1
|
Maqsood M, Anam Saeed R, Sahar A, Khan MI. Mulberry plant as a source of functional food with therapeutic and nutritional applications: A review. J Food Biochem 2022; 46:e14263. [PMID: 35642132 DOI: 10.1111/jfbc.14263] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/26/2022] [Accepted: 05/10/2022] [Indexed: 12/29/2022]
Abstract
Medicinal plants from the family Moraceae have diverse applications in agriculture, cosmetics, food, and the pharmaceutical industry. Their extensive spectrum of pharmacological activity for treating numerous inflammatory illnesses, cancer, cardiovascular diseases, and gastrointestinal problems reflects their biological and therapeutic value. This article summarizes the molecular mechanisms related to the biological implications of mulberry extracts, fractions, and isolated bioactive compounds from different parts in various health-related ailments. Additionally, the food industry and animal nutrition applications are summarized. Phytochemicals such as steroids, saponins, alkaloids, glycosides, polysaccharides, and phenolic compounds including terpenoids, flavonoids, anthocyanins, and tannins are found in this medicinal plant. The aqueous, ethanolic, and methanolic extracts, as well as bioactive compounds, have anti-oxidative, hypoglycemic, nephroprotective, antimicrobial, neuroprotective, anti-mutagenic, hepatoprotective, anthelmintic, immune-modulatory, cardioprotective, and skin protecting activities. Mulberry supplementation in food products improves the stability of phenolics, sensory properties, antioxidant activity, and antimicrobial properties. Mulberry leaves in animal feed increase the nutrient digestibility, growth parameters, antimicrobial, and antioxidant properties. PRACTICAL APPLICATIONS: This review summarized the in vivo and in vitro biological activities of the mulberry and isolated constituents in various health conditions. In addition, the food uses such as antioxidant potential, antimicrobial, and physicochemical properties were discussed. Furthermore, in vivo studies revealed mulberry as a significant protein source and its flavonoids as potential animal foliage.
Collapse
Affiliation(s)
- Maria Maqsood
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Raakia Anam Saeed
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Amna Sahar
- Department of Food Engineering, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Issa Khan
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
2
|
The Effects of Dietary Inclusion of Mulberry Leaf Powder on Growth Performance, Carcass Traits and Meat Quality of Tibetan Pigs. Animals (Basel) 2022; 12:ani12202743. [PMID: 36290129 PMCID: PMC9597806 DOI: 10.3390/ani12202743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/23/2022] [Accepted: 10/04/2022] [Indexed: 01/24/2023] Open
Abstract
This research was conducted to study the effects of dietary inclusion of mulberry leaf powder (MLP) on growth performance, meat quality, antioxidant activity, and carcass traits of Tibetan pigs. Eighteen Tibetan pigs (33.8 ± 1.1 kg) were assigned to two treatment groups randomly and received either the control diet (CON) or a basal diet containing 8% MLP (MLP) for two months. After the two-month feeding trial, the MLP group showed lower backfat thickness while a higher lean percentage. Compared with CON pigs, MLP pigs had higher serum CAT activity. In addition, dietary MLP supplementation significantly decreased the muscle shear force. Muscle fiber morphology analysis showed that MLP pigs had larger muscle fiber density while smaller muscle fiber cross-sectional area. Up-regulated gene expression of myosin heavy chain (MyHC)IIa was also observed in MLP pigs. These results indicate that the enhanced antioxidant activity and altered muscle fiber type and morphology appeared to contribute to the improvement of meat quality in Tibetan pigs fed diets containing MLP.
Collapse
|
3
|
Herman R, Ayepa E, Fometu S, Shittu S, Davids J, Wang J. Mulberry fruit post-harvest management: Techniques, composition and influence on quality traits -A review. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Pomilio AB, Szewczuk NA, Duchowicz PR. Dietary anthocyanins balance immune signs in osteoarthritis and obesity - update of human in vitro studies and clinical trials. Crit Rev Food Sci Nutr 2022; 64:2634-2672. [PMID: 36148839 DOI: 10.1080/10408398.2022.2124948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Anthocyanins are known to change ligand-receptor bindings, cell membrane permeability, and intracellular signaling pathways. The beneficial effects of dietary anthocyanins have been chronologically demonstrated in interventional and observational studies, including fourteen human chondrocyte studies and related cell culture assays, nineteen human clinical trials in osteoarthritis patients, seven in vivo obesity assays, nineteen in vitro assays in preadipocytes and related cells, and twenty-two clinical trials in overweight/obese subjects, which are critically discussed in this update. Strawberries, cherries, berries, pomegranate, tropical fruits, rosehip, purple rice, purple corn, red beans, and black soybean, together with cyanidin, delphinidin, malvidin, peonidin, some 3-O-glycosides, metabolites, and acylated anthocyanins from a potato cultivar have shown the best outcomes. The set of these five key tests and clinical trials, taken together, contributes to the understanding of the underlying mechanisms and pathways involved. Furthermore, this set shows the value of anthocyanins in counteracting the progression of osteoarthritis/obesity. The interplay between the inflammation of osteoarthritis and obesity, and the subsequent regulation/immunomodulation was performed through isolated and food anthocyanins. The antioxidant, anti-inflammatory, and immunomodulatory properties of anthocyanins explain the findings of the studies analyzed. However, further interventional studies should be conducted to finally establish the appropriate doses for anthocyanin supplementation, dose-response, and length of consumption, to include dietary recommendations for osteoarthritis/obese patients for preventive and management purposes.
Collapse
Affiliation(s)
- Alicia B Pomilio
- Laboratorio de Química y Bioquímica Estructural, CONICET, Área Hematología, Departamento de Bioquímica Clínica, Hospital de Clínicas "José de San Martín", Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nicolas A Szewczuk
- Laboratorio de QSAR (Quantitative Structure-Activity Relationships), Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CONICET, Departamento de Química, Universidad Nacional de La Plata (UNLP), Plata, Argentina
| | - Pablo R Duchowicz
- Laboratorio de QSAR (Quantitative Structure-Activity Relationships), Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CONICET, Departamento de Química, Universidad Nacional de La Plata (UNLP), Plata, Argentina
| |
Collapse
|
5
|
Li H, Fan C, Liu J, Wang B, Li H. Integration of full-length transcriptomes and anthocyanin metabolite analysis for understanding fruit coloration mechanism in Schisandra chinensis. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:921-933. [PMID: 35722508 PMCID: PMC9203629 DOI: 10.1007/s12298-022-01179-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 05/03/2023]
Abstract
Coloration directly affects the commercial value of Schisandra chinensis fruits. The composition and content of anthocyanin determine the S. chinensis fruit coloration. However, the molecular mechanism of anthocyanin biosynthesis and regulation in this fruit remains unknown. In this study, we performed integrative full-length transcriptomics and targeted metabolomics analyses in S. chinensis fruits at four different developmental stages to elucidate the coloration mechanism. Cyanidin3-O-xyl-rutinoside is the key anthocyanin, which is responsible for the reddening of S. chinensis fruits, and its accumulation gradually accelerated from the 80th day after fluorescence. Overall, 122,289 unigenes with an average length of 2592 bp and an N50 of 4232 bp were obtained through single-molecule real-time sequencing; a total of 16,456 differentially expressed genes were identified. Moreover, 10 full-length structural genes related to anthocyanin biosynthesis were found to be significantly differentially expressed with fruit ripening. Moreover, 10 glycosyltransferases (GTs) that may possess the activities of anthocyanidin 3-O-glucosyltransferase, anthocyanidin 3-O-glucoside rhamnosyltransferase, and xylosyltransferases, which are involved in the final three steps for cyanidin3-O-xyl-rutinoside synthesis, were identified through phylogenetic analysis. Based on these findings, we constructed the complete anthocyanin biosynthetic pathway in S. chinensis fruits; five ScMYBs, three ScbHLHs, and two ScWD40s potentially involved in regulating anthocyanin biosynthesis in S. chinensis fruits were also selected. Our study provides the foundation for further research on the molecular mechanism of anthocyanin biosynthesis and regulation for improving the quality of S. chinensis fruits. The results of full-length transcriptomes would provide researchers with novel insights into the molecular cloning of enzymes and their activity. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-022-01179-3.
Collapse
Affiliation(s)
- Haiyan Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866 China
| | - Chunxue Fan
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866 China
| | - Jiushi Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193 China
| | - Biao Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866 China
| | - Hongbo Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866 China
| |
Collapse
|
6
|
Jung YH, Chae CW, Choi GE, Shin HC, Lim JR, Chang HS, Park J, Cho JH, Park MR, Lee HJ, Han HJ. Cyanidin 3-O-arabinoside suppresses DHT-induced dermal papilla cell senescence by modulating p38-dependent ER-mitochondria contacts. J Biomed Sci 2022; 29:17. [PMID: 35255899 PMCID: PMC8900350 DOI: 10.1186/s12929-022-00800-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/23/2022] [Indexed: 11/28/2022] Open
Abstract
Background Androgenetic alopecia (AGA) is a genetic disorder caused by dihydrotestosterone (DHT), accompanied by the senescence of androgen-sensitive dermal papilla cells (DPCs) located in the base of hair follicles. DHT causes DPC senescence in AGA through mitochondrial dysfunction. However, the mechanism of this pathogenesis remains unknown. In this study, we investigated the protective role of cyanidins on DHT-induced mitochondrial dysfunction and DPC senescence and the regulatory mechanism involved. Methods DPCs were used to investigate the effect of DHT on mitochondrial dysfunction with MitoSOX and Rhod-2 staining. Senescence-associated β-galactosidase activity assay was performed to examine the involvement of membrane AR-mediated signaling in DHT-induced DPC senescence. AGA mice model was used to study the cyanidins on DHT-induced hair growth deceleration. Results Cyanidin 3-O-arabinoside (C3A) effectively decreased DHT-induced mtROS accumulation in DPCs, and C3A reversed the DHT-induced DPC senescence. Excessive mitochondrial calcium accumulation was blocked by C3A. C3A inhibited p38-mediated voltage-dependent anion channel 1 (VDAC1) expression that contributes to mitochondria-associated ER membrane (MAM) formation and transfer of calcium via VDAC1–IP3R1 interactions. DHT-induced MAM formation resulted in increase of DPC senescence. In AGA mice models, C3A restored DHT-induced hair growth deceleration, which activated hair follicle stem cell proliferation. Conclusions C3A is a promising natural compound for AGA treatments against DHT-induced DPC senescence through reduction of MAM formation and mitochondrial dysfunction. Supplementary Information The online version contains supplementary material available at 10.1186/s12929-022-00800-7.
Collapse
|
7
|
Han S, Yang Y, Lu Y, Guo J, Han X, Gao Y, Huang W, You Y, Zhan J. Cyanidin-3- O-glucoside Regulates the Expression of Ucp1 in Brown Adipose Tissue by Activating Prdm16 Gene. Antioxidants (Basel) 2021; 10:1986. [PMID: 34943089 PMCID: PMC8750179 DOI: 10.3390/antiox10121986] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 12/21/2022] Open
Abstract
(1) Background: Brown adipose tissue (BAT) burns energy to produce heat. Cyanidin-3-O-glucoside (C3G) can then enhance the thermogenic ability of BAT in vivo. However, the mechanism by which C3G regulates Ucp1 protein expression remains unclear. (2) Methods: In this study, C3H10T12 brown adipose cells and db/db mice and mice with high-fat, high-fructose, diet-induced obesity were used as the model to explore the effect of C3G on the expression of the Ucp1 gene. Furthermore, the 293T cell line was used for an in vitro cell transgene, a double luciferase reporting system, and yeast single hybridization to explore the mechanism of C3G in regulating Ucp1 protein. (3) Results: we identified that, under the influence of C3G, Prdm16 directly binds to the -500 to -150 bp promoter region of Ucp1 to activate its transcription and, thus, facilitate BAT programming. (4) Conclusions: This study clarified the mechanism by which C3G regulates the expression of the Ucp1 gene of brown fat to a certain extent.
Collapse
Affiliation(s)
- Suping Han
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Tsinghua East Road 17, Beijing 100083, China; (S.H.); (Y.Y.); (Y.L.); (J.G.); (X.H.); (Y.G.); (W.H.)
| | - Yafan Yang
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Tsinghua East Road 17, Beijing 100083, China; (S.H.); (Y.Y.); (Y.L.); (J.G.); (X.H.); (Y.G.); (W.H.)
| | - Yanan Lu
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Tsinghua East Road 17, Beijing 100083, China; (S.H.); (Y.Y.); (Y.L.); (J.G.); (X.H.); (Y.G.); (W.H.)
- School of Biomedicine, Beijing City University, Beijing 100094, China
| | - Jielong Guo
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Tsinghua East Road 17, Beijing 100083, China; (S.H.); (Y.Y.); (Y.L.); (J.G.); (X.H.); (Y.G.); (W.H.)
| | - Xue Han
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Tsinghua East Road 17, Beijing 100083, China; (S.H.); (Y.Y.); (Y.L.); (J.G.); (X.H.); (Y.G.); (W.H.)
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yunxiao Gao
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Tsinghua East Road 17, Beijing 100083, China; (S.H.); (Y.Y.); (Y.L.); (J.G.); (X.H.); (Y.G.); (W.H.)
| | - Weidong Huang
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Tsinghua East Road 17, Beijing 100083, China; (S.H.); (Y.Y.); (Y.L.); (J.G.); (X.H.); (Y.G.); (W.H.)
| | - Yilin You
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Tsinghua East Road 17, Beijing 100083, China; (S.H.); (Y.Y.); (Y.L.); (J.G.); (X.H.); (Y.G.); (W.H.)
| | - Jicheng Zhan
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Tsinghua East Road 17, Beijing 100083, China; (S.H.); (Y.Y.); (Y.L.); (J.G.); (X.H.); (Y.G.); (W.H.)
| |
Collapse
|
8
|
Chodari L, Dilsiz Aytemir M, Vahedi P, Alipour M, Vahed SZ, Khatibi SMH, Ahmadian E, Ardalan M, Eftekhari A. Targeting Mitochondrial Biogenesis with Polyphenol Compounds. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4946711. [PMID: 34336094 PMCID: PMC8289611 DOI: 10.1155/2021/4946711] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/22/2021] [Indexed: 12/11/2022]
Abstract
Appropriate mitochondrial physiology is an essential for health and survival. Cells have developed unique mechanisms to adapt to stress circumstances and changes in metabolic demands, by meditating mitochondrial function and number. In this context, sufficient mitochondrial biogenesis is necessary for efficient cell function and haemostasis, which is dependent on the regulation of ATP generation and maintenance of mitochondrial DNA (mtDNA). These procedures play a primary role in the processes of inflammation, aging, cancer, metabolic diseases, and neurodegeneration. Polyphenols have been considered as the main components of plants, fruits, and natural extracts with proven therapeutic effects during the time. These components regulate the intracellular pathways of mitochondrial biogenesis. Therefore, the current review is aimed at representing an updated review which determines the effects of different natural polyphenol compounds from various plant kingdoms on modulating signaling pathways of mitochondrial biogenesis that could be a promising alternative for the treatment of several disorders.
Collapse
Affiliation(s)
- Leila Chodari
- Physiology Department, Faculty of Medicine, Urmia University of Medical Sciences, Urmia 571478334, Iran
| | - Mutlu Dilsiz Aytemir
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 06100, Sıhhiye, Ankara, Turkey
- İzmir Katip Çelebi University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 35620, Çiğli, İzmir, Turkey
| | - Parviz Vahedi
- Department of Anatomical Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Mahdieh Alipour
- Dental and Periodontal Research Center, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Elham Ahmadian
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Aziz Eftekhari
- Pharmacology and Toxicology Department, Maragheh University of Medical Sciences, Maragheh, Iran
| |
Collapse
|
9
|
Gao Y, Tian R, Liu H, Xue H, Zhang R, Han S, Ji L, Huang W, Zhan J, You Y. Research progress on intervention effect and mechanism of protocatechuic acid on nonalcoholic fatty liver disease. Crit Rev Food Sci Nutr 2021; 62:9053-9075. [PMID: 34142875 DOI: 10.1080/10408398.2021.1939265] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become a surge burden worldwide due to its high prevalence, with complicated deterioration symptoms such as liver fibrosis and cancer. No effective drugs are available for NALFD so far. The rapid growth of clinical demand has prompted the treatment of NAFLD to become a research hotspot. Protocatechuic acid (PCA) is a natural secondary metabolite commonly found in fruits, vegetables, grains, and herbal medicine. It is also the major internal metabolites of anthocyanins and other polyphenols. In the present manuscript, food sources, metabolic absorption, and efficacy of PCA were summarized while analyzing its role in improving NAFLD, as well as the mechanism involved. The results indicated that PCA could ameliorate NAFLD by regulating glucose and lipid metabolism, oxidative stress and inflammation, gut microbiota and metabolites. It was proposed for the first time that PCA might reduce NAFLD by enhancing the energy consumption of brown adipose tissue (BAT). However, the PCA administration mode and dose for NAFLD remain inconclusive. Fresh insights into the specific molecular mechanisms are required, while clinical trials are essential in the future. This review provides new targets and reasoning for the clinical application of PCA in the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Yunxiao Gao
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Rongrong Tian
- Department of Biomedicine, Beijing City University, Beijing, China
| | - Haiyue Liu
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Huimin Xue
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Ruizhe Zhang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Suping Han
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Lin Ji
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Weidong Huang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Jicheng Zhan
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Yilin You
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| |
Collapse
|
10
|
Zhou XJ, Zhu CT, Zhang LY, You S, Wu FA, Wang J. Enrichment and purification of red pigments from defective mulberry fruits using biotransformation in a liquid-liquid-solid three-phase system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:24432-24440. [PMID: 32323230 DOI: 10.1007/s11356-020-08731-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
A large number of defective mulberries are discarded each year because mulberries are easy to break. The red pigments from defective mulberries are recognized as the sustainable sources of anthocyanins extracted from nature. Cyanidin-3-O-rutinoside and cyanidin-3-O-glucoside are the main components of mulberry red pigments, accounting for 50% and 40% of the total, respectively. Cyanidin-3-O-glucoside exhibits anticancer, hypoglycemic, and liver and visceral protection properties. Cyanidin-3-O-glucoside can be prepared by enzymatically hydrolyzing the rhamnosidase bond of cyanidin-3-O-rutinoside. To obtain mulberry red pigment with a high purity of cyanidin-3-O-glucoside, immobilized α-L-rhamnosidase was added to the aqueous two-phase system to construct a liquid-liquid-solid three-phase enzyme catalytic system. After optimization, the three-phase system was composed of 27.12% (w/w) ethanol, 18.10% (w/w) ammonium sulfate, 15% (w/w) mulberry juice, 4.24% (w/w) immobilized α-L-rhamnosidase, and 35.54% (w/w) pure water. The three-phase system was employed to enrich and purify cyanidin-3-O-glucoside at pH 5 and 45 °C for 1 h. The purity of cyanidin-3-O-glucoside was increased from 40 to 82.42% with cyanidin-3-O-rutinoside conversion of 60.68%. The immobilized α-L-rhamnosidase could be reused seven times, maintaining a relative activity of over 50%. Overall, the developed system provided an efficient and simple approach for high purity mulberry red pigment production and recycling in the field of sustainable agriculture. Graphical abstract.
Collapse
Affiliation(s)
- Xue-Jiao Zhou
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China
| | - Chang-Tong Zhu
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China
| | - Lu-Yue Zhang
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China
| | - Shuai You
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018, Jiangsu, China
| | - Fu-An Wu
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018, Jiangsu, China
| | - Jun Wang
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China.
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, 212018, Jiangsu, China.
| |
Collapse
|
11
|
Wang G, Yang X, Wang J, Zhong D, Zhang R, Zhang Y, Feng L, Zhang Y. Walnut green husk polysaccharides prevent obesity, chronic inflammatory responses, nonalcoholic fatty liver disease and colonic tissue damage in high-fat diet fed rats. Int J Biol Macromol 2021; 182:879-898. [PMID: 33857511 DOI: 10.1016/j.ijbiomac.2021.04.047] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/30/2021] [Accepted: 04/09/2021] [Indexed: 12/12/2022]
Abstract
High-fat (HF) diets cause obesity, gut microbial dysbiosis and associated disorders and inflammatory bowel disease (IBD) due to increased intestinal permeability, which is an important reason for chronic inflammation and oxidative stress. This study was to investigate the effects and mechanism by which walnut green husk polysaccharides (WGHP) prevents obesity, oxidative stress, inflammation, liver and colon damage in HF diet induced rats. We found that WGHP alleviated HF-induced abnormal weight gain, disordered lipid metabolism, inflammation, oxidative stress, colonic tissue injury and up-regulate the expression level of colonic tight junction protein in the rats. Besides, the administration of WGHP promoted browning of iWAT and thermogenesis in BAT of HF-fed rats, and improved gut microbiota dysbiosis by increasing the bacterial diversity and reducing the relative abundance of potential pathogenic bacteria in the colon of the rats. Furthermore, WGHP consumption not only increased the SCFAs content but also improved the relative abundance of Prevotellaceae and Allobaculum in the gut of rats. Our results suggest that the protective effect of WGHP on metabolic inflammation caused by HF may be due to the regulation of gut microbiota and SCFAs.
Collapse
Affiliation(s)
- Guoliang Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Xiaoyue Yang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Jing Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Diying Zhong
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Runguang Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yani Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Luoluo Feng
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Youlin Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
12
|
Functional ingredients present in whole-grain foods as therapeutic tools to counteract obesity: Effects on brown and white adipose tissues. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Han X, Guo J, Gao Y, Zhan J, You Y, Huang W. Gentisic acid prevents diet-induced obesity in mice by accelerating the thermogenesis of brown adipose tissue. Food Funct 2021; 12:1262-1270. [DOI: 10.1039/d0fo02474k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gentisic acid prevents diet-induced obesity in mice by accelerating the thermogenesis of brown adipose tissue.
Collapse
Affiliation(s)
- Xue Han
- College of Food Science and Nutritional Engineering
- Beijing Key Laboratory of Viticulture and Enology
- China Agricultural University
- Beijing
- China
| | - Jielong Guo
- College of Food Science and Nutritional Engineering
- Beijing Key Laboratory of Viticulture and Enology
- China Agricultural University
- Beijing
- China
| | - Yunxiao Gao
- College of Food Science and Nutritional Engineering
- Beijing Key Laboratory of Viticulture and Enology
- China Agricultural University
- Beijing
- China
| | - Jicheng Zhan
- College of Food Science and Nutritional Engineering
- Beijing Key Laboratory of Viticulture and Enology
- China Agricultural University
- Beijing
- China
| | - Yilin You
- College of Food Science and Nutritional Engineering
- Beijing Key Laboratory of Viticulture and Enology
- China Agricultural University
- Beijing
- China
| | - Weidong Huang
- College of Food Science and Nutritional Engineering
- Beijing Key Laboratory of Viticulture and Enology
- China Agricultural University
- Beijing
- China
| |
Collapse
|
14
|
Guo J, Yin M, Han X, You Y, Huang W, Zhan J. The influence of oxygen on the metabolites of phenolic blueberry extract and the mouse microflora during in vitro fermentation. Food Res Int 2020; 136:109610. [DOI: 10.1016/j.foodres.2020.109610] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/13/2020] [Accepted: 07/29/2020] [Indexed: 12/19/2022]
|
15
|
Grape seed flour intake decreases adiposity gain in high-fat-diet induced obese mice by activating thermogenesis. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103509] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
16
|
Gomes JVP, Rigolon TCB, Souza MSDS, Alvarez-Leite JI, Lucia CMD, Martino HSD, Rosa CDOB. Antiobesity effects of anthocyanins on mitochondrial biogenesis, inflammation, and oxidative stress: A systematic review. Nutrition 2019; 66:192-202. [DOI: 10.1016/j.nut.2019.05.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/11/2019] [Accepted: 05/27/2019] [Indexed: 12/31/2022]
|
17
|
Li J, Cha R, Luo H, Hao W, Zhang Y, Jiang X. Nanomaterials for the theranostics of obesity. Biomaterials 2019; 223:119474. [PMID: 31536920 DOI: 10.1016/j.biomaterials.2019.119474] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/01/2019] [Accepted: 09/03/2019] [Indexed: 02/06/2023]
Abstract
As a chronic and lifelong disease, obesity not only significant impairs health but also dramatically shortens life span (at least 10 years). Obesity requires a life-long effort for the successful treatment because a number of abnormalities would appear in the development of obesity. Nanomaterials possess large specific surface area, strong absorptivity, and high bioavailability, especially the good targeting properties and adjustable release rate, which would benefit the diagnosis and treatment of obesity and obesity-related metabolic diseases. Herein, we discussed the therapy and diagnosis of obesity and obesity-related metabolic diseases by using nanomaterials. Therapies of obesity with nanomaterials include improving intestinal health and reducing energy intake, targeting and treating functional cell abnormalities, regulating redox homeostasis, and removing free lipoprotein in blood. Diagnosis of obesity-related metabolic diseases would benefit the therapy of these diseases. The development of nanomaterials will promote the diagnosis and therapy of obesity and obesity-related metabolic diseases.
Collapse
Affiliation(s)
- Juanjuan Li
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing, 100190, PR China
| | - Ruitao Cha
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing, 100190, PR China.
| | - Huize Luo
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing, 100190, PR China
| | - Wenshuai Hao
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing, 100190, PR China
| | - Yan Zhang
- Department of Cardiac Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 North Lishi Road, Xicheng District, Beijing, 100032, PR China.
| | - Xingyu Jiang
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing, 100190, PR China; Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong, 518055, PR China; University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing, 100049, PR China.
| |
Collapse
|
18
|
Lyophilized Maqui ( Aristotelia chilensis) Berry Induces Browning in the Subcutaneous White Adipose Tissue and Ameliorates the Insulin Resistance in High Fat Diet-Induced Obese Mice. Antioxidants (Basel) 2019; 8:antiox8090360. [PMID: 31480627 PMCID: PMC6769892 DOI: 10.3390/antiox8090360] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 12/15/2022] Open
Abstract
Maqui (Aristotelia Chilensis) berry features a unique profile of anthocyanidins that includes high amounts of delphinidin-3-O-sambubioside-5-O-glucoside and delphinidin-3-O-sambubioside and has shown positive effects on fasting glucose and insulin levels in humans and murine models of type 2 diabetes and obesity. The molecular mechanisms underlying the impact of maqui on the onset and development of the obese phenotype and insulin resistance was investigated in high fat diet-induced obese mice supplemented with a lyophilized maqui berry. Maqui-dietary supplemented animals showed better insulin response and decreased weight gain but also a differential expression of genes involved in de novo lipogenesis, fatty acid oxidation, multilocular lipid droplet formation and thermogenesis in subcutaneous white adipose tissue (scWAT). These changes correlated with an increased expression of the carbohydrate response element binding protein b (Chrebpb), the sterol regulatory binding protein 1c (Srebp1c) and Cellular repressor of adenovirus early region 1A-stimulated genes 1 (Creg1) and an improvement in the fibroblast growth factor 21 (FGF21) signaling. Our evidence suggests that maqui dietary supplementation activates the induction of fuel storage and thermogenesis characteristic of a brown-like phenotype in scWAT and counteracts the unhealthy metabolic impact of an HFD. This induction constitutes a putative strategy to prevent/treat diet-induced obesity and its associated comorbidities.
Collapse
|
19
|
Sarkar P, Thirumurugan K. Modulatory functions of bioactive fruits, vegetables and spices in adipogenesis and angiogenesis. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.12.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
20
|
|
21
|
Composition and antioxidant, antibacterial, and anti-HepG2 cell activities of polyphenols from seed coat of Amygdalus pedunculata Pall. Food Chem 2018; 265:111-119. [DOI: 10.1016/j.foodchem.2018.05.091] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 05/20/2018] [Accepted: 05/21/2018] [Indexed: 01/05/2023]
|
22
|
You Y, Li N, Han X, Guo J, Zhao Y, Liu G, Huang W, Zhan J. Influence of different sterilization treatments on the color and anthocyanin contents of mulberry juice during refrigerated storage. INNOV FOOD SCI EMERG 2018. [DOI: 10.1016/j.ifset.2018.05.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
23
|
You Y, Han X, Guo J, Guo Y, Yin M, Liu G, Huang W, Zhan J. Cyanidin-3-glucoside attenuates high-fat and high-fructose diet-induced obesity by promoting the thermogenic capacity of brown adipose tissue. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.12.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
24
|
Han X, Guo J, You Y, Yin M, Liang J, Ren C, Zhan J, Huang W. Vanillic acid activates thermogenesis in brown and white adipose tissue. Food Funct 2018; 9:4366-4375. [DOI: 10.1039/c8fo00978c] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Anthocyanins have a positive effect on resistant obesity; however they cannot usually be absorbed directly but, instead, are metabolized by gut microbiota.
Collapse
Affiliation(s)
- Xue Han
- Beijing Key Laboratory of Viticulture and Enology
- College of Food Science and Nutritional Engineering
- China Agricultural University
- Beijing
- China
| | - Jielong Guo
- Beijing Key Laboratory of Viticulture and Enology
- College of Food Science and Nutritional Engineering
- China Agricultural University
- Beijing
- China
| | - Yilin You
- Beijing Key Laboratory of Viticulture and Enology
- College of Food Science and Nutritional Engineering
- China Agricultural University
- Beijing
- China
| | - Manwen Yin
- Beijing Key Laboratory of Viticulture and Enology
- College of Food Science and Nutritional Engineering
- China Agricultural University
- Beijing
- China
| | - Juan Liang
- Beijing Key Laboratory of Viticulture and Enology
- College of Food Science and Nutritional Engineering
- China Agricultural University
- Beijing
- China
| | - Chenglong Ren
- Beijing Key Laboratory of Viticulture and Enology
- College of Food Science and Nutritional Engineering
- China Agricultural University
- Beijing
- China
| | - Jicheng Zhan
- Beijing Key Laboratory of Viticulture and Enology
- College of Food Science and Nutritional Engineering
- China Agricultural University
- Beijing
- China
| | - Weidong Huang
- Beijing Key Laboratory of Viticulture and Enology
- College of Food Science and Nutritional Engineering
- China Agricultural University
- Beijing
- China
| |
Collapse
|