1
|
Chen YJ, He YH, Lo YH, Yang HS, Abomughaid MM, Kumar KJS, Lin WT. Potato protein hydrolysate inhibits RANKL-induced osteoclast development by inhibiting osteoclastogenic genes via the NF-κB/MAPKs signaling pathways. ENVIRONMENTAL TOXICOLOGY 2024; 39:3991-4003. [PMID: 38606910 DOI: 10.1002/tox.24251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 03/09/2024] [Accepted: 03/14/2024] [Indexed: 04/13/2024]
Abstract
In recent times, there has been growing attention towards exploring the nutritional and functional aspects of potato protein, along with its diverse applications. In the present study, we examined the anti-osteoclast properties of potato protein hydrolysate (PP902) in vitro. Murine macrophages (RAW264.7) were differentiated into osteoclasts by receptor activator of nuclear factor-κB ligand (RANKL), and PP902 was examined for its inhibitory effect. Initially, treatment with PP902 was found to significantly prevent RANKL-induced morphological changes in macrophage cells, as determined by tartrate-resistant acid phosphatase (TRAP) staining analysis. This notion was further supported by F-actin analysis using a confocal microscope. Furthermore, PP902 treatment effectively and dose-dependently down-regulated the expression of RANKL-induced osteoclastogenic marker genes, including TRAP, CTR, RANK, NFATc1, OC-STAMP, and c-Fos. These inhibitory effects were associated with suppressing NF-κB transcriptional activation and subsequent reduced nuclear translocation. The decrease in NF-κB activity resulted from reduced activation of its upstream kinases, including I-κBα and IKKα. Moreover, PP902 significantly inhibited RANKL-induced p38MAPK and ERK1/2 activities. Nevertheless, PP902 treatment prevents RANKL-induced intracellular reactive oxygen species generation via increased HO-1 activity. The combined antioxidant and anti-inflammatory effects of PP902 resulted in significant suppression of osteoclastogenesis, suggesting its potential as an adjuvant therapy for osteoclast-related diseases.
Collapse
Affiliation(s)
- Yi-Ju Chen
- Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Animal Science and Biotechnology, College of Agriculture and Health, Tunghai University, Taichung, Taiwan
| | - Yen-Hua He
- Department of Food Science, College of Agriculture and Health, Tunghai University, Taichung, Taiwan
| | - Yun-Hsin Lo
- Department of Food Science, College of Agriculture and Health, Tunghai University, Taichung, Taiwan
| | - Hong-Siang Yang
- Department of Hospitality Management, College of Agriculture and Health, Tunghai University, Taichung, Taiwan
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, Saudi Arabia
| | - K J Senthil Kumar
- Bachelor Program of Biotechnology and Center for General Education, National Chung Hsing University, Taichung, Taiwan
| | - Wan-Teng Lin
- Department of Hospitality Management, College of Agriculture and Health, Tunghai University, Taichung, Taiwan
- Research and Development Division, Utopia Holiday Hotel Corporation, Taichung, Taiwan
| |
Collapse
|
2
|
Villanueva A, Rivero-Pino F, Martin ME, Gonzalez-de la Rosa T, Montserrat-de la Paz S, Millan-Linares MC. Identification of the Bioavailable Peptidome of Chia Protein Hydrolysate and the In Silico Evaluation of Its Antioxidant and ACE Inhibitory Potential. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3189-3199. [PMID: 38305180 PMCID: PMC10870759 DOI: 10.1021/acs.jafc.3c05331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/03/2024]
Abstract
The incorporation of novel, functional, and sustainable foods in human diets is increasing because of their beneficial effects and environmental-friendly nature. Chia (Salvia hispanica L.) has proved to be a suitable source of bioactive peptides via enzymatic hydrolysis. These peptides could be responsible for modulating several physiological processes if able to reach the target organ. The bioavailable peptides contained in a hydrolysate obtained with Alcalase, as functional foods, were identified using a transwell system with Caco-2 cell culture as the absorption model. Furthermore, 20 unique peptides with a molecular weight lower than 1000 Da and the higher statistical significance of the peptide-precursor spectrum match (-10 log P) were assessed by in silico tools to suggest which peptides could be those exerting the demonstrated bioactivity. From the characterized peptides, considering the molecular features and the results obtained, the peptides AGDAHWTY, VDAHPIKAM, PNYHPNPR, and ALPPGAVHW are anticipated to be contributing to the antioxidant and/or ACE inhibitor activity of the chia protein hydrolysates.
Collapse
Affiliation(s)
- Alvaro Villanueva
- Department
of Food and Health, Instituto de la Grasa
(IG-CSIC), Ctra. Utrera
Km 1, 41013 Seville, Spain
| | - Fernando Rivero-Pino
- Department
of Medical Biochemistry, Molecular Biology, and Immunology, School
of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
- Instituto
de Biomedicina de Sevilla, IBiS/Hospital
Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Av. Manuel Siurot s/n, 41013 Seville, Spain
| | - Maria E. Martin
- Department
of Cell Biology, Faculty of Biology, University
of Seville, Av. Reina
Mercedes s/n, 41012 Seville, Spain
| | - Teresa Gonzalez-de la Rosa
- Department
of Medical Biochemistry, Molecular Biology, and Immunology, School
of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
- Instituto
de Biomedicina de Sevilla, IBiS/Hospital
Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Av. Manuel Siurot s/n, 41013 Seville, Spain
| | - Sergio Montserrat-de la Paz
- Department
of Medical Biochemistry, Molecular Biology, and Immunology, School
of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
- Instituto
de Biomedicina de Sevilla, IBiS/Hospital
Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Av. Manuel Siurot s/n, 41013 Seville, Spain
| | - Maria C. Millan-Linares
- Department
of Food and Health, Instituto de la Grasa
(IG-CSIC), Ctra. Utrera
Km 1, 41013 Seville, Spain
- Department
of Medical Biochemistry, Molecular Biology, and Immunology, School
of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| |
Collapse
|
3
|
Lemus-Conejo A, Rivero-Pino F, Montserrat-de la Paz S, Millan-Linares MC. Nutritional composition and biological activity of narrow-leafed lupins (Lupinus angustifolius L.) hydrolysates and seeds. Food Chem 2023; 420:136104. [PMID: 37059020 DOI: 10.1016/j.foodchem.2023.136104] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/27/2023] [Accepted: 04/01/2023] [Indexed: 04/05/2023]
Abstract
Lupins are an interesting source of nutrients, part of the Fabaceae family. More specifically, narrow-leafed lupin (Lupinus angustifolius L.) is a legume, largely produced in Australia, which is used both for human food and animal fodder. There is a growing interest in plant proteins-derived products due to benefits for the ecosystem and lower production costs compared to traditional animal sources of protein. This review aimed to summarize major and minor chemical components in Lupinus angustifolius L., and potential health benefits of this plant and product thereof. In particular, the protein fraction of Lupinus and their biological properties are described. L. angustifolius seed and proteins by-products can be used as a valuable source of high value-added compounds for diverse food products with the goal to maximize its economic value.
Collapse
|
4
|
Cruz-Chamorro I, Santos-Sánchez G, Álvarez-López AI, Pedroche J, Lardone PJ, Arnoldi A, Lammi C, Carrillo-Vico A. Pleiotropic biological effects of Lupinus spp. protein hydrolysates. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
5
|
Ishaq AR, El-Nashar HAS, Younis T, Mangat MA, Shahzadi M, Ul Haq AS, El-Shazly M. Genus Lupinus (Fabaceae): a review of ethnobotanical, phytochemical and biological studies. J Pharm Pharmacol 2022; 74:1700-1717. [PMID: 36039938 DOI: 10.1093/jpp/rgac058] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/28/2022] [Indexed: 11/14/2022]
Abstract
OBJECTIVES Lupinus is a large and diverse genus comprising approximately 200 species, belonging to the family Fabaceae. Lupinus plants have been used for heart stimulants, nerves, urinary tract infections, skin disorders, and psoriasis in folk medicine. This review aims to recap the traditional medicinal uses, nutritional value, phytochemical profile, and biological activities of Lupinus species. KEY FINDINGS From the literature survey, Lupinus is considered as a factory of various phytochemicals like flavonoids, iso-flavonoids, alkaloids, triterpenoids. The presence of proteins, essential fatty acids, and amino acids, as well as alkaloids, minerals, and dietary fibers, indicated that the plants in this genus had a high nutritional value. The Lupinus extracts displayed promising antidiabetic, anticancer, antimicrobial, antidiabetic, antihypertensive, antioxidant, anti-inflammatory, and antimicrobial activities. CONCLUSIONS The current review provides updated information that could drive the researchers for further studies. The in vitro and in vivo experiments have demonstrated various pharmacological properties. Some pharmacokinetic and toxicological investigations are warranted to ensure its safety and validity for human use.
Collapse
Affiliation(s)
- Ali Raza Ishaq
- Department of Zoology, Government College University Faisalabad, 38000 Punjab, Pakistan.,State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Science, Hubei University, 430062 Wuhan, China
| | - Heba A S El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.,Center of Drug Discovery Research and Development, Ain Shams University, Cairo, Egypt
| | - Tahira Younis
- Department of Zoology, Government College University Faisalabad, 38000 Punjab, Pakistan
| | - Muhammad Asad Mangat
- Department of Zoology, Government College University Faisalabad, 38000 Punjab, Pakistan
| | - Mashal Shahzadi
- Department of Zoology, Government College University Faisalabad, 38000 Punjab, Pakistan
| | | | - Mohamed El-Shazly
- Center of Drug Discovery Research and Development, Ain Shams University, Cairo, Egypt.,Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835 Cairo, Egypt
| |
Collapse
|
6
|
Okagu IU, Aham EC, Ezeorba TPC, Ndefo JC, Aguchem RN, Udenigwe CC. Osteo‐modulatory dietary proteins and peptides: A concise review. J Food Biochem 2022; 46:e14365. [DOI: 10.1111/jfbc.14365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/20/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022]
Affiliation(s)
| | - Emmanuel Chigozie Aham
- Department of Biochemistry, Faculty of Biological Sciences University of Nigeria Nsukka Nigeria
| | | | - Joseph Chinedum Ndefo
- Department of Science Laboratory Technology Faculty of Physical Sciences, University of Nigeria Nsukka Nigeria
| | - Rita Ngozi Aguchem
- Department of Biochemistry, Faculty of Biological Sciences University of Nigeria Nsukka Nigeria
| | - Chibuike C. Udenigwe
- School of Nutrition Sciences, Faculty of Health Sciences University of Ottawa Ottawa Ontario Canada
| |
Collapse
|
7
|
Sayed-Ahmed ETA, Salah KBH, El-Mekkawy RM, Rabie NA, Ashkan MF, Alamoudi SA, Alruhaili MH, Al Jaouni SK, Almuhayawi MS, Selim S, Saad AM, Namir M. The Preservative Action of Protein Hydrolysates from Legume Seed Waste on Fresh Meat Steak at 4 °C: Limiting Unwanted Microbial and Chemical Fluctuations. Polymers (Basel) 2022; 14:polym14153188. [PMID: 35956703 PMCID: PMC9371118 DOI: 10.3390/polym14153188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/24/2022] [Accepted: 07/28/2022] [Indexed: 02/04/2023] Open
Abstract
Valorizing agricultural wastes to preserve food or to produce functional food is a general trend regarding the global food shortage. Therefore, natural preservatives were developed from the seed waste of the cluster bean and the common bean to extend the shelf life of fresh buffalo meat steak and boost its quality via immersion in high-solubility peptides, cluster bean protein hydrolysate (CBH), and kidney bean protein hydrolysate (RCH). The CBH and the RCH were successfully obtained after 60 min of pepsin hydrolysis with a hydrolysis degree of 27−30%. The SDS-PAGE electropherogram showed that at 60 min of pepsin hydrolysis, the CBH bands disappeared, and RCH (11−48 kD bands) nearly disappeared, assuring the high solubility of the obtained hydrolysates. The CBH and the RCH have considerable antioxidant activity compared to ascorbic acid, antimicrobial activity against tested microorganisms compared to antibiotics, and significant functional properties. The CBH and the RCH (500 µg/mL) successfully scavenged 93 or 89% of DPPH radicals. During the 30-day cold storage (4 °C), the quality of treated and untreated fresh meat steaks was monitored. Protein hydrolysates (500 g/g) inhibited lipid oxidation by 130−153% compared to the control and nisin and eliminated 31−55% of the bacterial load. The CBH and the RCH (500 µg/g) significantly enhanced meat redness (a* values). The protein maintained 80−90% of the steak’s flavor and color (p < 0.05). In addition, it increased the juiciness of the steak. CBH and RCH are ways to valorize wastes that can be safely incorporated into novel foods.
Collapse
Affiliation(s)
| | - Karima Bel Hadj Salah
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
- Laboratory of Transmissible Diseases and Biologically Active Substances, Faculty of Pharmacy, University of Monastir, Monastir 5089, Tunisia
| | - Rasha M. El-Mekkawy
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig 44511, Egypt
| | - Nourhan A. Rabie
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Mada F. Ashkan
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Soha A. Alamoudi
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Mohammed H. Alruhaili
- Medical Microbiology and Parasitology Department, Faculty of Medicine, King AbdulAziz University, Jeddah 21589, Saudi Arabia
| | - Soad K. Al Jaouni
- Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammed S. Almuhayawi
- Medical Microbiology and Parasitology Department, Faculty of Medicine, King AbdulAziz University, Jeddah 21589, Saudi Arabia
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
- Correspondence: (S.S.); (A.M.S.)
| | - Ahmed M. Saad
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
- Correspondence: (S.S.); (A.M.S.)
| | - Mohammad Namir
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
8
|
Bioactive Peptides from Lupinus spp. Seed Proteins-State-of-the-Art and Perspectives. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12083766] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nowadays, the search for food-suitable plant proteins is a great challenge. In addition to their sustainability and nutritional value, the focus is more and more on possible positive interactions with human health. To date, the presence of bioactive peptides encrypted in the structure of protein opens new perspectives, addressing the food industry’s request for new ingredients with technological properties and also the nutraceutical and pharmaceutical sectors based on multifunctional health applications. Lupinus is a sustainable genus of the legume family Fabaceae, and the lupin seed-derived bioactive peptides have demonstrated different effects including anti-inflammatory, antidiabetic, antioxidant, antibacterial, hypocholesterolemic, and antihypertensive activities. This review aims to discuss the current knowledge on lupin protein and their bioactive peptides, highlighting the documented health claims, but also the possibility of allergenicity and the work to be done for the development of new functional products.
Collapse
|
9
|
Santos-Sánchez G, Cruz-Chamorro I, Bollati C, Bartolomei M, Pedroche J, Millán F, Millán-Linares MDC, Capriotti AL, Cerrato A, Laganà A, Arnoldi A, Carrillo-Vico A, Lammi C. A Lupinus angustifolius protein hydrolysate exerts hypocholesterolemic effects in Western diet-fed ApoE -/- mice through the modulation of LDLR and PCSK9 pathways. Food Funct 2022; 13:4158-4170. [PMID: 35316320 DOI: 10.1039/d1fo03847h] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Lupin protein hydrolysates (LPHs) are gaining attention in the food and nutraceutical industries due to their several beneficial health effects. Recently, we have shown that LPH treatment reduces liver cholesterol and triglyceride levels in hypercholesterolemic mice. The aim of this study was to elucidate the effects of LPH treatment on the molecular mechanism underlying liver cholesterol metabolism in ApoE-/- mice fed the Western diet. After identifying the composition of the peptide within the LPH mixture and determining its ability to reduce HMGCoAR activity in vitro, its effect on the LDLR and PCSK9 pathways was measured in liver tissue from the same mice. Thus, the LPH reduced the protein levels of HMGCoAR and increased the phosphorylated inactive form of HMGCoAR and the pHMGCoAR/HMGCoAR ratio, which led to the deactivation of de novo cholesterol synthesis. Furthermore, the LPH decreased the protein levels of SREBP2, a key upstream transcription factor involved in the expression of HMGCoAR and LDLR. Consequently, LDLR protein levels decreased in the liver of LPH-treated animals. Interestingly, the LPH also increased the protein levels of pAMPK responsible for HMGCoAR phosphorylation. Furthermore, the LPH controlled the PSCK9 signal pathway by decreasing its transcription factor, the HNF1-α protein. Consequently, lower PSCK9 protein levels were found in the liver of LPH-treated mice. This is the first study elucidating the molecular mechanism at the basis of the hypocholesterolemic effects exerted by the LPH in an in vivo model. All these findings point out LPHs as a future lipid-lowering ingredient to develop new functional foods.
Collapse
Affiliation(s)
- Guillermo Santos-Sánchez
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy. .,Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Universidad de Sevilla, 41009 Seville, Spain. .,Instituto de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC), 41013 Seville, Spain
| | - Ivan Cruz-Chamorro
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy. .,Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Universidad de Sevilla, 41009 Seville, Spain. .,Instituto de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC), 41013 Seville, Spain
| | - Carlotta Bollati
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy.
| | - Martina Bartolomei
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy.
| | - Justo Pedroche
- Department of Food & Health, Instituto de la Grasa, CSIC, Ctra, Utrera Km 1, 41013 Seville, Spain
| | - Francisco Millán
- Department of Food & Health, Instituto de la Grasa, CSIC, Ctra, Utrera Km 1, 41013 Seville, Spain
| | - María Del Carmen Millán-Linares
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Universidad de Sevilla, 41009 Seville, Spain. .,Department of Food & Health, Instituto de la Grasa, CSIC, Ctra, Utrera Km 1, 41013 Seville, Spain
| | - Anna Laura Capriotti
- Dipartimento di Chimica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Andrea Cerrato
- Dipartimento di Chimica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Aldo Laganà
- Dipartimento di Chimica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Anna Arnoldi
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy.
| | - Antonio Carrillo-Vico
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Universidad de Sevilla, 41009 Seville, Spain. .,Instituto de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC), 41013 Seville, Spain
| | - Carmen Lammi
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy.
| |
Collapse
|
10
|
Villanueva-Lazo A, Montserrat-de la Paz S, Grao-Cruces E, Pedroche J, Toscano R, Millan F, Millan-Linares MC. Antioxidant and Immunomodulatory Properties of Chia Protein Hydrolysates in Primary Human Monocyte-Macrophage Plasticity. Foods 2022; 11:foods11050623. [PMID: 35267256 PMCID: PMC8909891 DOI: 10.3390/foods11050623] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 02/04/2023] Open
Abstract
Chia (Salvia hispanica L.) seed has high potential in the development of functional food due to its protein content with a special amino acid profile. Among the hematopoietic-derived cells, monocytes are endowed with high plasticity, responsible for their pro- and anti-inflammatory function in M1 and M2 phenotype polarization, respectively. Indeed, monocytes are involved in several oxidative- and inflammatory-associated disorders such as cancer, obesity, and cardiovascular and neurodegenerative diseases. This study was designed to investigate the role of chia protein hydrolysates (CPHs) in primary human monocyte–macrophage plasticity response using biochemical, RT-qPCR, and ELISA assays. Our results showed that CPHs reduce ROS and nitrite output, as pro-inflammatory cytokine secretion, and enhance the expression and release of anti-inflammatory cytokines. In addition, CPHs reverse LPS-associated M1 polarization into M2. These findings open new opportunities for developing nutritional strategies with chia as a dietary source of biopeptides to prevent the development and progression of oxidative- and inflammatory-related diseases.
Collapse
Affiliation(s)
- Alvaro Villanueva-Lazo
- Plant Protein Group, Department of Food and Health, Instituto de la Grasa-CSIC, Carretera de Utrera Km 1, Campus Universitario Pablo de Olavide, Edificio 46, 41013 Seville, Spain; (A.V.-L.); (J.P.); (F.M.)
| | - Sergio Montserrat-de la Paz
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Universidad de Sevilla, Av. Dr. Fedriani 3, 41071 Seville, Spain; (E.G.-C.); (R.T.); (M.C.M.-L.)
- Correspondence:
| | - Elena Grao-Cruces
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Universidad de Sevilla, Av. Dr. Fedriani 3, 41071 Seville, Spain; (E.G.-C.); (R.T.); (M.C.M.-L.)
| | - Justo Pedroche
- Plant Protein Group, Department of Food and Health, Instituto de la Grasa-CSIC, Carretera de Utrera Km 1, Campus Universitario Pablo de Olavide, Edificio 46, 41013 Seville, Spain; (A.V.-L.); (J.P.); (F.M.)
| | - Rocio Toscano
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Universidad de Sevilla, Av. Dr. Fedriani 3, 41071 Seville, Spain; (E.G.-C.); (R.T.); (M.C.M.-L.)
| | - Francisco Millan
- Plant Protein Group, Department of Food and Health, Instituto de la Grasa-CSIC, Carretera de Utrera Km 1, Campus Universitario Pablo de Olavide, Edificio 46, 41013 Seville, Spain; (A.V.-L.); (J.P.); (F.M.)
| | - Maria C. Millan-Linares
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Universidad de Sevilla, Av. Dr. Fedriani 3, 41071 Seville, Spain; (E.G.-C.); (R.T.); (M.C.M.-L.)
| |
Collapse
|
11
|
Martinez-Lopez A, Rivero-Pino F, Villanueva A, Toscano R, Grao-Cruces E, Marquez-Paradas E, Martin ME, Montserrat-de la Paz S, Millan-Linares MC. Kiwicha ( Amaranthus caudatus L.) protein hydrolysates reduce intestinal inflammation by modulating the NLRP3 inflammasome pathway. Food Funct 2022; 13:11604-11614. [DOI: 10.1039/d2fo02177c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amaranthus caudatus hydrolysates are investigated as a valuable source of active peptides able to take part as functional ingredients in food and nutraceutical preparations to prevent intestinal inflammation.
Collapse
Affiliation(s)
- Alicia Martinez-Lopez
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Fernando Rivero-Pino
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Alvaro Villanueva
- Department of Food & Health, Instituto of Fat (IG-CSIC), Ctra. Utrera Km 1, 41013 Seville, Spain
| | - Rocio Toscano
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Elena Grao-Cruces
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Elvira Marquez-Paradas
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Maria E. Martin
- Department of Cell Biology, Faculty of Biology, University of Seville, Av. Reina Mercedes s/n, 41012 Seville, Spain
| | - Sergio Montserrat-de la Paz
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Maria C. Millan-Linares
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| |
Collapse
|
12
|
Montserrat-de la Paz S, Villanueva A, Pedroche J, Millan F, Martin ME, Millan-Linares MC. Antioxidant and Anti-Inflammatory Properties of Bioavailable Protein Hydrolysates from Lupin-Derived Agri-Waste. Biomolecules 2021; 11:1458. [PMID: 34680091 PMCID: PMC8533297 DOI: 10.3390/biom11101458] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 12/19/2022] Open
Abstract
Agri-food industries generate several by-products, including protein-rich materials currently treated as waste. Lupine species could be a sustainable alternative source of protein compared to other crops such as soybean or chickpea. Protein hydrolysates contain bioactive peptides that may act positively in disease prevention or treatment. Inflammatory responses and oxidative stress underlie many chronic pathologies and natural treatment approaches have gained attention as an alternative to synthetic pharmaceuticals. Recent studies have shown that lupin protein hydrolysates (LPHs) could be an important source of biopeptides, especially since they demonstrate anti-inflammatory properties. However, due to their possible degradation by digestive and brush-border enzymes, it is not clear whether these peptides can resist intestinal absorption and reach the bloodstream, where they may exert their biological effects. In this work, the in vitro cellular uptake/transport and the anti-inflammatory and antioxidant properties of LPH were investigated in a co-culture system with intestinal epithelial Caco-2 cells and THP-1-derived macrophages. The results indicate that the LPH crosses the human intestinal Caco-2 monolayer and exerts anti-inflammatory activity in macrophages located in the basement area by decreasing mRNA levels and the production of pro-inflammatory cytokines. A remarkable reduction in nitric oxide and ROS in the cell-based system by peptides from LPH was also demonstrated. Our preliminary results point to underexplored protein hydrolysates from food production industries as a novel, natural source of high-value-added biopeptides.
Collapse
Affiliation(s)
- Sergio Montserrat-de la Paz
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, Universidad de Sevilla, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain;
| | - Alvaro Villanueva
- Plant Protein Group, Food and Health Department, Instituto de la Grasa, CSIC. Ctra. de Utrera Km. 1, 41013 Seville, Spain; (A.V.); (J.P.); (F.M.); (M.C.M.-L.)
| | - Justo Pedroche
- Plant Protein Group, Food and Health Department, Instituto de la Grasa, CSIC. Ctra. de Utrera Km. 1, 41013 Seville, Spain; (A.V.); (J.P.); (F.M.); (M.C.M.-L.)
| | - Francisco Millan
- Plant Protein Group, Food and Health Department, Instituto de la Grasa, CSIC. Ctra. de Utrera Km. 1, 41013 Seville, Spain; (A.V.); (J.P.); (F.M.); (M.C.M.-L.)
| | - Maria E. Martin
- Department of Cell Biology, Faculty of Biology, Universidad de Sevilla, Av. Reina Mercedes s/n, 41012 Seville, Spain
| | - Maria C. Millan-Linares
- Plant Protein Group, Food and Health Department, Instituto de la Grasa, CSIC. Ctra. de Utrera Km. 1, 41013 Seville, Spain; (A.V.); (J.P.); (F.M.); (M.C.M.-L.)
- Cell Biology Unit, Instituto de la Grasa, CSIC. Ctra. de Utrera Km. 1, 41013 Seville, Spain
| |
Collapse
|
13
|
Okagu IU, Ndefo JC, Aham EC, Obeme-Nmom JI, Agboinghale PE, Aguchem RN, Nechi RN, Lammi C. Lupin-Derived Bioactive Peptides: Intestinal Transport, Bioavailability and Health Benefits. Nutrients 2021; 13:nu13093266. [PMID: 34579144 PMCID: PMC8469740 DOI: 10.3390/nu13093266] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/11/2021] [Accepted: 09/16/2021] [Indexed: 12/15/2022] Open
Abstract
There is a renewed interest on the reliance of food-based bioactive compounds as sources of nutritive factors and health-beneficial chemical compounds. Among these food components, several proteins from foods have been shown to promote health and wellness as seen in proteins such as α/γ-conglutins from the seeds of Lupinus species (Lupin), a genus of leguminous plant that are widely used in traditional medicine for treating chronic diseases. Lupin-derived peptides (LDPs) are increasingly being explored and they have been shown to possess multifunctional health improving properties. This paper discusses the intestinal transport, bioavailability and biological activities of LDPs, focusing on molecular mechanisms of action as reported in in vitro, cell culture, animal and human studies. The potentials of several LDPs to demonstrate multitarget mechanism of regulation of glucose and lipid metabolism, chemo- and osteoprotective properties, and antioxidant and anti-inflammatory activities position LDPs as good candidates for nutraceutical development for the prevention and management of medical conditions whose etiology are multifactorial.
Collapse
Affiliation(s)
- Innocent U. Okagu
- Department of Biochemistry, University of Nigeria, Nsukka 410001, Nigeria; (I.U.O.); (E.C.A.); (R.N.A.)
| | - Joseph C. Ndefo
- Department of Science Laboratory Technology, University of Nigeria, Nsukka 410001, Nigeria
- Correspondence: (J.C.N.); (C.L.)
| | - Emmanuel C. Aham
- Department of Biochemistry, University of Nigeria, Nsukka 410001, Nigeria; (I.U.O.); (E.C.A.); (R.N.A.)
| | - Joy I. Obeme-Nmom
- Department of Biochemistry, College of Pure and Applied Sciences, Landmark University, PMB 1001, Omu-Aran 251101, Nigeria;
| | | | - Rita N. Aguchem
- Department of Biochemistry, University of Nigeria, Nsukka 410001, Nigeria; (I.U.O.); (E.C.A.); (R.N.A.)
| | - Regina N. Nechi
- Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka 410001, Nigeria;
| | - Carmen Lammi
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milano, Italy
- Correspondence: (J.C.N.); (C.L.)
| |
Collapse
|
14
|
Lemus-Conejo A, Grao-Cruces E, Toscano R, Varela LM, Claro C, Pedroche J, Millan F, Millan-Linares MC, Montserrat-de la Paz S. A lupine (Lupinus angustifolious L.) peptide prevents non-alcoholic fatty liver disease in high-fat-diet-induced obese mice. Food Funct 2021; 11:2943-2952. [PMID: 32267269 DOI: 10.1039/d0fo00206b] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bioactive peptides are related to the prevention and treatment of many diseases. GPETAFLR is an octapeptide that has been isolated from lupine (Lupinus angustifolius L.) and shows anti-inflammatory properties. The aim of this study was to evaluate the potential activity of GPETAFLR to prevent non-alcoholic fatty liver disease (NAFLD) in high-fat-diet (HFD)-induced obese mice. C57BL/6J mice were fed a standard diet or HFD. Two of the groups fed the HFD diet were treated with GPETAFLR in drinking water at 0.5 mg kg-1 day-1 or 1 mg kg-1 day-1. To determine the ability of GPETAFLR to improve the onset and progression of non-alcoholic fatty liver disease, histological studies, hepatic enzyme profiles, inflammatory cytokine and lipid metabolism-related genes and proteins were analysed. Our results suggested that HFD-induced inflammatory metabolic disorders were alleviated by treatment with GPETAFLR. In conclusion, dietary lupine consumption can repair HFD-induced hepatic damage possibly via modifications of liver's lipid signalling pathways.
Collapse
Affiliation(s)
- Ana Lemus-Conejo
- Department of Food and Health, Instituto de la Grasa, CSIC. Ctra. de Utrera Km. 1, 41013, Seville, Spain and Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, Universidad de Sevilla. Av. Dr. Fedriani 3, 41071 Seville, Spain
| | - Elena Grao-Cruces
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, Universidad de Sevilla. Av. Dr. Fedriani 3, 41071 Seville, Spain
| | - Rocio Toscano
- Department of Food and Health, Instituto de la Grasa, CSIC. Ctra. de Utrera Km. 1, 41013, Seville, Spain and Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, Universidad de Sevilla. Av. Dr. Fedriani 3, 41071 Seville, Spain
| | - Lourdes M Varela
- Institute de Biomedicine of Seville, Virgen del Rocio University Hospital/CSIC/Department of Medical Physiology and Biophysic, School of Medicine, University of Seville, Av. Dr. Fedriani 3, 41071 Seville, Spain
| | - Carmen Claro
- Department of Pharmacology, Pediatrics, and Radiology, School of Medicine, Universidad de Sevilla, Av. Dr. Fedriani 3, 41071 Seville, Spain
| | - Justo Pedroche
- Department of Food and Health, Instituto de la Grasa, CSIC. Ctra. de Utrera Km. 1, 41013, Seville, Spain
| | - Francisco Millan
- Department of Food and Health, Instituto de la Grasa, CSIC. Ctra. de Utrera Km. 1, 41013, Seville, Spain
| | - Maria C Millan-Linares
- Department of Food and Health, Instituto de la Grasa, CSIC. Ctra. de Utrera Km. 1, 41013, Seville, Spain and Cell Biology Unit, Instituto de la Grasa, CSIC. Ctra. de Utrera Km. 1, 41013, Seville, Spain.
| | - Sergio Montserrat-de la Paz
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, Universidad de Sevilla. Av. Dr. Fedriani 3, 41071 Seville, Spain
| |
Collapse
|
15
|
Pérez-Gregorio R, Soares S, Mateus N, de Freitas V. Bioactive Peptides and Dietary Polyphenols: Two Sides of the Same Coin. Molecules 2020; 25:E3443. [PMID: 32751126 PMCID: PMC7435807 DOI: 10.3390/molecules25153443] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/15/2020] [Accepted: 07/22/2020] [Indexed: 02/06/2023] Open
Abstract
The call for health-promoting nutraceuticals and functional foods containing bioactive compounds is growing. Among the great diversity of functional phytochemicals, polyphenols and, more recently, bioactive peptides have stood out as functional compounds. The amount of an ingested nutrient able to reach the bloodstream and exert the biological activity is a critical factor, and is affected by several factors, such as food components and food processing. This can lead to unclaimed interactions and/or reactions between bioactive compounds, which is particularly important for these bioactive compounds, since some polyphenols are widely known for their ability to interact and/or precipitate proteins/peptides. This review focuses on this important topic, addressing how these interactions could affect molecules digestion, absorption, metabolism and (biological)function. At the end, it is evidenced that further research is needed to understand the true effect of polyphenol-bioactive peptide interactions on overall health outcomes.
Collapse
Affiliation(s)
- Rosa Pérez-Gregorio
- REQUIMTE/LAQV, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 689, 4169-007 Porto, Portugal; (N.M.); (V.d.F.)
| | - Susana Soares
- REQUIMTE/LAQV, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 689, 4169-007 Porto, Portugal; (N.M.); (V.d.F.)
| | | | | |
Collapse
|
16
|
Evaluation of Anti-Inflammatory and Atheroprotective Properties of Wheat Gluten Protein Hydrolysates in Primary Human Monocytes. Foods 2020; 9:foods9070854. [PMID: 32630013 PMCID: PMC7404777 DOI: 10.3390/foods9070854] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/12/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023] Open
Abstract
Bioactive protein hydrolysates have been identified in several sources as possible agents in the prevention and treatment of many diseases. A wheat gluten (WG) concentrate was hydrolyzed by Alcalase under specific conditions. The resulting hydrolysates were evaluated by in vitro cell-free experiments leading to the identification of one bioactive WG protein hydrolysate (WGPH), which was used at 50 and 100 μg/mL on primary human monocytes. Reactive oxygen species (ROS) and nitrite levels and RT-qPCR and ELISA techniques were used to analyze the functional activity of WGPH. Our results showed that WGPH hydrolyzed in 45 min (WGPH45A) down-regulated gene expression of Interleukin (IL)-1β, IL-6, IL-17, and Interferon gamma (IFNγ) and reduced cytokine release in lipopolysaccharide (LPS)-stimulated monocytes. In addition, WGPH45A down-regulated gene-related to atherosclerotic onset. Our results suggest that WGPH45A has a potent anti-inflammatory and atheroprotective properties, reducing the expression of gene-related inflammation and atherosclerosis that could be instrumental in maintaining cardiovascular homeostasis.
Collapse
|
17
|
Lemus-Conejo A, Millan-Linares MDC, Toscano R, Millan F, Pedroche J, Muriana FJG, Montserrat-de la Paz S. GPETAFLR, a peptide from Lupinus angustifolius L. prevents inflammation in microglial cells and confers neuroprotection in brain. Nutr Neurosci 2020; 25:472-484. [DOI: 10.1080/1028415x.2020.1763058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ana Lemus-Conejo
- Plant Protein Group, Instituto de la Grasa, CSIC, Seville, Spain
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
- Laboratory of Cellular and Molecular Nutrition, Instituto de la Grasa, CSIC, Seville, Spain
| | | | - Rocio Toscano
- Plant Protein Group, Instituto de la Grasa, CSIC, Seville, Spain
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - Francisco Millan
- Plant Protein Group, Instituto de la Grasa, CSIC, Seville, Spain
| | - Justo Pedroche
- Plant Protein Group, Instituto de la Grasa, CSIC, Seville, Spain
| | | | - Sergio Montserrat-de la Paz
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| |
Collapse
|
18
|
Montserrat-de la Paz S, Lemus-Conejo A, Toscano R, Pedroche J, Millan F, Millan-Linares MC. GPETAFLR, an octapeptide isolated from Lupinus angustifolius L. protein hydrolysate, promotes the skewing to the M2 phenotype in human primary monocytes. Food Funct 2019; 10:3303-3311. [PMID: 31094410 DOI: 10.1039/c9fo00115h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The present study aimed to test the mechanisms by which GPETAFLR, released from the enzymatic hydrolysis of lupine protein, may modulate the inflammatory response and plasticity in human primary monocytes. Human circulating monocytes and mature macrophages were used to analyze the effects of GPETAFLR on plasticity and inflammatory response using biochemical, flow cytometry, quantitative real-time PCR, and ELISA assays. GPETAFLR skewed the monocyte plasticity towards the anti-inflammatory non-classical CD14+CD16++ monocyte subset and reduced the inflammatory competence of LPS-treated human monocytes diminishing IL-1β, IL-6, and TNF-α and increasing IL-10 production and gene expression. Results showed that GPETAFLR decreased the frequency of the LPS-induced activated monocyte population (CD14++CD16-), diminished monocyte activation involved down-regulation of CCR2 mRNA expression and protein expression, and decreased gene expression of the LPS-induced chemoattractant mediator CCL2. Our findings imply a new understanding of the mechanisms by which GPETAFLR favor a continuous and gradual plasticity process in the human monocyte/macrophage system and offer novel benefits derived from the consumption of Lupinus angustifolius L. in the prevention of inflammatory-related diseases.
Collapse
Affiliation(s)
- Sergio Montserrat-de la Paz
- Department of Medical Biochemistry, Molecular Biology, and Immunology. School of Medicine, Universidad de Sevilla, Av. Dr. Fedriani 3, 41071 Seville, Spain
| | | | | | | | | | | |
Collapse
|
19
|
Lupine protein hydrolysates decrease the inflammatory response and improve the oxidative status in human peripheral lymphocytes. Food Res Int 2019; 126:108585. [DOI: 10.1016/j.foodres.2019.108585] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 07/22/2019] [Accepted: 07/26/2019] [Indexed: 01/04/2023]
|
20
|
Millan-Linares MC, Toscano R, Lemus-Conejo A, Martin ME, Pedroche J, Millan F, Montserrat-de la Paz S. GPETAFLR, a biopeptide from Lupinus angustifolius L., protects against oxidative and inflammatory damage in retinal pigment epithelium cells. J Food Biochem 2019; 43:e12995. [PMID: 31659814 DOI: 10.1111/jfbc.12995] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 06/22/2019] [Accepted: 06/26/2019] [Indexed: 01/23/2023]
Abstract
GPETAFLR, an octapeptide released from the enzymatic hydrolysis of lupine (Lupinus angustifolius L.) protein, has demonstrated anti-inflammatory effect in myeloid lineage. This work aims to evaluate in retinal pigment epithelium (RPE) cells the protective role of GPETAFLR on both oxidative and inflammatory markers known to be involved in age-related macular degeneration (AMD). In comparison with stimulated control cells, GPETAFLR increased glutathione production and diminished the secretion and gene expression of VEFG, IL-1β, IL-6, IFNγ, and TNF-α, as well as reactive oxygen species, and nitrite output. Our findings reveal that GPETAFLR, a novel plant peptide, is able to protect against RPE oxidative stress and inflammation. Taken together, these results strongly support innovative nutritional strategies considering Lupinus angustifolius L. as source of proteins to prevent the onset and progression of AMD. PRACTICAL APPLICATIONS: We reveal a novel nutraceutical impact of GPETAFLR peptide in human RPE cells to prevent oxidative and inflammatory mediators. Our results support that the intake of Lupine angustifolius L., proposed to be a reservoir of GPETAFLR, could lessen the functional decay of RPE cells, leading therefore to a slowdown of the progress of AMD during age. Not only this work, but also future simple clinical studies should raise new nutritional strategies focused on understanding the etiological role of the foods, nutrition, and metabolism in the pathogenesis of ocular disorders.
Collapse
Affiliation(s)
| | - Rocio Toscano
- Department of Food & Health, Instituto de la Grasa, CSIC, Seville, Spain.,Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, Universidad de Sevilla, Seville, Spain
| | - Ana Lemus-Conejo
- Department of Food & Health, Instituto de la Grasa, CSIC, Seville, Spain.,Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, Universidad de Sevilla, Seville, Spain
| | - Maria E Martin
- Department of Cell Biology, Faculty of Biology, Universidad de Sevilla, Seville, Spain
| | - Justo Pedroche
- Department of Food & Health, Instituto de la Grasa, CSIC, Seville, Spain
| | - Francisco Millan
- Department of Food & Health, Instituto de la Grasa, CSIC, Seville, Spain
| | - Sergio Montserrat-de la Paz
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, Universidad de Sevilla, Seville, Spain
| |
Collapse
|