content of aromatic and acidic amino acids, the degree of hydrophobicity and the charge distribution on the accessible surface of peptides structures obtained by molecular dynamics were analysed. The low correlation between in vitro, ex vivo and cellular activities could be explained by the influence of physicochemical and structural properties on the interaction with complex systems (LDL/cells), peptide modifications and/or mechanisms other than direct ROS inhibition in the cells.
Collapse
Affiliation(s)
- Susan García Fillería
- Laboratorio de Investigación, Desarrollo e innovación en Proteínas Alimentarias (LIDiPA), Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA-CCT La Plata-CONICET, CICPBA, Facultad de Ciencias Exactas, Universidad Nacional de La Plata), La Plata, Argentina
| | - Agustina Estefania Nardo
- Laboratorio de Investigación, Desarrollo e innovación en Proteínas Alimentarias (LIDiPA), Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA-CCT La Plata-CONICET, CICPBA, Facultad de Ciencias Exactas, Universidad Nacional de La Plata), La Plata, Argentina
| | - Margot Paulino
- Centro de Bioinformática Estructural (CeBioInfo), Departamento de Experimentación y Teoría de la Estructura de la Materia y sus Aplicaciones, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Valeria Tironi
- Laboratorio de Investigación, Desarrollo e innovación en Proteínas Alimentarias (LIDiPA), Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA-CCT La Plata-CONICET, CICPBA, Facultad de Ciencias Exactas, Universidad Nacional de La Plata), La Plata, Argentina.,Centro de Bioinformática Estructural (CeBioInfo), Departamento de Experimentación y Teoría de la Estructura de la Materia y sus Aplicaciones, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
8
|
Campos Espinosa GY, Udenigwe CC, Tsopmo A. Inhibition of low-density lipoprotein oxidation, antioxidative and bile acid-binding capacities of hydrolyzed proteins from carbohydrase-treated oat bran. J Food Biochem 2021; 46:e13675. [PMID: 33650139 DOI: 10.1111/jfbc.13675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 11/28/2022]
Abstract
This study investigated the valorization of oat bran and the use of its proteins to generate polypeptides with antioxidant and bile acid-binding properties. Ten protein hydrolysates were prepared by treating cellulase (CPI) or Viscozyme (VPI) protein isolates with five proteases. VPI-pepsin was the best peroxyl radical scavenger (497 ± 6-μM Trolox equivalents [TE]/g) while VPI-Flavourzyme quenched hydroxyl radicals (28 ± 0.6) and VPI-pepsin superoxide anion radicals (45.3 ± 6.6%). Hydrolysates, except those produced with pepsin, dose-dependently chelated iron whereas VPI-Protamex had the best copper-chelating capacity (59.83 ± 1.40%). These antioxidative capacities were important in preventing by 50% in vitro copper-induced oxidation of human low-density lipoprotein. Furthermore, due to their aromatic amino acid contents and hydrophobicity, the hydrolysates bound up to 46.3% the bile acids taurodeoxycholate and taurocholate. PRACTICAL APPLICATIONS: The presence of oxidants in foods can damage food molecules and decrease their quality. They are also known to increase the risk of developing chronic conditions like cardiovascular disease. Finding new antioxidant molecules are therefore useful in the management of chronic diseases. Data from this work showed that hydrolyzed oat bran proteins can be useful in stabilizing commercial oil as they reduced the oxidation of peanut oil. Additionally, the protein hydrolysates not only prevented the oxidation of linoleic, a common component of both vegetable oils and biological cell membranes, they also inhibited the oxidation of human LDL cholesterol and chelated bile acids. These hydrolysates can then be further explored as multifunctional ingredients for the development of stable functional food products with potential beneficial effects on the cardiovascular system.
Collapse
Affiliation(s)
| | - Chibuike C Udenigwe
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Apollinaire Tsopmo
- Food Science and Nutrition Program, Department of Chemistry, Carleton University, Ottawa, ON, Canada.,Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
9
|
Li Y, Wang B, Li B. The in vitro bioavailability of anti-platelet peptides in collagen hydrolysate from silver carp (Hypophthalmichthys molitrix) skin. J Food Biochem 2020; 44:e13226. [PMID: 32266991 DOI: 10.1111/jfbc.13226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 11/29/2022]
Abstract
Previous animal experiments indicated collagen hydrolysates (CHs) intake decreased platelet release indicators in plasma and highlight potential applications as healthcare supplements to combat cardiovascular disease. The oligopeptides (GPR, GPRG, and GPRGP) have anti-platelet activities. However, it is still unclear whether they are bioactive compounds in CHs from silver carp skin. We investigated the bioavailability of oligopeptides using simulated gastrointestinal digestion and Caco-2 model. Anti-thrombotic activities, in vitro platelet aggregation and formation of platelet thrombus, were evaluated. They resisted gastrointestinal digestion and could be absorbed by Caco-2. Oligopeptides inhibited platelet aggregation induced by adenosine diphosphate and thrombin with IC50 of 0.160, 0.283, 0.251 mg/ml and 0.714, 1.008, 0.917 mg/ml for GPR, GPRG, and GPRGP, respectively. Oligopeptides prolonged the time of platelet thrombus and inhibited coagulation cascades, but CHs performed no bleeding side effect. These results confirmed that oligopeptides could be used as bioactive compounds of dietary supplements for pre-thrombotic to prevent thrombosis. PRACTICAL APPLICATIONS: Oligopeptides, GPR, GPRG, and GPRGP, derived from silver carp (Hypophthalmichthys molitrix) skin collagen, performed anti-thrombotic activities from their anti-platelet aggregation and anticoagulation activities. But the collagen hydrolysates containing these peptides had no side effect of bleeding in the mice model. Furthermore, this study investigated the bioavailability of these three bioactive peptides by the Caco-2 cells model. Thus, oligopeptides GPR, GPRG, and GPRGP are a potential index of bioactive compounds in the preparation of anti-thrombotic functional foods or healthcare supplements for people at the pre-thrombotic state.
Collapse
Affiliation(s)
- Yuqi Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Bo Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Bo Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Functional Dairy, Ministry of Education, Beijing, China
| |
Collapse
|
10
|
Yang Y, Wang B, Li B. Structural Requirement of Casein Peptides for Transcytosis through the Caco-2 Cell Monolayer: Hydrophobicity and Charge Property Affect the Transport Pathway and Efficiency. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11778-11787. [PMID: 31554398 DOI: 10.1021/acs.jafc.9b04831] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Casein is a rich source of bioactive peptides with complete amino acid composition. In this study, the casein peptides identified in our previous study with different hydrophobicities and charge properties were employed to investigate the transport efficiency via the transcytosis pathway across Caco-2 cell monolayers. Results revealed that the apparent permeability coefficient (Papp) values of transcytosis exhibited a linear correlation with a pI of positively charged peptides during bidirectional transport. A similar law was found as for the peptides with different hydrophobicities. The transcytosis route of Pep-II to Pep-VII appears to be the clathrin- and caveolin-independent transcytosis pathway as well as caveolae-mediated transcytosis pathway, showing a linear correlation with Papp values, respectively. Additionally, no direct correlation was shown between the hydrophobicity of peptides and clathrin-mediated transcytosis. Our results help to increase the bioaccessibility of peptide drugs across intestinal mucosa by developing strategies to alter the physicochemical properties without changing bioactivity.
Collapse
Affiliation(s)
- Yijie Yang
- College of Food Science and Nutritional Engineering , China Agricultural University , Beijing 100083 , China
| | - Bo Wang
- College of Food Science and Nutritional Engineering , China Agricultural University , Beijing 100083 , China
| | - Bo Li
- College of Food Science and Nutritional Engineering , China Agricultural University , Beijing 100083 , China
- Key Laboratory of Functional Dairy , Ministry of Education , Beijing 100083 , China
| |
Collapse
|
11
|
Identification and Structure-Activity Relationship of Intestinal Epithelial Barrier Function Protective Collagen Peptides from Alaska Pollock Skin. Mar Drugs 2019; 17:md17080450. [PMID: 31370332 PMCID: PMC6723256 DOI: 10.3390/md17080450] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 07/27/2019] [Accepted: 07/29/2019] [Indexed: 12/23/2022] Open
Abstract
The effect of collagen peptides (CPs) in intestinal mucosal protection has been approved in both cell and animal models. However, its structure–activity relationship and efficient peptide sequences are unclear, which hinders the in-depth study of its action mechanism and relative nutraceuticals and pharmaceuticals development. In this work, size exclusion chromatography, cation-exchange chromatography, and RP-HPLC were used to separate Alaska pollock skin-derived collagen hydrolysates based on their molecular weight, charge property, and hydrophobicity. The intestinal epithelial barrier function (IEBF) protective effect of separated peptide fractions were evaluated by tumor necrosis factor (TNF)-α-induced Caco-2 cell model. Results indicated that lower molecular weight (500–1000 Da) and higher hydrophilicity of CPs were related to better IEBF protective effect. Two high-efficiency IEBF protective peptide sequences, GPSGPQGSR and GPSGLLGPK with the corresponding molecular weights of 841.41 Da and 824.38 Da, were subsequently identified by UPLC-QToF-MS/MS. Their IEBF protective ability are comparable or even better than the currently used intestinal health supplements glutamine and arginine. The present findings suggested that the hydrophilic CPs, with molecular weight between 500 Da to 1000 Da, should be preferred in IEBF protective peptides preparation. GPSGPQGSR and GPSGLLGPK might have the potential of being IEBF protective ingredients used in intestinal health supplements and drugs.
Collapse
|
12
|
Pan M, Huo Y, Wang C, Zhang Y, Dai Z, Li B. Positively charged peptides from casein hydrolysate show strong inhibitory effects on LDL oxidation and cellular lipid accumulation in Raw264.7 cells. Int Dairy J 2019. [DOI: 10.1016/j.idairyj.2018.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Nwachukwu ID, Aluko RE. Structural and functional properties of food protein-derived antioxidant peptides. J Food Biochem 2019; 43:e12761. [PMID: 31353492 DOI: 10.1111/jfbc.12761] [Citation(s) in RCA: 208] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 01/14/2023]
Abstract
The aim of this work is to provide a timely examination of the structure-activity relationship of antioxidative peptides. The main production approach involves enzymatic hydrolysis of animal and plant proteins to produce protein hydrolyzates, which can be further processed by membrane ultrafiltration into size-based peptide fractions. The hydrolyzates and peptide fractions can also be subjected to separation by column chromatography to obtain pure peptides. Although the structural basis for enhanced antioxidant activity varies, protein hydrolyzates and peptide fractions that contain largely low molecular weight peptides have generally been shown to be potent antioxidants. In addition to having hydrophobic amino acids such as Leu or Val in their N-terminal regions, protein hydrolyzates, and peptides containing the nucleophilic sulfur-containing amino acid residues (Cys and Met), aromatic amino acid residues (Phe, Trp, and Tyr) and/or the imidazole ring-containing His have been generally found to possess strong antioxidant properties. PRACTICAL APPLICATIONS: High levels of reactive oxygen species (ROS) in addition to the presence of metal cations can lead to oxidative stress, which promotes reactions that cause destruction of critical cellular biopolymers, such as proteins, lipids, and nucleic acids. Oxidative stress could be due to insufficient levels of natural cellular antioxidants, which enables accumulation of ROS to toxic levels. A proposed approach to ameliorating oxidative stress is the provision of exogenous peptides that can be consumed to complement cellular antioxidants. Food protein-derived peptides consist of amino acids joined by peptides bonds just like glutathione, a very powerful natural cellular antioxidant. Therefore, this review provides a timely summary of the in vitro and in vivo reactions impacted by antioxidant peptides and the postulated mechanisms of action, which could aid development of potent antioxidant agents. The review also serves as a resource material for identifying novel antioxidant peptide sources for the formulation of functional foods and nutraceuticals.
Collapse
Affiliation(s)
- Ifeanyi D Nwachukwu
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada
| | - Rotimi E Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada.,Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
14
|
Isolation and Evaluation of Bioactive Protein and Peptide from Domestic Animals' Bone Marrow. Molecules 2018; 23:molecules23071673. [PMID: 29987262 PMCID: PMC6100344 DOI: 10.3390/molecules23071673] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 06/29/2018] [Accepted: 07/02/2018] [Indexed: 01/20/2023] Open
Abstract
In this work, proteins and peptides were isolated from four kinds of animal bone marrow and characterized by sodium dodecyl sulfatepolyacrylamide gel electrophoresis (SDS-PAGE), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and liquid chromatography-mass spectrometry (LC/MS). The antimicrobial and antioxidant activity of these proteins were investigated in vitro. The nutritional value was evaluated by analyzing their free amino acid composition. The results indicates that all of the extracts appeared two bands at SDS-PAGE, the peptide band at 4.1⁻10 kDa and protein band at 66 kDa, these data are consistent with LC/MS results. FT-IR analysis showed that the secondary structure of protein mainly consists of α-helix. SEM micrographs revealed that the fractions have different morphological characteristics. Horse bone marrow protein (HBMP) showed the highest antioxidant activity to DPPH free radical, IC50 value was 0.573 mg/mL. Most of the obtained fractions showed antimicrobial activities towards Escherichiacoli (EC) and Candida albicans (CA). Total free amino acid content ranged between 5.15⁻49.60 mg/g, and among them, HBMP displayed the highest abundance, 49.7 mg/g, which amino acid composition ratio approached the Food and Agriculture Organization/World Health Organization (FAO/WHO) ideal amino acid pattern recommendation. This study provides fundamental knowledge and a basic study method for the research into and development of animal bone marrow proteins and peptides as functional food and drug resources.
Collapse
|
15
|
Charge and hydrophobicity of casein peptides influence transepithelial transport and bioavailability. Food Chem 2017; 245:646-652. [PMID: 29287421 DOI: 10.1016/j.foodchem.2017.09.032] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 09/04/2017] [Accepted: 09/06/2017] [Indexed: 11/20/2022]
Abstract
Antioxidant casein peptides were separated by SP-Sephadex C-25 and C 18 columns. The transepithelial transport and bioavailability including the transport ratio and the remaining ratios of antioxidant activity (RRAA) of these peptide absorbates, were then investigated using a Caco-2 cell monolayer. The results indicate that both the negatively charged peptide fractions (CF1, CF2 and CF3) and the more hydrophilic fraction (HF1) were mainly transported via PepT1 and paracellular routes. The positively charged fractions (CF4 and CF5) and hydrophobic fractions (HF2, HF3 and HF4) were transported via PepT1 and transcytosis. The strongly negatively charged and more hydrophobic fractions showed a higher transport ratio, which ranged from 9.5 to 12.5%; however, the transport ratio of positively charged and hydrophilic fractions ranged from 4.0 to 8.5%. The positively charged and hydrophilic fractions showed a higher RRAA.
Collapse
|
16
|
García Fillería SF, Tironi VA. Prevention of in vitro oxidation of low density lipoproteins (LDL) by amaranth peptides released by gastrointestinal digestion. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.04.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
17
|
Xue Z, Wen H, Wang C, Zhai L, Cheng A, Kou X. CPe-III-S Metabolism in Vitro and in Vivo and Molecular Simulation of Its Metabolites Using a p53-R273H Mutant. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:7095-7103. [PMID: 27584867 DOI: 10.1021/acs.jafc.6b01996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
It was previously found that CPe-III-S, synthesized according to the chickpea peptide CPe-III (RQSHFANAQP), exhibited an antiproliferative effect. The aim of this study was to investigate the antiproliferative mechanism of CPe-III-S. CPe-III-S was treated by pepsin and trypsin in a simulated gastrointestinal digestion environment as well as in an animal experiment. With HPLC-ESI-MS analysis, three peptide fragments of Ser-His, His-Phe, and Ala-Asn-Ala-Gln were identified. Ser-His was the only common product from both in vitro and in vivo environments. The specific bindings between three peptides and p53-R273H were performed by molecular docking, and the molecular dynamic simulation between Ser-His and p53-R273H revealed the stability of the binding complex. The binding free energy of the complex was -12.56 ± 1.03 kcal/mol with a reliable hydrogen bond between the ligand and Thr284 of p53. Ser-His may restore mutant p53-R273H activity or inhibit its binding with a downstream signal. This metabolite is a potential anticancer factor for suppressing cell proliferation.
Collapse
Affiliation(s)
- Zhaohui Xue
- School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, People's Republic of China
| | - Haichao Wen
- School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, People's Republic of China
| | - Cen Wang
- School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, People's Republic of China
| | - Lijuan Zhai
- School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, People's Republic of China
| | - Aiqing Cheng
- School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, People's Republic of China
| | - Xiaohong Kou
- School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, People's Republic of China
| |
Collapse
|