1
|
Bidram M, Ganjalikhany MR. Bioactive peptides from food science to pharmaceutical industries: Their mechanism of action, potential role in cancer treatment and available resources. Heliyon 2024; 10:e40563. [PMID: 39654719 PMCID: PMC11626046 DOI: 10.1016/j.heliyon.2024.e40563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 10/29/2024] [Accepted: 11/19/2024] [Indexed: 12/12/2024] Open
Abstract
Cancer is known as the main cause of mortality in the world, and every year, the rate of incidence and death due to cancer is increasing. Bioactive peptides are one of the novel therapeutic options that are considered a suitable alternative to toxic chemotherapy drugs because they limit side effects with their specific function. In fact, bioactive peptides are short amino acid sequences that obtain diverse physiological functions to maintain human health after being released from parent proteins. This group of biological molecules that can be isolated from different types of natural protein sources has attracted much attention in the field of pharmaceutical and functional foods production. The current article describes the therapeutic benefits of bioactive peptides and specifically and extensively reviews their role in cancer treatment, available sources for discovering anticancer peptides, mechanisms of action, production methods, and existing challenges.
Collapse
Affiliation(s)
- Maryam Bidram
- Department of Cell and Molecular Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mohamad Reza Ganjalikhany
- Department of Cell and Molecular Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
2
|
Di Stefano E, Hüttmann N, Dekker P, Tomassen MMM, Oliviero T, Fogliano V, Udenigwe CC. Solid-state fermentation of green lentils by Lactiplantibacillus plantarum leads to formation of distinct peptides that are absorbable and enhances DPP-IV inhibitory activity in an intestinal Caco-2 cell model. Food Funct 2024; 15:11220-11235. [PMID: 39450545 DOI: 10.1039/d4fo03326d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Food-derived bioactive compounds mimicking the effects of incretin therapies offer promising opportunities for combination therapies with functional foods, where food matrix interactions, gastrointestinal enzyme activity, and in situ bioactivity should be key considerations. In this study, green lentils were solid-state fermented with Lactiplantibacillus plantarum ATCC8014, in vitro digested and exposed to brush border enzymes of a Caco-2 cell monolayer. Intestinal absorption of peptides and DPP-IV inhibitory activity were then investigated. LC-MS/MS profiles showed that peptides mainly originated from parental proteins of the vicilin, convicilin and legumin families. Fermentation led to the formation of more hydrophobic peptides when compared to the unfermented flour and up to 33.6% of them were transported to the basolateral side of a Caco-2 cell monolayer. Peptides with more than 22 amino acids and with a mass greater than 2000 Da were minimally transported. 73 peptides were uniquely identified in the basolateral fraction suggesting that they resulted from the activity of the brush border enzymes. The DPP-IV activity of Caco-2 cells grown as a polarized monolayer was decreased by 37.3% when exposed to in vitro digested 72 h-fermented lentil flour and 10% when exposed to the unfermented one. Inhibition of DPP-IV in the basolateral fluids was improved in a dose-dependent manner and reached 7.9% when 500 mg mL-1 of in vitro digested 72 h fermented lentil flour was used. Glucose absorption and uptake were minimally affected, suggesting that the previously observed hypoglycemic properties of lentils are likely due to activity on DPP-IV rather than on the inhibition of glucose absorption.
Collapse
Affiliation(s)
- Elisa Di Stefano
- Food Quality and Design Group, Wageningen University and Research, P.O. Box 8129, 6700 EV, Wageningen, The Netherlands
- School of Nutrition Sciences, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada.
| | - Nico Hüttmann
- John L. Holmes Mass Spectrometry Facility, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Pieter Dekker
- Food Quality and Design Group, Wageningen University and Research, P.O. Box 8129, 6700 EV, Wageningen, The Netherlands
| | - Monic M M Tomassen
- Wageningen Food & Biobased Research, PO Box 17, 6700AA, Wageningen, The Netherlands
| | - Teresa Oliviero
- Food Quality and Design Group, Wageningen University and Research, P.O. Box 8129, 6700 EV, Wageningen, The Netherlands
| | - Vincenzo Fogliano
- Food Quality and Design Group, Wageningen University and Research, P.O. Box 8129, 6700 EV, Wageningen, The Netherlands
| | - Chibuike C Udenigwe
- School of Nutrition Sciences, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada.
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 5E3, Canada
| |
Collapse
|
3
|
Cagnin C, Morais DN, Prudencio SH. Structural, physicochemical and technofunctional properties of corn gluten meal modified by extrusion. Food Res Int 2024; 196:115067. [PMID: 39614497 DOI: 10.1016/j.foodres.2024.115067] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/29/2024] [Accepted: 09/08/2024] [Indexed: 12/01/2024]
Abstract
This study aimed to evaluate the influence of sample moisture, extrusion temperature, and extruder screw speed on the hydration properties of corn gluten meal (CG), optimize process condition for the highest protein solubility at pH 7 (PS7) and WAC, and assess the effect of the optimized extrusion process on the structural, chemical, physical, and technofunctional properties of CG proteins. Extrusion was carried out at different sample moisture (20%-40%), temperatures (120-160 °C), and screw speeds (33-117 rpm) using a complete factorial design with two central points. All extrusion conditions resulted in reduced hydration properties. Extrusion with 20% sample moisture, 120 °C and 117 rpm resulted in the lowest loss of water absorption capacity and protein solubility at pH 7 (optimized condition). After optimized extrusion, the GC became darker and showed greater activity and protein emulsifying capacity and lower foaming capacity. Furthermore, CG proteins had reduced solubility at different pHs. Changes in technofunctional properties resulted from changes in protein structure after extrusion. The new protein structure is stabilized by non-covalent bonds (hydrogen bonds and hydrophobic interactions) and disulfide bonds. Extruded corn gluten has the potential to be used as an ingredient in bakery, emulsified meat products, salad dressings, vegetable pates, and desserts.
Collapse
Affiliation(s)
- Caroline Cagnin
- Food Science and Technology, Universidade Estadual de Londrina, Celso Garcia Cid Highway, PR-445, Km 380 - University Campus, Londrina, PR 86057-970, Brazil
| | - Danielly Nascimento Morais
- Food Science and Technology, Universidade Estadual de Londrina, Celso Garcia Cid Highway, PR-445, Km 380 - University Campus, Londrina, PR 86057-970, Brazil
| | - Sandra Helena Prudencio
- Food Science and Technology, Universidade Estadual de Londrina, Celso Garcia Cid Highway, PR-445, Km 380 - University Campus, Londrina, PR 86057-970, Brazil.
| |
Collapse
|
4
|
Mneimneh AT, Hayar B, Al Hadeethi S, Darwiche N, Mehanna MM. Application of Box-Behnken design in the optimization and development of albendazole-loaded zein nanoparticles as a drug repurposing approach for colorectal cancer management. Int J Biol Macromol 2024; 281:136437. [PMID: 39414215 DOI: 10.1016/j.ijbiomac.2024.136437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024]
Abstract
Colorectal cancer (CRC) is the second cancer worldwide representing a major global health challenge. Numerous effective anticancer drugs have been developed in the last decade, yet the problem remains due to their low therapeutic index and nonspecificity. A new anticancer therapeutic paradigm is based on repurposing and nanoformulating drugs. Albendazole (ALB), a popular anthelmintic agent, was recently repurposed against CRC cells. In this study zein, an amphiphilic protein, was used to formulate nanoparticles (NPs) loaded with ALB. Box-Behnken design was selected to optimize the loaded NPs, the concentrations of polyvinyl alcohol, acetic acid, and the weight of zein were the independent variables. The dependent variables were the particle size, polydispersity index, and zeta potential. The optimized formula displayed a size of 84.3 ± 0.41 nm, PDI 0.13 ± 0.012, and a zeta potential of 42.5 ± 2.35 mV. ALB was successfully encapsulated into zein NPs and the release study revealed a desirable pH-responsive drug release behavior, that was negligible release during the first 2 h at pH 1.2 and progressive in the simulated colon environment reaching 71.1 ± 0.34 % at 6 h and 92.4 ± 1.11 % at 24 h. The anticancer effect of the loaded NPs on the human HCT116 cells showed favorable effects at 1 μM concentration with a significant decrease in the IC50 at days 2 and 3 upon loading albendazole into zein NPs. Zein nanoparticles proved to be prospective nanocarriers that could be used for the delivery of repurposed drugs in CRC treatment.
Collapse
Affiliation(s)
- Amina T Mneimneh
- Pharmaceutical Nanotechnology Research Lab, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon.
| | - Berthe Hayar
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Sadaf Al Hadeethi
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Nadine Darwiche
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107-2020, Lebanon.
| | - Mohammed M Mehanna
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt; Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos, Lebanon.
| |
Collapse
|
5
|
Cagnin C, Garcia BDF, Rocha TDS, Prudencio SH. Bioactive Peptides from Corn ( Zea mays L.) with the Potential to Decrease the Risk of Developing Non-Communicable Chronic Diseases: In Silico Evaluation. BIOLOGY 2024; 13:772. [PMID: 39452081 PMCID: PMC11505114 DOI: 10.3390/biology13100772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024]
Abstract
Studies have shown that corn (Zea mays L.) proteins, mainly α-zein, have the potential to act on therapeutic targets related to non-communicable chronic diseases, such as high blood pressure and type 2 diabetes. Enzymatic hydrolysis of proteins present in foods can result in a great diversity of peptides with different structures and possible bioactivities. A review of recent scientific research papers was performed to show evidence of the bioactive properties of corn peptides by in vitro assays. The α-zein amino acid sequences were identified in the UniProtKB protein database and then analyzed in the BIOPEP database to simulate enzymatic digestion and verify the potential biological action of the resulting peptides. The peptides found in the BIOPEP database were categorized according to the probability of presenting biological action using the PeptideRanker database. The aim was to use existing data to identify in silico the potential for obtaining biologically active peptides from α-zein, the main storage protein of corn. The analysis showed that the majority of peptide fragments were related to the inhibition of angiotensin-converting enzyme, followed by the inhibition of dipeptidyl peptidase IV and dipeptidyl peptidase III. Many drugs used to treat high blood pressure and type 2 diabetes work by inhibiting these enzymes, suggesting that corn peptides could be potential alternative agents. In vitro studies found that the primary bioactivity observed was antioxidative action. Both in vitro and in silico approaches are valuable for evaluating the bioactive properties resulting from protein hydrolysis, such as those found in α-zein. However, conducting in vitro studies based on prior in silico evaluation can be more efficient and cost-effective.
Collapse
Affiliation(s)
| | | | | | - Sandra Helena Prudencio
- Department of Food Science and Technology, State University of Londrina, Celso Garcia Cid Road, PR-445, Km 380, University Campus, Londrina 86057-970, PR, Brazil; (C.C.); (B.d.F.G.); (T.d.S.R.)
| |
Collapse
|
6
|
Zhang W, Boateng ID, Xu J, Zhang Y. Proteins from Legumes, Cereals, and Pseudo-Cereals: Composition, Modification, Bioactivities, and Applications. Foods 2024; 13:1974. [PMID: 38998480 PMCID: PMC11241136 DOI: 10.3390/foods13131974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/11/2024] [Accepted: 06/15/2024] [Indexed: 07/14/2024] Open
Abstract
This review presents a comprehensive analysis of plant-based proteins from soybeans, pulses, cereals, and pseudo-cereals by examining their structural properties, modification techniques, bioactivities, and applicability in food systems. It addresses the critical need for a proper utilization strategy of proteins from various plant sources amidst the rising environmental footprint of animal protein production. The inherent composition diversity among plant proteins, their nutritional profiles, digestibility, environmental impacts, and consumer acceptance are compared. The innovative modification techniques to enhance the functional properties of plant proteins are also discussed. The review also investigates the bioactive properties of plant proteins, including their antioxidant, antimicrobial, and antitumoral activities, and their role in developing meat analogs, dairy alternatives, baked goods, and 3D-printed foods. It underscores the consideration parameters of using plant proteins as sustainable, nutritious, and functional ingredients and advocates for research to overcome sensory and functional challenges for improved consumer acceptance and marketability.
Collapse
Affiliation(s)
- Wenxue Zhang
- Department of Food Science, The Pennsylvania State University, University Park, PA 16802, USA;
| | | | - Jinsheng Xu
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China;
| | - Yi Zhang
- Department of Food Science, The Pennsylvania State University, University Park, PA 16802, USA;
| |
Collapse
|
7
|
Promsut K, Sangtanoo P, Srimongkol P, Saisavoey T, Puthong S, Buakeaw A, Reamtong O, Nutho B, Karnchanatat A. A novel peptide derived from Zingiber cassumunar rhizomes exhibits anticancer activity against the colon adenocarcinoma cells (Caco-2) via the induction of intrinsic apoptosis signaling. PLoS One 2024; 19:e0304701. [PMID: 38870120 PMCID: PMC11175412 DOI: 10.1371/journal.pone.0304701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 05/15/2024] [Indexed: 06/15/2024] Open
Abstract
This paper presents the initial exploration of the free radical scavenging capabilities of peptides derived from protein hydrolysates (PPH) obtained from Zingiber cassumunar rhizomes (Phlai). To replicate the conditions of gastrointestinal digestion, a combination of pepsin and pancreatin proteolysis was employed to generate these hydrolysates. Subsequently, the hydrolysate underwent fractionation using molecular weight cut-off membranes at 10, 5, 3, and 0.65 kDa. The fraction with a molecular weight less than 0.65 kDa exhibited the highest levels ABTS, DPPH, FRAP, and NO radical scavenging activity. Following this, RP-HPLC was used to further separate the fraction with a molecular weight less than 0.65 kDa into three sub-fractions. Among these, the F5 sub-fraction displayed the most prominent radical-scavenging properties. De novo peptide sequencing via quadrupole-time-of-flight-electron spin induction-mass spectrometry identified a pair of novel peptides: Asp-Gly-Ile-Phe-Val-Leu-Asn-Tyr (DGIFVLNY or DY-8) and Ile-Pro-Thr-Asp-Glu-Lys (IPTDEK or IK-6). Database analysis confirmed various properties, including biological activity, toxicity, hydrophilicity, solubility, and potential allergy concerns. Furthermore, when tested on the human adenocarcinoma colon (Caco-2) cell line, two synthetic peptides demonstrated cellular antioxidant activity in a concentration-dependent manner. These peptides were also assessed using the FITC Annexin V apoptosis detection kit with PI, confirming the induction of apoptosis. Notably, the DY-8 peptide induced apoptosis, upregulated mRNA levels of caspase-3, -8, and -9, and downregulated Bcl-2, as confirmed by real-time quantitative polymerase chain reaction (RT-qPCR). Western blot analysis indicated increased pro-apoptotic Bax expression and decreased anti-apoptotic Bcl-2 expression in Caco-2 cells exposed to the DY-8 peptide. Molecular docking analysis revealed that the DY-8 peptide exhibited binding affinity with Bcl-2, Bcl-xL, and Mcl-1, suggesting potential utility in combating colon cancer as functional food ingredients.
Collapse
Affiliation(s)
- Kitjasit Promsut
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Papassara Sangtanoo
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Piroonporn Srimongkol
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Tanatorn Saisavoey
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Songchan Puthong
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Anumart Buakeaw
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok, Thailand
| | - Bodee Nutho
- Department of Pharmacology, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, Thailand
| | - Aphichart Karnchanatat
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| |
Collapse
|
8
|
Cheng S, Yuan L, Li-Gao R, Chen S, Li H, Du M. Nutrition and Cardiovascular Disease: The Potential Role of Marine Bioactive Proteins and Peptides in Thrombosis Prevention. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6815-6832. [PMID: 38523314 DOI: 10.1021/acs.jafc.3c08850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Thrombus and cardiovascular diseases pose a significant health threat, and dietary interventions have shown promising potential in reducing the incidence of these diseases. Marine bioactive proteins and peptides have been extensively studied for their antithrombotic properties. They can inhibit platelet activation and aggregation by binding to key receptors on the platelet surface. Additionally, they can competitively anchor to critical enzyme sites, leading to the inhibition of coagulation factors. Marine microorganisms also offer alternative sources for the development of novel fibrinolytic proteins, which can help dissolve blood clots. The advancements in technologies, such as targeted hydrolysis, specific purification, and encapsulation, have provided a solid foundation for the industrialization of bioactive peptides. These techniques enable precise control over the production and delivery of bioactive peptides, enhancing their efficacy and safety. However, it is important to note that further research and clinical studies are needed to fully understand the mechanisms of action and therapeutic potential of marine bioactive proteins and peptides in mitigating thrombotic events. The challenges and future application perspectives of these bioactive peptides also need to be explored.
Collapse
Affiliation(s)
- Shuzhen Cheng
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, People's Republic of China
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, Liaoning 116034, People's Republic of China
| | - Lushun Yuan
- Department of Vascular Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 201620, People's Republic of China
| | - Ruifang Li-Gao
- Department of Clinical Epidemiology, Leiden University Medical Centre, 2333 ZA Leiden, Netherlands
| | - Siru Chen
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, People's Republic of China
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, Liaoning 116034, People's Republic of China
| | - Han Li
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, People's Republic of China
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, Liaoning 116034, People's Republic of China
| | - Ming Du
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, People's Republic of China
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, Liaoning 116034, People's Republic of China
| |
Collapse
|
9
|
Xu Z, Hu Q, Xie M, Liu J, Su A, Xu H, Yang W. Protective effects of peptide KSPLY derived from Hericium erinaceus on H2O2-induced oxidative damage in HepG2 cells. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.02.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
10
|
Ahmed SA, Taie HAA, Abdel Wahab WA. Antioxidant capacity and antitumor activity of the bioactive protein prepared from orange peel residues as a by-product using fungal protease. Int J Biol Macromol 2023; 234:123578. [PMID: 36764344 DOI: 10.1016/j.ijbiomac.2023.123578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/30/2022] [Accepted: 02/04/2023] [Indexed: 02/11/2023]
Abstract
Agricultural and industrial residues (AIR) are renewable biomass sources present in large quantities causing pollution. Converting AIR to eco-friendly products (bioactive materials) reduces their quantity and impact on the environment, in addition to reducing production costs. Therefore, orange peel (OP) protein degradation, antioxidant capacity, and antitumor activity were investigated using Aspergillus niger WA 2017 protease. The highest value of the protein hydrolysate with the highest antioxidant using the DPPH method was obtained after 24 h. The single-factor method boosted the protein hydrolysate and the DPPH antioxidant activity by 3.7 and 1.7-fold, respectively. Statistical optimized conditions (Central Composite Method) increased the hydrolysate value and the DPPH antioxidant activity by 1.6 and 1.1-fold, respectively. The central trial samples exhibited the highest DPPH antioxidant activity (62.37 %), while the control sample recorded 20 %. All antioxidant tests in vitro (DPPH, reducing power, ABTS, and FRAP) confirmed the superiority of the potent hydrolysate as a good antioxidant. In vitro antitumor activity, the potent hydrolysate exhibited the highest effect on the Ehrlich Ascites Carcinoma Cells viability as it recorded 60.62 % dead cells. In vivo antitumor activity, the volume of the untreated tumor mice was found to be 1.4-fold bigger than the volume obtained from the potent hydrolysate. The increase in life span (ILS %) for oral treatment and intraperitoneal injection treatment with the potent hydrolysate increased by 13.91 and 19.42 %, respectively, compared to the untreated tumor.
Collapse
Affiliation(s)
- Samia A Ahmed
- Chemistry of Natural and Microbial Products Department, National Research Centre, Dokki, Cairo, Egypt.
| | - Hanan A A Taie
- Plant Biochemistry Department, National Research Centre, Dokki, Cairo, Egypt
| | - Walaa A Abdel Wahab
- Chemistry of Natural and Microbial Products Department, National Research Centre, Dokki, Cairo, Egypt
| |
Collapse
|
11
|
Aderinola TA, Duodu KG. Production, health-promoting properties and characterization of bioactive peptides from cereal and legume grains. Biofactors 2022; 48:972-992. [PMID: 36161374 PMCID: PMC9828255 DOI: 10.1002/biof.1889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/07/2022] [Indexed: 01/12/2023]
Abstract
The search for bioactive components for the development of functional foods and nutraceuticals has received tremendous attention. This is due to the increasing awareness of their therapeutic potentials, such as antioxidant, anti-inflammatory, antihypertensive, anti-cancer properties, etc. Food proteins, well known for their nutritional importance and their roles in growth and development, are also sources of peptide sequences with bioactive properties and physiological implications. Cereal and legume grains are important staples that are processed and consumed in various forms worldwide. However, they have received little attention compared to other foods. This review therefore is geared towards surveying the literature for an appraisal of research conducted on bioactive peptides in cereal and legume grains in order to identify what the knowledge gaps are. Studies on bioactive peptides from cereal and legume grains are still quite limited when compared to other food items and most of the research already carried out have been done without identifying the sequence of the bioactive peptides. However, the reports on the antioxidative, anticancer/inflammatory, antihypertensive, antidiabetic properties show there is much prospect of obtaining potent bioactive peptides from cereal and legume grains which could be utilized in the development of functional foods and nutraceuticals.
Collapse
Affiliation(s)
- Taiwo Ayodele Aderinola
- Department of Food Science and Technology, School of Agriculture and Agricultural TechnologyThe Federal University of TechnologyAkureNigeria
- Department of Consumer and Food Sciences, Faculty of Natural and Agricultural SciencesUniversity of PretoriaHatfieldSouth Africa
| | - Kwaku Gyebi Duodu
- Department of Consumer and Food Sciences, Faculty of Natural and Agricultural SciencesUniversity of PretoriaHatfieldSouth Africa
| |
Collapse
|
12
|
Díaz-Gómez JL, López-Castillo LM, Garcia-Lara S, Castorena-Torres F, Winkler R, Wielsch N, Aguilar O. Novel α-zein peptide fractions with in vitro cytotoxic activity against hepatocarcinoma. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
13
|
Wu Q, Guo Z, Zhou Z, Jin M, Li Q, Zhou X. Recent advances in bioactive peptides from cereal-derived Foodstuffs. Int J Food Sci Nutr 2022; 73:875-888. [PMID: 35896503 DOI: 10.1080/09637486.2022.2104226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Cereal-derived proteins account for a major part of human dietary protein consumption. Natural bioactive peptides (NBPs) from these proteins involve a variety of physiological activities and play an important role in the promotion of human health. This review focuses on the characteristics of NBPs obtained from cereals, and the commonly used methods for preparation, separation, purification, and identification. We also discussed the biological functions of cereal-derived NBPs (CNBPs), including the activities of antioxidant, immunomodulatory, antimicrobial, and regulation of hyperglycaemia and hypertension. The paper summarised the latest progress in the research and application of CNBPs and analysed the prospects for the development and application of several protein by-products, providing an important way to improve the added value of protein by-products in cereal processing.
Collapse
Affiliation(s)
- Qin Wu
- School of Agriculture and Biology, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Zhijian Guo
- School of Agriculture and Biology, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Zerong Zhou
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, Wuhan, P. R. China
| | - Mengyuan Jin
- School of Agriculture and Biology, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Qizhang Li
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, Wuhan, P. R. China
| | - Xuanwei Zhou
- School of Agriculture and Biology, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
14
|
Lath A, Santal AR, Kaur N, Kumari P, Singh NP. Anti-cancer peptides: their current trends in the development of peptide-based therapy and anti-tumor drugs. Biotechnol Genet Eng Rev 2022; 39:45-84. [PMID: 35699384 DOI: 10.1080/02648725.2022.2082157] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Human cancer remains a cause of high mortality throughout the world. The conventional methods and therapies currently employed for treatment are followed by moderate-to-severe side effects. They have not generated curative results due to the ineffectiveness of treatments. Besides, the associated high costs, technical requirements, and cytotoxicity further characterize their limitations. Due to relatively higher presidencies, bioactive peptides with anti-cancer attributes have recently become treatment choices within the therapeutic arsenal. The peptides act as potential anti-cancer agents explicitly targeting tumor cells while being less toxic to normal cells. The anti-cancer peptides are isolated from various natural sources, exhibit high selectivity and high penetration efficiency, and could be quickly restructured. The therapeutic benefits of compatible anti-cancer peptides have contributed to the significant expansion of cancer treatment; albeit, the mechanisms by which bioactive peptides inhibit the proliferation of tumor cells remain unclear. This review will provide a framework for assessing anti-cancer peptides' structural and functional aspects. It shall provide appropriate information on their mode of action to support and strengthen efforts to improve cancer prevention. The article will mention the therapeutic health benefits of anti-cancer peptides. Their importance in clinical studies is elaborated for reducing cancer incidences and developing sustainable treatment models.
Collapse
Affiliation(s)
- Amit Lath
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Anita Rani Santal
- Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Nameet Kaur
- Amity Institute of Biotechnology, Amity University, Noida, India
| | - Poonam Kumari
- Sophisticated Analytical Instrumentation Facility, CIL and UCIM, Punjab University, Chandigarh, Inida
| | - Nater Pal Singh
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
15
|
Banwo K, Olojede AO, Adesulu-Dahunsi AT, Verma DK, Thakur M, Tripathy S, Singh S, Patel AR, Gupta AK, Aguilar CN, Utama GL. Functional importance of bioactive compounds of foods with Potential Health Benefits: A review on recent trends. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101320] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
16
|
Jia L, Wang L, Liu C, Liang Y, Lin Q. Bioactive peptides from foods: production, function, and application. Food Funct 2021; 12:7108-7125. [PMID: 34223585 DOI: 10.1039/d1fo01265g] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bioactive peptides are a class of peptides with special physiological functions and have potential applications in human health and disease prevention. Bioactive peptides have gained much research attention because they affect the cardiovascular, endocrine, immune, and nervous systems. Recent research has reported that bioactive peptides are of great value for physiological function regulation, including antioxidation, anti-hypertension, antithrombosis, antibacterial properties, anti-cancer, anti-inflammation, anti-diabetic, anti-obesity, cholesterol-lowering, immunoregulation, mineral binding and opioid activities. The production of food-derived bioactive peptides is mainly through the hydrolysis of digestive enzymes and proteolytic enzymes or microbial fermentation. The purpose of this review is to introduce the production, function, application, challenges, and prospects of food-derived bioactive peptides.
Collapse
Affiliation(s)
- Liting Jia
- Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, National Engineering Laboratory for Rice and By-product Deep Processing, School of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China.
| | | | | | | | | |
Collapse
|
17
|
Chai TT, Ee KY, Kumar DT, Manan FA, Wong FC. Plant Bioactive Peptides: Current Status and Prospects Towards Use on Human Health. Protein Pept Lett 2021; 28:623-642. [PMID: 33319654 DOI: 10.2174/0929866527999201211195936] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 12/28/2022]
Abstract
Large numbers of bioactive peptides with potential applications in protecting against human diseases have been identified from plant sources. In this review, we summarized recent progress in the research of plant-derived bioactive peptides, encompassing their production, biological effects, and mechanisms. This review focuses on antioxidant, antimicrobial, antidiabetic, and anticancer peptides, giving special attention to evidence derived from cellular and animal models. Studies investigating peptides with known sequences and well-characterized peptidic fractions or protein hydrolysates will be discussed. The use of molecular docking tools to elucidate inter-molecular interactions between bioactive peptides and target proteins is highlighted. In conclusion, the accumulating evidence from in silico, in vitro and in vivo studies to date supports the envisioned applications of plant peptides as natural antioxidants as well as health-promoting agents. Notwithstanding, much work is still required before the envisioned applications of plant peptides can be realized. To this end, future researches for addressing current gaps were proposed.
Collapse
Affiliation(s)
- Tsun-Thai Chai
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia
| | - Kah-Yaw Ee
- Center for Biodiversity Research, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia
| | - D Thirumal Kumar
- Department of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602 105, India
| | - Fazilah Abd Manan
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - Fai-Chu Wong
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia
| |
Collapse
|
18
|
Mahgoub S, Alagawany M, Nader M, Omar SM, Abd El-Hack ME, Swelum A, Elnesr SS, Khafaga AF, Taha AE, Farag MR, Tiwari R, Marappan G, El-Sayed AS, Patel SK, Pathak M, Michalak I, Al-Ghamdi ES, Dhama K. Recent Development in Bioactive Peptides from Plant and Animal Products and Their Impact on the Human Health. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1923027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Samir Mahgoub
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig Egypt
| | - Maha Nader
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Safaa M. Omar
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | | | - Ayman Swelum
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Shaaban S. Elnesr
- Department of Poultry Production, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Asmaa F. Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina’ Egypt
| | - Ayman E. Taha
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Edfina’ Egypt
| | - Mayada R. Farag
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig’ Egypt
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Up Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU), Mathura, Uttar Pradesh, India
| | - Gopi Marappan
- Division of Avian Physiology and Reproduction, ICAR-Central Avian Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Ashraf S. El-Sayed
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Shailesh K. Patel
- Division of Pathology, ICAR-Indian Veterinary Research Institute Izatnagar, Bareilly- Uttar Pradesh, India
| | - Mamta Pathak
- Division of Pathology, ICAR-Indian Veterinary Research Institute Izatnagar, Bareilly- Uttar Pradesh, India
| | - Izabela Michalak
- Department of Advanced Material Technologies,Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław’, Poland
| | - Etab S. Al-Ghamdi
- Department of Food and Nutrition, College of Human Sciences and Design, King Abdualziz University, Jeddah, Saudi Arabia
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute Izatnagar, Bareilly- Uttar Pradesh, India
| |
Collapse
|
19
|
Ferrero RL, Soto-Maldonado C, Weinstein-Oppenheimer C, Cabrera-Muñoz Z, Zúñiga-Hansen ME. Antiproliferative Rapeseed Defatted Meal Protein and Their Hydrolysates on MCF-7 Breast Cancer Cells and Human Fibroblasts. Foods 2021; 10:309. [PMID: 33546198 PMCID: PMC7913290 DOI: 10.3390/foods10020309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/19/2021] [Accepted: 01/29/2021] [Indexed: 12/24/2022] Open
Abstract
Defatted rapeseed meal (DRM) is a sub-valorized agro-industrial by-product, with a high protein content whose peptides could have potential anticancer activity against cancer cell lines. The objective of the present study is to obtain an enzymatic hydrolysate of rapeseed protein that inhibits proliferation on a breast cancer cell line (MCF-7), but not healthy human fibroblast cells. The DRM was solubilized in an alkaline medium to obtain an alkaline rapeseed extract (RAE). Acid precipitation of the proteins contained in RAE recovered a rapeseed protein isolate (RPI). To produce protein hydrolysates, two alkaline protease and different enzyme/substrate ratios were used. All the protein hydrolysates showed antiproliferative activity on MCF-7 cells. However, only the hydrolysate recovered from the enzymatic hydrolysis of RPI (Degree of hydrolysis (DH ) between 8.5 and 9% (DH1)) did not affect human fibroblast cells, inhibiting 83.9% of MCF-7 cells' proliferation and showing a mass yield of 22.9% (based on the initial DRM). The SDS-PAGE gel revealed that DH1 was composed mainly of 10 kDa peptides and, to a lesser extent, 5 and 2 kDa. It is concluded that DH1 is a promising peptide extract for future research as a putative anti-breast cancer agent.
Collapse
Affiliation(s)
- Romina L. Ferrero
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso 2362803, Chile; (R.L.F.); (C.S.-M.); (Z.C.-M.)
| | - Carmen Soto-Maldonado
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso 2362803, Chile; (R.L.F.); (C.S.-M.); (Z.C.-M.)
- Centro Regional de Estudio en Alimentos Saludables, R17A10001, Av. Universidad 330, Curauma, Valparaíso 2373223, Chile
| | - Caroline Weinstein-Oppenheimer
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Gran Bretaña 1093, Playa Ancha, Valparaíso 2360102, Chile;
- Centro de Investigación Farmacopea Chilena, Santa Marta 183, Playa Ancha, Valparaíso 2360134, Chile
| | - Zaida Cabrera-Muñoz
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso 2362803, Chile; (R.L.F.); (C.S.-M.); (Z.C.-M.)
| | - María Elvira Zúñiga-Hansen
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso 2362803, Chile; (R.L.F.); (C.S.-M.); (Z.C.-M.)
- Centro Regional de Estudio en Alimentos Saludables, R17A10001, Av. Universidad 330, Curauma, Valparaíso 2373223, Chile
| |
Collapse
|
20
|
Gong X, An Q, Le L, Geng F, Jiang L, Yan J, Xiang D, Peng L, Zou L, Zhao G, Wan Y. Prospects of cereal protein-derived bioactive peptides: Sources, bioactivities diversity, and production. Crit Rev Food Sci Nutr 2020; 62:2855-2871. [PMID: 33325758 DOI: 10.1080/10408398.2020.1860897] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cereals account for a large proportion of the human diet and are an important source of protein. The preparation of cereal protein peptides is a good way to utilize these proteins. Cereal protein peptides have good application potential as antioxidant, antibacterial, anti-inflammatory and anticancer compounds, in lowering blood pressure, controlling blood sugar, and inhibiting thrombosis. This article reviews the literature on the functional properties, mechanisms of action, and applications of cereal protein peptides in the food industry with two perspectives, and summarizes the methods for their preparation and identification. The biologically active peptides derived from different grain proteins have varied main functional properties, which may be related to the differences in the amino acid composition and protein types of different grains. On this basis, the structure-activity relationship of cereal protein peptides was discussed. The advancement of identification technology makes the integration of bioinformatics and bioactive peptide research closer. Bioinformatics by combination of online database, computer simulation and experimental verification is helpful to in-deep study the structure-activity relationship of biologically active peptides, and improve efficiency in the process of obtaining target peptides with less cost. In addition, the application of cereal protein peptides in the food industry is also discussed.
Collapse
Affiliation(s)
- Xuxiao Gong
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Peoples R China.,School of Food and Biological Engineering, Chengdu University, Chengdu, Peoples R China
| | - Qi An
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Peoples R China.,School of Food and Biological Engineering, Chengdu University, Chengdu, Peoples R China
| | - Liqing Le
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Peoples R China.,School of Food and Biological Engineering, Chengdu University, Chengdu, Peoples R China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Peoples R China.,School of Food and Biological Engineering, Chengdu University, Chengdu, Peoples R China
| | - Liangzhen Jiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Peoples R China.,School of Food and Biological Engineering, Chengdu University, Chengdu, Peoples R China
| | - Jun Yan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Peoples R China.,School of Food and Biological Engineering, Chengdu University, Chengdu, Peoples R China
| | - Dabing Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Peoples R China.,School of Food and Biological Engineering, Chengdu University, Chengdu, Peoples R China
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Peoples R China.,School of Food and Biological Engineering, Chengdu University, Chengdu, Peoples R China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Peoples R China.,School of Food and Biological Engineering, Chengdu University, Chengdu, Peoples R China
| | - Gang Zhao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Peoples R China.,School of Food and Biological Engineering, Chengdu University, Chengdu, Peoples R China
| | - Yan Wan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Peoples R China.,School of Food and Biological Engineering, Chengdu University, Chengdu, Peoples R China
| |
Collapse
|
21
|
Protein-phenolic aggregates with anti-inflammatory activity recovered from maize nixtamalization wastewaters (nejayote). Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109881] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Díaz-Gómez JL, Neundorf I, López-Castillo LM, Castorena-Torres F, Serna-Saldívar SO, García-Lara S. In Silico Analysis and In Vitro Characterization of the Bioactive Profile of Three Novel Peptides Identified from 19 kDa α-Zein Sequences of Maize. Molecules 2020; 25:E5405. [PMID: 33227894 PMCID: PMC7699256 DOI: 10.3390/molecules25225405] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/01/2020] [Accepted: 11/02/2020] [Indexed: 12/02/2022] Open
Abstract
In this study, we characterized three novel peptides derived from the 19 kDa α-zein, and determined their bioactive profile in vitro and developed a structural model in silico. The peptides, 19ZP1, 19ZP2 and 19ZP3, formed α-helical structures and had positive and negative electrostatic potential surfaces (range of -1 to +1). According to the in silico algorithms, the peptides displayed low probabilities for cytotoxicity (≤0.05%), cell penetration (10-33%) and antioxidant activities (9-12.5%). Instead, they displayed a 40% probability for angiotensin-converting enzyme (ACE) inhibitory activity. For in vitro characterization, peptides were synthesized by solid phase synthesis and tested accordingly. We assumed α-helical structures for 19ZP1 and 19ZP2 under hydrophobic conditions. The peptides displayed antioxidant activity and ACE-inhibitory activity, with 19ZP1 being the most active. Our results highlight that the 19 kDa α-zein sequences could be explored as a source of bioactive peptides, and indicate that in silico approaches are useful to predict peptide bioactivities, but more structural analysis is necessary to obtain more accurate data.
Collapse
Affiliation(s)
- Jorge L. Díaz-Gómez
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, 64849 Nuevo León, Mexico; (J.L.D.-G.); (L.-M.L.-C.); (S.O.S.-S.)
| | - Ines Neundorf
- Department für Chemie, Institut für Biochemie, Universität zu Köln, D-50674 Köln, Germany;
| | - Laura-Margarita López-Castillo
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, 64849 Nuevo León, Mexico; (J.L.D.-G.); (L.-M.L.-C.); (S.O.S.-S.)
| | | | - Sergio O. Serna-Saldívar
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, 64849 Nuevo León, Mexico; (J.L.D.-G.); (L.-M.L.-C.); (S.O.S.-S.)
| | - Silverio García-Lara
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, 64849 Nuevo León, Mexico; (J.L.D.-G.); (L.-M.L.-C.); (S.O.S.-S.)
| |
Collapse
|
23
|
Tacias-Pascacio VG, Morellon-Sterling R, Siar EH, Tavano O, Berenguer-Murcia Á, Fernandez-Lafuente R. Use of Alcalase in the production of bioactive peptides: A review. Int J Biol Macromol 2020; 165:2143-2196. [PMID: 33091472 DOI: 10.1016/j.ijbiomac.2020.10.060] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022]
Abstract
This review aims to cover the uses of the commercially available protease Alcalase in the production of biologically active peptides since 2010. Immobilization of Alcalase has also been reviewed, as immobilization of the enzyme may improve the final reaction design enabling the use of more drastic conditions and the reuse of the biocatalyst. That way, this review presents the production, via Alcalase hydrolysis of different proteins, of peptides with antioxidant, angiotensin I-converting enzyme inhibitory, metal binding, antidiabetic, anti-inflammatory and antimicrobial activities (among other bioactivities) and peptides that improve the functional, sensory and nutritional properties of foods. Alcalase has proved to be among the most efficient proteases for this goal, using different protein sources, being especially interesting the use of the protein residues from food industry as feedstock, as this also solves nature pollution problems. Very interestingly, the bioactivities of the protein hydrolysates further improved when Alcalase is used in a combined way with other proteases both in a sequential way or in a simultaneous hydrolysis (something that could be related to the concept of combi-enzymes), as the combination of proteases with different selectivities and specificities enable the production of a larger amount of peptides and of a smaller size.
Collapse
Affiliation(s)
- Veymar G Tacias-Pascacio
- Facultad de Ciencias de la Nutrición y Alimentos, Universidad de Ciencias y Artes de Chiapas, Lib. Norte Pte. 1150, 29039 Tuxtla Gutiérrez, Chiapas, Mexico; Tecnológico Nacional de México/Instituto Tecnológico de Tuxtla Gutiérrez, Carretera Panamericana Km. 1080, 29050 Tuxtla Gutiérrez, Chiapas, Mexico.
| | | | - El-Hocine Siar
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid, Spain; Equipe TEPA, Laboratoire LNTA, INATAA, Université des Frères Mentouri Constantine 1, Constantine 25000, Algeria
| | - Olga Tavano
- Faculty of Nutrition, Alfenas Federal Univ., 700 Gabriel Monteiro da Silva St, Alfenas, MG 37130-000, Brazil
| | - Ángel Berenguer-Murcia
- Departamento de Química Inorgánica e Instituto Universitario de Materiales, Universidad de Alicante, Alicante, Spain
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid, Spain; Center of Excellence in Bionanoscience Research, Member of the External Scientific Advisory Board, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
24
|
Synthesis, characterization and in vitro analysis of superparamagnetic iron oxide nanoparticles for targeted hyperthermia therapy. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01265-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Characterization of the protein and peptide of excipient zein by the multi-enzyme digestion coupled with nano-LC-MS/MS. Food Chem 2020; 321:126712. [DOI: 10.1016/j.foodchem.2020.126712] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 03/11/2020] [Accepted: 03/29/2020] [Indexed: 12/24/2022]
|
26
|
Iwaniak A, Minkiewicz P, Pliszka M, Mogut D, Darewicz M. Characteristics of Biopeptides Released In Silico from Collagens Using Quantitative Parameters. Foods 2020; 9:E965. [PMID: 32708318 PMCID: PMC7404701 DOI: 10.3390/foods9070965] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023] Open
Abstract
The potential of collagens to release biopeptides was evaluated using the BIOPEP-UWM-implemented quantitative criteria including the frequency of the release of fragments with a given activity by selected enzyme(s) (AE), relative frequency of release of fragments with a given activity by selected enzyme(s) (W), and the theoretical degree of hydrolysis (DHt). Cow, pig, sheep, chicken, duck, horse, salmon, rainbow trout, goat, rabbit, and turkey collagens were theoretically hydrolyzed using: stem bromelain, ficin, papain, pepsin, trypsin, chymotrypsin, pepsin+trypsin, and pepsin+trypsin+chymotrypsin. Peptides released from the collagens having comparable AE and W were estimated for their likelihood to be bioactive using PeptideRanker Score. The collagens tested were the best sources of angiotensin I-converting enzyme (ACE) and dipeptidyl peptidase IV (DPP-IV) inhibitors. AE and W values revealed that pepsin and/or trypsin were effective producers of such peptides from the majority of the collagens examined. Then, the SwissTargetPrediction program was used to estimate the possible interactions of such peptides with enzymes and proteins, whereas ADMETlab was applied to evaluate their safety and drug-likeness properties. Target prediction revealed that the collagen-derived peptides might interact with several human proteins, especially proteinases, but with relatively low probability. In turn, their bioactivity may be limited by their short half-life in the body.
Collapse
Affiliation(s)
- Anna Iwaniak
- University of Warmia and Mazury in Olsztyn, Faculty of Food Science, Chair of Food Biochemistry, Pl. Cieszyński 1, 10-719 Olsztyn-Kortowo, Poland
| | - Piotr Minkiewicz
- University of Warmia and Mazury in Olsztyn, Faculty of Food Science, Chair of Food Biochemistry, Pl. Cieszyński 1, 10-719 Olsztyn-Kortowo, Poland
| | - Monika Pliszka
- University of Warmia and Mazury in Olsztyn, Faculty of Food Science, Chair of Food Biochemistry, Pl. Cieszyński 1, 10-719 Olsztyn-Kortowo, Poland
| | - Damir Mogut
- University of Warmia and Mazury in Olsztyn, Faculty of Food Science, Chair of Food Biochemistry, Pl. Cieszyński 1, 10-719 Olsztyn-Kortowo, Poland
| | - Małgorzata Darewicz
- University of Warmia and Mazury in Olsztyn, Faculty of Food Science, Chair of Food Biochemistry, Pl. Cieszyński 1, 10-719 Olsztyn-Kortowo, Poland
| |
Collapse
|
27
|
Saisavoey T, Sangtanoo P, Srimongkol P, Reamtong O, Karnchanatat A. Hydrolysates from bee pollen could induced apoptosis in human bronchogenic carcinoma cells (ChaGo-K-1). Journal of Food Science and Technology 2020; 58:752-763. [PMID: 33568869 DOI: 10.1007/s13197-020-04592-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/05/2020] [Accepted: 06/17/2020] [Indexed: 12/27/2022]
Abstract
In order to examine bee pollen hydrolysates to assess their anticancer and antioxidant properties, hydrolysis of bee pollen was first performed using three different commercially available enzymes: Alcalase®, Neutrase®, and Flavourzyme®. The study used DPPH and ABTS assay to evaluate the antioxidant properties of the hydrolysates obtained from bee pollen. All of the tested hydrolysates demonstrated antioxidant activity, while hydrolysate based on Alcalase® offered a high value for IC50 and was therefore chosen for further separation into five sub-fractions via ultrafiltration. The greatest antioxidant activity was presented by the MW < 0.65 kDa fraction, which achieved an IC50 value of 0.39 ± 0.01 µg/mL in the DPPH assay and 1.52 ± 0.01 µg/mL for ABTS. Purification of the MW < 0.65 kDa fraction was completed using RP-HPLC, whereupon the three fractions from the original six which had the highest antioxidant activity underwent further examination through ESI-Q-TOF-MS/MS. These particular peptides had between 7 and 11 amino acid residues. In the case of the MW < 0.65 kDa fraction, testing was also carried out to determine the viability of lung cancer cell lines, represented by ChaGo-K1 cells. Analysis of the antiproliferative properties allowed in vitro assessment of the ChaGo-K1 cells' viability following treatment using the MW < 0.65 kDa fraction. Flow-cytometry generated date which revealed that it was possible for the MW < 0.65 kDa fraction to induce apoptosis in the ChaGo-K1 cells in comparison to the results with cells which had not been treated.
Collapse
Affiliation(s)
- Tanatorn Saisavoey
- Research Unit in Bioconversion/Bioseparation for Value-Added Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330 Thailand
| | - Papassara Sangtanoo
- Research Unit in Bioconversion/Bioseparation for Value-Added Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330 Thailand
| | - Piroonporn Srimongkol
- Research Unit in Bioconversion/Bioseparation for Value-Added Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330 Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok, 10400 Thailand
| | - Aphichart Karnchanatat
- Research Unit in Bioconversion/Bioseparation for Value-Added Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330 Thailand
| |
Collapse
|
28
|
Sharma P, Kaur H, Kehinde BA, Chhikara N, Sharma D, Panghal A. Food-Derived Anticancer Peptides: A Review. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-020-10063-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
29
|
Zhang J, Du H, Zhang G, Kong F, Hu Y, Xiong S, Zhao S. Identification and characterization of novel antioxidant peptides from crucian carp (Carassius auratus) cooking juice released in simulated gastrointestinal digestion by UPLC-MS/MS and in silico analysis. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1136:121893. [PMID: 31841977 DOI: 10.1016/j.jchromb.2019.121893] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/02/2019] [Accepted: 11/17/2019] [Indexed: 10/25/2022]
Abstract
The objective of this work was to separate, identify and assess antioxidant peptides from the simulated gastrointestinal (GI) digestion of crucian carp (Carassius auratus) cooking juice (CCCJ), which has been previously found with this activity. The CCCJ after simulated GI digestion treatment was separated gradually by ultrafiltration and RP-HPLC. Five novel antioxidant peptides with 10-13 amino acid residues were identified by UPLC-MS/MS. Their in silico assessments showed amphiphilic nature, good sensory quality and different target sites in the human body. Meanwhile, their three-dimensional structure predictions exhibited at least one β-turn, β-sheet and/or α-helix with partial hydrophobic and/or net-charged residues exposed to the external medium, which was good evidence for high antioxidant activity. Ultimately, four novel peptides with high antioxidant activity were found, among which IREADIDGDGQVN (1401 Da), PEILPDGDHD (1107 Da) and ASDEQDSVRL (1119 Da) exerted the highest DPPH radical scavenging activity with IC50 of 1.78, 1.18 and 1.45 mM, respectively, while APLEEPSSPH (1063 Da) showed the highest Fe2+ chelating ability with IC50 of 0.09 mM. This work could help understand the mechanism of CCCJ on human health promotion and improve the economic value of the crucian carp processing industry.
Collapse
Affiliation(s)
- Jin Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, PR China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Department of Food Science and Technology, The University of Georgia, Athens, GA 30602, USA; National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, Hubei 430070, PR China
| | - Hongying Du
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, Hubei 430070, PR China.
| | - Gaonan Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, Hubei 430070, PR China
| | - Fanbin Kong
- Department of Food Science and Technology, The University of Georgia, Athens, GA 30602, USA
| | - Yang Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, Hubei 430070, PR China
| | - Shanbai Xiong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, Hubei 430070, PR China
| | - Siming Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, Hubei 430070, PR China
| |
Collapse
|
30
|
BIOPEP-UWM Database of Bioactive Peptides: Current Opportunities. Int J Mol Sci 2019; 20:ijms20235978. [PMID: 31783634 PMCID: PMC6928608 DOI: 10.3390/ijms20235978] [Citation(s) in RCA: 405] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 12/11/2022] Open
Abstract
The BIOPEP-UWM™ database of bioactive peptides (formerly BIOPEP) has recently become a popular tool in the research on bioactive peptides, especially on these derived from foods and being constituents of diets that prevent development of chronic diseases. The database is continuously updated and modified. The addition of new peptides and the introduction of new information about the existing ones (e.g., chemical codes and references to other databases) is in progress. New opportunities include the possibility of annotating peptides containing D-enantiomers of amino acids, batch processing option, converting amino acid sequences into SMILES code, new quantitative parameters characterizing the presence of bioactive fragments in protein sequences, and finding proteinases that release particular peptides.
Collapse
|
31
|
Encapsulation of Lovastatin in Zein Nanoparticles Exhibits Enhanced Apoptotic Activity in HepG2 Cells. Int J Mol Sci 2019; 20:ijms20225788. [PMID: 31752085 PMCID: PMC6888474 DOI: 10.3390/ijms20225788] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 02/08/2023] Open
Abstract
Research on statins highlights their potent cytotoxicity against cancer cells and their potential for cancer prevention. The aim of the current study was to examine whether loading lovastatin (LVS) in zein (ZN) nanoparticles (NPs) would potentiate the anti-proliferative effects of LVS and enhance its proliferation-inhibiting activity in HepG2 cells. LVS-ZN NPs were prepared and showed excellent characteristics, with respect to their particle size, zeta potential, diffusion, and entrapment efficiency. In addition, they showed the most potent anti-proliferative activity against HepG2 cells. ZN alone showed an observable anti-proliferative that was significantly higher than that of raw LVS. Furthermore, LVS uptake by HepG2 cells was greatly enhanced by the formulation in ZN. A cell cycle analysis indicated that LVS induced a significant cell accumulation in the G2/M and pre-G phases. In this regard, the LVS-ZN NPs exhibited the highest potency. The accumulation in the pre-G phase indicated an enhanced pro-apoptotic activity of the prepared formula. The cells incubated with the LVS-ZN NPs showed the highest percentage of cells with annexin-V positive staining. In addition, the same incubations showed the highest content of caspase-3 enzyme in comparison to raw LVS or ZN. Thus, the loading of LVS in ZN nanoparticles enhances its anti-proliferative activity against HepG2 cells, which is attributed, at least partly, to the enhanced cellular uptake and the induction of apoptosis.
Collapse
|
32
|
Finding and isolation of novel peptides with anti-proliferation ability of hepatocellular carcinoma cells from mung bean protein hydrolysates. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103557] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
33
|
Rengasamy KRR, Khan H, Ahmad I, Lobine D, Mahomoodally F, Suroowan S, Hassan STS, Xu S, Patel S, Daglia M, Nabavi SM, Pandian SK. Bioactive peptides and proteins as alternative antiplatelet drugs. Med Res Rev 2019; 39:2153-2171. [PMID: 31006878 DOI: 10.1002/med.21579] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 02/28/2019] [Accepted: 03/16/2019] [Indexed: 12/12/2022]
Abstract
Antiplatelet drugs reduce the risks associated with atherothrombotic events and show various applications in diverse cardiovascular diseases including myocardial infarctions. Efficacy of the current antiplatelet medicines including aspirin, clopidogrel, prasugrel and ticagrelor, and the glycoprotein IIb/IIIa antagonists, are limited due to their increased risks of bleeding, and antiplatelet drug resistance. Hence, it is important to develop new effective antiplatelet drugs, with fewer side-effects. The vast repertoire of natural peptides can be explored towards this goal. Proteins and peptides derived from snake venoms and plants represent exciting candidates for the development of novel and potent antiplatelet agents. Consequently, this review discusses multiple peptides that have displayed antiplatelet aggregation activity in preclinical drug development stages. This review also describes the antiplatelet mechanisms of the peptides, emphasizing the signaling pathways intervened by them. Also, the hurdles encountered during the development of peptides into antiplatelet drugs have been listed. Finally, hitherto unexplored peptides with the potential to prevent platelet aggregation are explored.
Collapse
Affiliation(s)
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Imad Ahmad
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Devina Lobine
- Department of Health Sciences, Faculty of Science, University of Mauritius, Réduit, Mauritius
| | - Fawzi Mahomoodally
- Department of Health Sciences, Faculty of Science, University of Mauritius, Réduit, Mauritius
| | - Shanoo Suroowan
- Department of Health Sciences, Faculty of Science, University of Mauritius, Réduit, Mauritius
| | - Sherif T S Hassan
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Suowen Xu
- Aab Cardiovascular Research Institute, University of Rochester, Rochester, New York
| | - Seema Patel
- Bioinformatics and Medical Informatics Research Center, San Diego State University, San Diego, California
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, Pavia University, Pavia, Italy
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
34
|
Protein Hydrolysates from Fenugreek ( Trigonella foenum graecum) as Nutraceutical Molecules in Colon Cancer Treatment. Nutrients 2019; 11:nu11040724. [PMID: 30925798 PMCID: PMC6521099 DOI: 10.3390/nu11040724] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 03/20/2019] [Accepted: 03/23/2019] [Indexed: 11/16/2022] Open
Abstract
The application of plant extracts for therapeutic purposes has been used in traditional medicine since the plants are a source of a great variety of chemical compounds that possess biological activity. Actually, the effect of these extracts on diseases such as cancer is being widely studied. Colorectal adenocarcinoma is one of the main causes of cancer related to death and the second most prevalent carcinoma in Western countries. The aim of this work is to study the possible effect of two fenugreek (Trigonella foenum graecum) protein hydrolysates on treatment and progression of colorectal cancer. Fenugreek proteins from seeds were hydrolysed by using two enzymes separately, which are named Purafect and Esperase, and were then tested on differentiated and undifferentiated human colonic adenocarcinoma Caco2/TC7 cells. Both hydrolysates did not affect the growth of differentiated cells, while they caused a decrease in undifferentiated cell proliferation by early apoptosis and cell cycle arrest in phase G1. This was triggered by a mitochondrial membrane permeabilization, cytochrome C release to cytoplasm, and caspase-3 activation. In addition, the hydrolysates of fenugreek proteins displayed antioxidant activity since they reduce the intracellular levels of ROS. These findings suggest that fenugreek protein hydrolysates could be used as nutraceutical molecules in colorectal cancer treatment.
Collapse
|
35
|
Zhu B, He H, Hou T. A Comprehensive Review of Corn Protein-derived Bioactive Peptides: Production, Characterization, Bioactivities, and Transport Pathways. Compr Rev Food Sci Food Saf 2018; 18:329-345. [DOI: 10.1111/1541-4337.12411] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Biyang Zhu
- College of Food Science and Technology; Huazhong Agricultural Univ.; Wuhan 430070 China
- Key Lab of Environment Correlative Dietology (Huazhong Agricultural Univ.); Ministry of Education; Wuhan 43000 China
| | - Hui He
- College of Food Science and Technology; Huazhong Agricultural Univ.; Wuhan 430070 China
- Key Lab of Environment Correlative Dietology (Huazhong Agricultural Univ.); Ministry of Education; Wuhan 43000 China
| | - Tao Hou
- College of Food Science and Technology; Huazhong Agricultural Univ.; Wuhan 430070 China
- Key Lab of Environment Correlative Dietology (Huazhong Agricultural Univ.); Ministry of Education; Wuhan 43000 China
| |
Collapse
|
36
|
Chen Z, Li W, Santhanam RK, Wang C, Gao X, Chen Y, Wang C, Xu L, Chen H. Bioactive peptide with antioxidant and anticancer activities from black soybean [Glycine max (L.) Merr.] byproduct: isolation, identification and molecular docking study. Eur Food Res Technol 2018. [DOI: 10.1007/s00217-018-3190-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
37
|
Mojica L, Luna-Vital DA, Gonzalez de Mejia E. Black bean peptides inhibit glucose uptake in Caco-2 adenocarcinoma cells by blocking the expression and translocation pathway of glucose transporters. Toxicol Rep 2018; 5:552-560. [PMID: 29854625 PMCID: PMC5977767 DOI: 10.1016/j.toxrep.2018.04.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 04/23/2018] [Accepted: 04/25/2018] [Indexed: 02/07/2023] Open
Abstract
Common bean protein fractions decreased glucose uptake in colorectal cancer cells. Protein fractions decreased SGLT1 and GLUT2 gene and protein expression and translocation. Black bean protein fractions could be used as anticancer drug adjuvants.
The objective was to evaluate the effect of black bean protein fraction (PFRA), and its derived peptides on glucose uptake, SGLT1 and GLUT2 expression and translocation on Caco-2 cells. The effect of treatments was evaluated on glucose uptake, protein expression and localization and gene expression on Caco-2 cells. PFRA (10 mg/mL) lowered glucose uptake from 27.4% after 30 min to 33.9% after 180 min of treatment compared to untreated control (p < 0.05). All treatments lowered GLUT2 expression after 30 min of treatment compared to untreated control (31.4 to 48.6%, p < 0.05). Similarly, after 24 h of treatment, GLUT2 was decreased in all treatments (23.5% to 48.9%) (p < 0.05). SGLT1 protein expression decreased 18.3% for LSVSVL (100 μM) to 45.1% for PFRA (10 mg/mL) after 24 h. Immunofluorescence microscopy showed a decrease in expression and membrane translocation of GLUT2 and SGLT1 for all treatments compared to untreated control (p < 0.05). Relative gene expression of SLC2A2 (GLUT2) and SLC5A1 (SGLT1) was downregulated significantly up to two-fold change compared to the untreated control after 24 h treatment. Black bean protein fractions are an inexpensive, functional ingredient with significant biological potential to reduce glucose uptake and could be used as an adjuvant in the treatment of colorectal cancer.
Collapse
Key Words
- 2-NBDG PubChem CID: 6711157
- 2-NBDG, 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-d-glucose
- A, alanine
- AMPK, 5′ adenosine monophosphate-activated protein kinase
- AU, arbitrary units
- BPI, bean protein isolate
- Black bean protein fraction
- Colorectal cancer
- E, glutamic acid
- F, phenylalanine
- GLUT2
- GLUT2, glucose transporter 2
- Glucose uptake
- Glucose: PubChem CID: 10954115
- I:K, lysine
- L, leucine
- N, asparagine
- P FRA, protein fractions
- P, proline
- PHL, phloretin
- PKC, protein kinase C II
- Phloretin: PubChem CID: 4788
- S, serine
- SD, standard deviation
- SGLT1
- SGLT1, sodium-dependent glucose cotransporter 1
- T, threonine
- V, valine
- WZB117, 3-fluoro-1,2-phenylene bis (3-hydroxybenzoate)
Collapse
Affiliation(s)
- Luis Mojica
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, IL, 61801, United States.,Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., CIATEJ, 44270, Guadalajara, Mexico
| | - Diego A Luna-Vital
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, IL, 61801, United States
| | - Elvira Gonzalez de Mejia
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, IL, 61801, United States
| |
Collapse
|
38
|
Luna-Vital D, González de Mejía E. Peptides from legumes with antigastrointestinal cancer potential: current evidence for their molecular mechanisms. Curr Opin Food Sci 2018. [DOI: 10.1016/j.cofs.2018.02.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
39
|
Antioxidant Activity of Zein Hydrolysates from Zea Species and Their Cytotoxic Effects in a Hepatic Cell Culture. Molecules 2018; 23:molecules23020312. [PMID: 29393865 PMCID: PMC6017744 DOI: 10.3390/molecules23020312] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/26/2018] [Accepted: 01/26/2018] [Indexed: 12/11/2022] Open
Abstract
In recent years, food proteins with bioactivity have been studied for cancer treatment. Zein peptides have shown an important set of bioactivities. This work compares the cytotoxic activity of zein hydrolyzed, extracted from four Zea species: teosinte, native, hybrid, and transgenic (Teo, Nat, Hyb, and HT) in a hepatic cell culture. Zein fraction was extracted, quantified, and hydrolyzed. Antioxidant capacity and cytotoxicity assays were performed on HepG2 cells. The levels of expression of caspase 3, 8, and 9 were evaluated in zein-treated cell cultures. Zea parviglumis showed the highest zein content (46.0 mg/g) and antioxidant activity (673.40 TE/g) out of all native zeins. Peptides from Hyb and HT showed high antioxidant activity compared to their native counterparts (1055.45 and 724.32 TE/g, respectively). Cytotoxic activity was observed in the cell culture using peptides of the four Zea species; Teo and Nat (IC50: 1781.63 and 1546.23 ng/mL) had no significant difference between them but showed more cytotoxic activity than Hyb and HT (IC50: 1252.25 and 1155.56 ng/mL). Increased expression of caspase 3 was observed in the peptide-treated HepG2 cells (at least two-fold more with respect to the control sample). These data indicate the potential for zein peptides to prevent or treat cancer, possibly by apoptosis induction.
Collapse
|
40
|
Minkiewicz P, Iwaniak A, Darewicz M. Annotation of Peptide Structures Using SMILES and Other Chemical Codes-Practical Solutions. Molecules 2017; 22:molecules22122075. [PMID: 29186902 PMCID: PMC6149970 DOI: 10.3390/molecules22122075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/15/2017] [Accepted: 11/25/2017] [Indexed: 12/20/2022] Open
Abstract
Contemporary peptide science exploits methods and tools of bioinformatics, and cheminformatics. These approaches use different languages to describe peptide structures—amino acid sequences and chemical codes (especially SMILES), respectively. The latter may be applied, e.g., in comparative studies involving structures and properties of peptides and peptidomimetics. Progress in peptide science “in silico” may be achieved via better communication between biologists and chemists, involving the translation of peptide representation from amino acid sequence into SMILES code. Recent recommendations concerning good practice in chemical information include careful verification of data and their annotation. This publication discusses the generation of SMILES representations of peptides using existing software. Construction of peptide structures containing unnatural and modified amino acids (with special attention paid on glycosylated peptides) is also included. Special attention is paid to the detection and correction of typical errors occurring in SMILES representations of peptides and their correction using molecular editors. Brief recommendations for training of staff working on peptide annotations, are discussed as well.
Collapse
Affiliation(s)
- Piotr Minkiewicz
- Chair of Food Biochemistry, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Plac Cieszyński 1, 10-726 Olsztyn-Kortowo, Poland.
| | - Anna Iwaniak
- Chair of Food Biochemistry, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Plac Cieszyński 1, 10-726 Olsztyn-Kortowo, Poland.
| | - Małgorzata Darewicz
- Chair of Food Biochemistry, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Plac Cieszyński 1, 10-726 Olsztyn-Kortowo, Poland.
| |
Collapse
|
41
|
Rapid Identification of Dipeptidyl Peptidase-IV (DPP-IV) Inhibitory Peptides from Ruditapes philippinarum Hydrolysate. Molecules 2017; 22:molecules22101714. [PMID: 29027968 PMCID: PMC6151561 DOI: 10.3390/molecules22101714] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/08/2017] [Accepted: 10/09/2017] [Indexed: 01/08/2023] Open
Abstract
Dipeptidyl peptidase-IV (DPP-IV) inhibitory peptides were rapidly identified from Ruditapes philippinarum hydrolysate. The hydrolysate was fractionated by ethanol precipitation and preparative reverse phase high-performance liquid chromatography (RP-HPLC). The fraction which showed the highest DPP-IV inhibitory activity was then analyzed by a high-throughput nano-liquid chromatography electrospray ionization tandem mass spectrometry (nano-LC ESI-MS/MS) method, and the sequences of peptides were identified based on the MS/MS spectra against the Mollusca protein data from the UniProt database. In total, 50 peptides were identified. Furthermore, molecular docking was used to identify potential DPP-IV inhibitors from the identified peptides. Docking results suggested that four peptides: FAGDDAPR, LAPSTM, FAGDDAPRA, and FLMESH, could bind pockets of DPP-IV through hydrogen bonds, π-π bonds, and charge interactions. The four peptides were chemically synthesized and tested for DPP-IV inhibitory activity. The results showed that they possessed DPP-IV inhibitory activity with IC50 values of 168.72 μM, 140.82 μM, 393.30 μM, and >500 μM, respectively. These results indicate that R. philippinarum-derived peptides may have potential as functional food ingredients for the prevention of diabetes.
Collapse
|
42
|
Díaz-Gómez JL, Castorena-Torres F, Preciado-Ortiz RE, García-Lara S. Anti-Cancer Activity of Maize Bioactive Peptides. Front Chem 2017; 5:44. [PMID: 28680876 PMCID: PMC5478815 DOI: 10.3389/fchem.2017.00044] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/12/2017] [Indexed: 12/13/2022] Open
Abstract
Cancer is one of the main chronic degenerative diseases worldwide. In recent years, consumption of whole-grain cereals and their derivative food products has been associated with a reduced risk of various types of cancer. The main biomolecules in cereals include proteins, peptides, and amino acids, all of which are present in different quantities within the grain. Some of these peptides possess nutraceutical properties and exert biological effects that promote health and prevent cancer. In this review, we report the current status and advances in knowledge regarding the bioactive properties of maize peptides, such as antioxidant, antihypertensive, hepatoprotective, and anti-tumor activities. We also highlight the potential biological mechanisms through which maize bioactive peptides exert anti-cancer activity. Finally, we analyze and emphasize the potential applications of maize peptides.
Collapse
|