1
|
Sarawi WS, Attia HA, Alomar HA, Alhaidar R, Rihan E, Aldurgham N, Ali RA. The protective role of sesame oil against Parkinson's-like disease induced by manganese in rats. Behav Brain Res 2024; 465:114969. [PMID: 38548024 DOI: 10.1016/j.bbr.2024.114969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024]
Abstract
Chronic exposure to manganese (Mn) results in motor dysfunction, biochemical and pathological alterations in the brain. Oxidative stress, inflammation, and dysfunction of dopaminergic and GABAergic systems stimulate activating transcription factor-6 (ATF-6) and protein kinase RNA-like ER kinase (PERK) leading to apoptosis. This study aimed to investigate the protective effect of sesame oil (SO) against Mn-induced neurotoxicity. Rats received 25 mg/kg MnCl2 and were concomitantly treated with 2.5, 5, or 8 ml/kg of SO for 5 weeks. Mn-induced motor dysfunction was indicated by significant decreases in the time taken by rats to fall during the rotarod test and in the number of movements observed during the open field test. Also, Mn resulted in neuronal degeneration as observed by histological staining. The striatal levels of lipid peroxides and reduced glutathione (oxidative stress markers), interleukin-6 and tumor necrosis factor-α (inflammatory markers) were significantly elevated. Mn significantly reduced the levels of dopamine and Bcl-2, while GABA, PERK, ATF-6, Bax, and caspase-3 were increased. Interestingly, all SO doses, especially at 8 ml/kg, significantly improved locomotor activity, biochemical deviations and reduced neuronal degeneration. In conclusion, SO may provide potential therapeutic benefits in enhancing motor performance and promoting neuronal survival in individuals highly exposed to Mn.
Collapse
Affiliation(s)
- Wedad S Sarawi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia.
| | - Hala A Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Hatun A Alomar
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Rawan Alhaidar
- College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Esraa Rihan
- College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Nora Aldurgham
- College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Rehab A Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| |
Collapse
|
2
|
Hadipour E, Emami SA, Tayarani‐Najaran N, Tayarani‐Najaran Z. Effects of sesame ( Sesamum indicum L.) and bioactive compounds (sesamin and sesamolin) on inflammation and atherosclerosis: A review. Food Sci Nutr 2023; 11:3729-3757. [PMID: 37457142 PMCID: PMC10345702 DOI: 10.1002/fsn3.3407] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 04/13/2023] [Accepted: 04/22/2023] [Indexed: 07/18/2023] Open
Abstract
Inflammation, oxidative stress, obesity, infection, hyperlipidemia, hypertension, and diabetes are the main causes of atherosclerosis, which in the long term lead to hardening of the arteries. In the current study, we reviewed recent findings of the mechanism of sesame and its active compounds of sesamin and sesamolin regulates on atherosclerosis. Sesame can decrease the lipid peroxidation and affect the enzymes, which control the balance of oxidative status in the body. Besides modulating the inflammatory cytokines, sesame regulates the main mediators of the signaling pathways in the process of inflammation, such as prostaglandin E2 (PGE2), nuclear factor kappa light-chain enhancer of activated B cells (NF-kB) and peroxisome proliferator-activated receptor gamma (PPAR-γ). Sesame decreases the growth of different pathogens. It fights against obesity and helps to reduce weight, body mass index (BMI), waist circumference, and lipid count of serum and liver. In addition to lowering fasting blood sugar (FBS), it decreases the hemoglobin A1c (HbA1c) and glucose levels and improves insulin function. With high content of linoleic acid, α-linolenic acid, and total polyunsaturated fatty acid (PUFA), sesame efficiently controls the blood plasma lipids and changes the lipid profile. In the case of hypertension, it maintains the health of endothelium through multiple mechanisms and conserves the response of the arteries to vasodilation. PUFA in sesame suppresses blood clotting and fibrinogen activity. All the mentioned properties combat atherosclerosis and hardening of blood vessels, which are detailed in the present review for sesame.
Collapse
Affiliation(s)
- Elham Hadipour
- Department of Biology, Faculty of ScienceUniversity of GuilanRashtIran
| | - Seyed Ahmad Emami
- Department of Traditional Pharmacy, School of PharmacyMashhad University of Medical SciencesMashhadIran
| | - Niloufar Tayarani‐Najaran
- Department of Dental Prosthesis, School of DentistryMashhad University of Medical SciencesMashhadIran
| | - Zahra Tayarani‐Najaran
- Targeted Drug Delivery Research CenterPharmaceutical Technology Institute, Mashhad University of Medical SciencesMashhadIran
| |
Collapse
|
3
|
Vahedi H, Atefi M, Entezari MH, Hassanzadeh A. The effect of sesame oil consumption compared to sunflower oil on lipid profile, blood pressure, and anthropometric indices in women with non-alcoholic fatty liver disease: a randomized double-blind controlled trial. Trials 2022; 23:551. [PMID: 35804451 PMCID: PMC9264500 DOI: 10.1186/s13063-022-06451-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 06/08/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases in the world. There is strong evidence that dyslipidemia and other cardio-metabolic disorders are highly prevalent in patients with NAFLD. This trial aimed at examining the effect of sesame oil (SO) in the context of a weight loss program on lipid profile, blood pressure, and anthropometric indices in women with NAFLD. METHODS This randomized, double-blind, controlled trial was carried out on 60 women with NAFLD. Subjects were randomly assigned to the SO group (n = 30) and sunflower oil (SFO) group (n = 30), each person consuming 30 g of oil per day for 12 weeks. All the participants received a hypocaloric diet (- 500 kcal/day) during the study. Lipid profile, blood pressure, and anthropometric indices were assessed at pre- and post-intervention phases. RESULTS In total, 53 participants completed the study. Following 12 weeks of intervention, anthropometric indices (p < 0.001) and systolic blood pressure (SBP) (p < 0.05) were significantly decreased in both groups and diastolic blood pressure (DBP) was significantly decreased in So group (p = 0.03). There was no significant change in lipid profile in both groups (p > 0.05). After adjusting for confounders, DBP (p = 0.031) and total cholesterol (TC) divided by high-density lipoprotein cholesterol (HDL-C) (p = 0.039) in the SO group were significantly reduced compared to the SFO group (p < 0.05). CONCLUSIONS The present clinical trial revealed that SO and SFO may not differently affect anthropometric indices, SBP, and lipid profile except for TC/HDL-C. In addition, SO may be effective in improvement of DBP and TC/HDL-C compared to the SFO group. TRIAL REGISTRATION Ethical approval of this trial was obtained at Isfahan University of Medical Sciences with the reference number of IR.MUI. RESEARCH REC.1399.548 ( https://ethics. RESEARCH ac.ir/ProposalCertificateEn.php?id=158942&Print=true&NoPrintHeader=true&NoPrintFooter=true&NoPrintPageBorder=true&LetterPrint=true ), and it was registered before the start of the patient recruitment on December 12th, 2020 in the Iranian Registry of Clinical Trials (IRCT) with the registration number of IRCT20140208016529N6 .
Collapse
Affiliation(s)
- Hamid Vahedi
- Department of Gastroenterology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Islamic Republic of Iran
| | - Masoumeh Atefi
- Department of Clinical Nutrition, School of Nutrition & Food Science, Isfahan University of Medical Sciences, Isfahan, Islamic Republic of Iran
| | - Mohammad Hassan Entezari
- Food Security Research Centre and Department of Clinical Nutrition, School of Nutrition & Food Science, Isfahan University of Medical Sciences, Isfahan, Islamic Republic of Iran
| | - Akbar Hassanzadeh
- Department of Epidemiology and Biostatistics, School of Health, Isfahan University of Medical Sciences, Isfahan, Islamic Republic of Iran
| |
Collapse
|
4
|
Beloucif A, Kechrid Z, Bekada AMA. Effect of Zinc Deficiency on Blood Glucose, Lipid Profile, and Antioxidant Status in Streptozotocin Diabetic Rats and the Potential Role of Sesame Oil. Biol Trace Elem Res 2022; 200:3236-3247. [PMID: 34613584 DOI: 10.1007/s12011-021-02934-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 09/20/2021] [Indexed: 02/08/2023]
Abstract
Zinc is recognized to have a crucial function in insulin production. As a result, its absence may have a deleterious impact on the progression of diabetes and associated consequences. So, this study was undertaken to evaluate the effect of sesame oil on biochemical parameters, zinc status, and oxidative stress biomarkers in streptozotocin (STZ)-induced diabetic rats fed zinc-deficient diet. Rats were divided into four groups. The first group consisted of non-diabetic rats that were fed in a sufficient zinc diet, whereas the second was a diabetic group which received also sufficient zinc diet, while the third and fourth groups were diabetic rats fed in a deficient zinc diet, one was non-treated and the other was treated with sesame oil 6% diet for 27 days. Zinc deficiency has affected the weight of the diabetic animals. It was also noticed that inadequate dietary zinc intake increased concentrations of glucose, cholesterol, triglycerides, malondialdehyde, and transaminases activities. Furthermore, zinc deficiency feed provoked a decrease in zinc level in tissues (femur, liver, and pancreas); glutathione concentration; and lactic dehydrogenase, amylase, catalase, superoxide dismutase, and glutathione-S-transferase activities. However, sesame oil treatment ameliorated all the previous parameters approximately to their normal values. It was found out that sesame oil supplementation is a potent factor in mitigating the oxidative severity of zinc deficiency in diabetes through its effective antioxidant potential.
Collapse
Affiliation(s)
- Afaf Beloucif
- Laboratory of Applied Biochemistry and Microbiology, Department of Biochemistry, Faculty of Sciences, University of Annaba, Annaba, Algeria
| | - Zine Kechrid
- Laboratory of Applied Biochemistry and Microbiology, Department of Biochemistry, Faculty of Sciences, University of Annaba, Annaba, Algeria.
| | - Ahmed Mohamed Ali Bekada
- Laboratory of Food Technology and Nutrition, Department of Biology, Faculty of Sciences, University of Mostaganem, Mostaganem, Algeria
| |
Collapse
|
5
|
Shi L, Karrar E, Liu R, Chang M, Wang X. Comparative effects of sesame lignans (sesamin, sesamolin, and sesamol) on oxidative stress and lipid metabolism in steatosis HepG2 cells. J Food Biochem 2022; 46:e14180. [PMID: 35396857 DOI: 10.1111/jfbc.14180] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 03/19/2022] [Accepted: 03/24/2022] [Indexed: 12/17/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) can be attributed to the imbalance between lipogenesis and lipidolysis in the liver. Sesame lignans (sesamin, sesamolin, and sesamol) are unique bioactive compounds responsible for the nutritional function of sesame oils. However, the preventive effects of three lignans on oxidative stress and lipid metabolism in steatosis HepG2 cells have not been compared. In this study, we investigated the role of sesamin, sesamolin, and sesamol on hepatic lipid accumulation and explored the underlying mechanism via a well-established cell model. The results showed that 3 μg/ml of lignans could decrease the TG/TC contents and alleviate cellular oxidative stress, with an order of the lipid-lowering effect as sesamol > sesamin > sesamolin. The lignan-activated AMPK and PPAR signaling pathways enhanced gene and protein expressions related to fatty acid oxidation, cholesterol efflux, and catabolism. Meanwhile, treatment of the steatosis HepG2 cells with sesamin, sesamolin, and sesamol reduced lipid synthesis and cholesterol uptake, thus lowering intracellular lipogenesis in the process of NAFLD. Our data suggested that sesame lignans can attenuate oxidative stress and regulate lipid metabolism in liver cells, which may be potential therapeutic agents for treating the NAFLD. PRACTICAL APPLICATIONS: The present work demonstrated that sesame lignans can be used for dietary supplements or functional additives with excellent lipid-lowering effects. Furthermore, this study supplied potential molecular mechanisms involved in NAFLD treatment process, and also provided nutritional guidelines for sesame oil evaluation and selection.
Collapse
Affiliation(s)
- Longkai Shi
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Emad Karrar
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ruijie Liu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ming Chang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xingguo Wang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
6
|
Khatun H, Mitra M, Das K, Chattopadhyay A, Nandi DK. Reduction of oxidative stress and apoptosis in hyperlipidemic rats by composite oil (CO) of Sesamum indicum L. and Vicia faba L. MEDITERRANEAN JOURNAL OF NUTRITION AND METABOLISM 2021. [DOI: 10.3233/mnm-200500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND: Hyperlipidemia associated with cardiovascular diseases (CVDs) is a global health issue that can be alleviated by functional foods. OBJECTIVES: The present study aimed to investigate the effect of composite oil (CO) of sesame seed oil (SSiO) and Vicia faba seed oil (SVfO) on inflammatory factors, ROS generation level, and cell apoptosis level on high lipid diet (HLD) induced hyperlipidemic rat model. METHODS: Hyperlipidemic rat model was developed by feeding HLD to the experimental rats for eight weeks. Male albino rats weighing around 200–210 g were randomly divided into three equal groups: group I: control, received a normal diet; group II: received HLD for eight weeks, and group III: received the HLD with CO orally. After 60 days of treatment, the levels of C-reactive protein (CRP), interleukin (IL)-10; tumor necrosis factor (TNF)-α, IL-18, reactive oxygen species (ROS), and cell apoptosis were serially assessed. RESULTS: After eight weeks of CO treatment, TNF- α, IL-18, CRP, and oxidative ROS generation significantly decreased in CO treated group (group III) compared to group II. On the other hand, IL-10 levels significantly increased in CO treated group compared to group II animals. It was also observed that the percentage of the late apoptotic cell reduced considerably in the CO treated group (group III) compared to HLD-fed animals (group II). CONCLUSION: The results indicate that the CO could prevent CVDs via suppressing oxidative stress, and ameliorating inflammation and apoptosis in hyperlipidemic rats.
Collapse
Affiliation(s)
- Holima Khatun
- Department of Nutrition, Raja Narendra Lal Khan Women’s College (Autonomous), India
| | - Mousumi Mitra
- Department of Physiology, Raja Narendra Lal Khan Women’s College (Autonomous), India
| | - Koushik Das
- Department of Nutrition, Belda College, India
| | | | - Dilip Kumar Nandi
- Department of Physiology, Raja Narendra Lal Khan Women’s College (Autonomous), India
| |
Collapse
|
7
|
Su W, Zhang C, Chen F, Sui J, Lu J, Wang Q, Shan Q, Zheng G, Lu J, Sun C, Fan S, Wu D, Zhang Z, Zheng Y. Purple sweet potato color protects against hepatocyte apoptosis through Sirt1 activation in high-fat-diet-treated mice. Food Nutr Res 2020; 64:1509. [PMID: 32110174 DOI: 10.29219/fnr.v64.1509] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/28/2019] [Accepted: 12/22/2019] [Indexed: 12/17/2022] Open
Abstract
Background Recent evidence indicates that the inhibition of hepatocyte apoptosis is possible to develop a potential therapeutic strategy for nonalcoholic fatty liver disease (NAFLD). Our previous work suggested that purple sweet potato color (PSPC), a class of naturally occurring anthocyanins, effectively improved many features of high-fat diet (HFD)-induced NAFLD. However, whether PSPC ameliorates HFD-induced hepatocyte apoptosis has never been investigated. Objective Here we investigated the effects of PSPC on HFD-induced hepatic apoptosis and the mechanisms underlying these effects. Design Mice were divided into four groups: Control group, HFD group, HFD + PSPC group and PSPC group. PSPC was administered by daily oral gavage at doses of 700 mg/kg/day for 20 weeks. EX-527 (a SirT1-selective inhibitor) and Sirt1 siRNA were used to demonstrate the Sirt1 dependence of PSPC-mediated effects on apoptotic and survival signaling pathways in vivo and in vitro. Results Our results showed that PSPC reduced body weights, hepatic triglyceride contents, histopathological lesions and serum ALT levels in a mouse model of NAFLD induced by HFD. Furthermore, PSPC attenuated HFD-induced hepatocyte apoptosis ratio from 7.27 ± 0.92% to 1.79 ± 0.27% in mouse livers, which is insignificant compared with that of controls. Moreover, PSPC activated Sirt1 by boosting NAD+ level in HFD-treated mouse livers. Furthermore, PSPC promoted Sirt1-dependent suppression of P53-mediated apoptotic signaling and activation of Akt survival signaling pathway in HFD-treated mouse livers, which was confirmed by EX527 treatment. Moreover, Sirt1 knockdown abolished these ameliorative effects of PSPC on apoptosis and P53 acetylation and protein expression in PA-treated L02 cells. Ultimately, PSPC reduced Caspase-3 activation and Bax level, and elevated the Bcl-2 level in HFD-treated mouse livers. Conclusion PSPC protected against HFD-induced hepatic apoptosis by promoting Sirt1- dependent inhibition of p53-apoptotic pathway and facilitation of Akt survival pathway. This study indicates that PSPC is a candidate for nutritional intervention of NAFLD.
Collapse
Affiliation(s)
- Weitong Su
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, College of Health Science, Jiangsu Normal University, Xuzhou, Jiangsu Province, P. R. China
| | - Cheng Zhang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, College of Health Science, Jiangsu Normal University, Xuzhou, Jiangsu Province, P. R. China
| | - Feng Chen
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, College of Health Science, Jiangsu Normal University, Xuzhou, Jiangsu Province, P. R. China
| | - Junwen Sui
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, College of Health Science, Jiangsu Normal University, Xuzhou, Jiangsu Province, P. R. China
| | - Jiaqi Lu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, College of Health Science, Jiangsu Normal University, Xuzhou, Jiangsu Province, P. R. China
| | - Qingqing Wang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, College of Health Science, Jiangsu Normal University, Xuzhou, Jiangsu Province, P. R. China
| | - Qun Shan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, College of Health Science, Jiangsu Normal University, Xuzhou, Jiangsu Province, P. R. China
| | - Guihong Zheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, College of Health Science, Jiangsu Normal University, Xuzhou, Jiangsu Province, P. R. China
| | - Jun Lu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, College of Health Science, Jiangsu Normal University, Xuzhou, Jiangsu Province, P. R. China
| | - Chunhui Sun
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, College of Health Science, Jiangsu Normal University, Xuzhou, Jiangsu Province, P. R. China
| | - Shaohua Fan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, College of Health Science, Jiangsu Normal University, Xuzhou, Jiangsu Province, P. R. China
| | - Dongmei Wu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, College of Health Science, Jiangsu Normal University, Xuzhou, Jiangsu Province, P. R. China
| | - Zifeng Zhang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, College of Health Science, Jiangsu Normal University, Xuzhou, Jiangsu Province, P. R. China
| | - Yuanlin Zheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, College of Health Science, Jiangsu Normal University, Xuzhou, Jiangsu Province, P. R. China
| |
Collapse
|
8
|
Guo WL, Chen M, Pan WL, Zhang Q, Xu JX, Lin YC, Li L, Liu B, Bai WD, Zhang YY, Ni L, Rao PF, Lv XC. Hypoglycemic and hypolipidemic mechanism of organic chromium derived from chelation of Grifola frondosa polysaccharide-chromium (III) and its modulation of intestinal microflora in high fat-diet and STZ-induced diabetic mice. Int J Biol Macromol 2020; 145:1208-1218. [DOI: 10.1016/j.ijbiomac.2019.09.206] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 09/23/2019] [Accepted: 09/26/2019] [Indexed: 02/06/2023]
|
9
|
Anti-Inflammatory and Anticancer Properties of Bioactive Compounds from Sesamum indicum L.-A Review. Molecules 2019; 24:molecules24244426. [PMID: 31817084 PMCID: PMC6943436 DOI: 10.3390/molecules24244426] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 11/28/2019] [Accepted: 12/03/2019] [Indexed: 12/24/2022] Open
Abstract
The use of foodstuff as natural medicines has already been established through studies demonstrating the pharmacological activities that they exhibit. Knowing the nutritional and pharmacological significance of foods enables the understanding of their role against several diseases. Among the foods that can potentially be considered as medicine, is sesame or Sesamum indicum L., which is part of the Pedaliaceae family and is composed of its lignans such as sesamin, sesamol, sesaminol and sesamolin. Its lignans have been widely studied and are known to possess antiaging, anticancer, antidiabetes, anti-inflammatory and antioxidant properties. Modern chronic diseases, which can transform into clinical diseases, are potential targets of these lignans. The prime example of chronic diseases is rheumatic inflammatory diseases, which affect the support structures and the organs of the body and can also develop into malignancies. In line with this, studies emphasizing the anti-inflammatory and anticancer activities of sesame have been discussed in this review.
Collapse
|
10
|
Eweda SM, Newairy ASA, Abdou HM, Gaber AS. Bisphenol A-induced oxidative damage in the hepatic and cardiac tissues of rats: The modulatory role of sesame lignans. Exp Ther Med 2019; 19:33-44. [PMID: 31853270 PMCID: PMC6909485 DOI: 10.3892/etm.2019.8193] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 05/31/2019] [Indexed: 12/29/2022] Open
Abstract
Bisphenol A (BPA) is an environmental pollutant that is widely produced throughout the world. It is primarily used in the manufacture of polycarbonate plastics, epoxy resins, paints and dental materials. BPA has been reported to promote hepatotoxicity and cardiotoxicity. The antioxidant activity of sesame lignans is well established. The current study assessed the protective efficiency of sesame lignans against BPA-induced hepatotoxicity and cardiotoxicity. Rats were divided into 4 groups: A control group, a BPA-treated group, a sesame lignans-treated group and a sesame lignans and BPA-treated group. Rats were orally administered their respective doses daily [30 mg/kg body weight (BW) BPA and/or 20 mg/kg BW sesame lignans] for 6 weeks. Liver function tests were performed using serum of all groups. Lipid profile and antioxidant status were also measured in liver tissue of the studied groups. The results were confirmed by histopathological examination of liver and heart tissues. The oral administration of BPA was revealed to elicit significant decreases in the activities of hepatic glutathione peroxidase, glutathione reductase, superoxide dismutase and glutathione. It also significantly increased levels of malondialdehyde. Furthermore, BPA-treatment resulted in lipid accumulation, elevated activities of alanine aminotransferase, creatine kinase MB and lactate dehydrogenase, and histological changes of liver and heart tissues. However, the co-administration of sesame lignans and BPA attenuated hepatotoxicity, cardiotoxicity and BPA-induced histological changes. The results of the current study indicated that sesame lignans may be helpful in the development of novel natural drugs to treat hepatic and cardiovascular disorders.
Collapse
Affiliation(s)
- Saber M Eweda
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Taibah University, Medina 42353, Kingdom of Saudi Arabia.,Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria 21561, Egypt
| | - Al Sayeda A Newairy
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Taibah University, Medina 42353, Kingdom of Saudi Arabia
| | - Heba M Abdou
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21561, Egypt
| | - Assmaa S Gaber
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Taibah University, Medina 42353, Kingdom of Saudi Arabia
| |
Collapse
|
11
|
Sung J, Ho CT, Wang Y. Preventive mechanism of bioactive dietary foods on obesity-related inflammation and diseases. Food Funct 2018; 9:6081-6095. [DOI: 10.1039/c8fo01561a] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review focuses on the molecular biological mechanism of obesity-induced inflammation and the reciprocal interactions between the major molecular mechanisms and a range of dietary bioactive compounds.
Collapse
Affiliation(s)
- Jeehye Sung
- Food Science and Human Nutrition
- Citrus Research and Education Center, University of Florida
- 700 Experiment Station Rd, Lake Alfred
- USA
| | - Chi-Tang Ho
- Department of Food Science
- Rutgers University
- New Brunswick
- USA
| | - Yu Wang
- Food Science and Human Nutrition
- Citrus Research and Education Center, University of Florida
- 700 Experiment Station Rd, Lake Alfred
- USA
| |
Collapse
|
12
|
Guo X, Zhang T, Shi L, Gong M, Jin J, Zhang Y, Liu R, Chang M, Jin Q, Wang X. The relationship between lipid phytochemicals, obesity and its related chronic diseases. Food Funct 2018; 9:6048-6062. [DOI: 10.1039/c8fo01026a] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review focuses on phytochemicals in oils, and summarizes the mechanisms of the anti-obesity effects of these compounds in in vitro studies, animal models, and human trials.
Collapse
|