1
|
Singh MP, Vashisht P, Singh L, Awasti N, Sharma S, Mohan C, Singh TP, Sharma S, Shyam S, Charles APR. Donkey milk as a non-bovine alternative: a review of its nutri-functional properties, applications, and challenges. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:1652-1661. [PMID: 39049915 PMCID: PMC11263273 DOI: 10.1007/s13197-024-05939-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/12/2024] [Accepted: 01/29/2024] [Indexed: 07/27/2024]
Abstract
Elevation in incidences of cow milk protein allergies warrants the need to investigate the suitability of non-bovine milk alternatives for human consumption. Donkey milk has emerged as a potential alternative attributed to its benefits to human health. Evidently, it is a great option for infants as it closely resembles human milk. Researchers have also investigated its suitability in producing numerous dairy products. This review discusses the various nutri-functional aspects of donkey milk, its applications and challenges in the manufacturing of infant formula, yogurt, cheese, ice cream, kefir, and fermented milk. Research updates on processing techniques (thermal and non-thermal) for donkey milk preservation are also delineated. Despite abundant nutrients and desirable functional properties, the growth of the donkey milk industry is not significant. This is due to the lower yield, scattered population, and lack of regulatory standards for both products and processing. Recommendation on research gaps and obstacles in its commercialization are also addressed. Graphical abstract
Collapse
Affiliation(s)
- Manan Preet Singh
- Division of Dairy Technology, National Dairy Research Institute, Karnal, Haryana 132001 India
| | | | - Lovepreet Singh
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID USA
| | - Nancy Awasti
- Sensory Scientist, Lactalis, USA, Buffalo, NY 14218 USA
| | | | - Chander Mohan
- Division of Dairy Technology, National Dairy Research Institute, Karnal, Haryana 132001 India
| | - Tejinder Pal Singh
- Department of Dairy Microbiology, College of Dairy Science and Technology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana 125004 India
| | - Sachin Sharma
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID USA
| | | | - Anto Pradeep Raja Charles
- Food Ingredients and Biopolymers Lab, Department of Plant Sciences, North Dakota State University, Fargo, ND 58102 USA
| |
Collapse
|
2
|
Ma M, Luo J, Wang X, Wang N, Wang C, Liu G, Jiang H, Zhang X, Yuan C. Effect of thermal and non-thermal processing methods on the Structural and Functional Properties of Whey Protein from Donkey Milk. J Dairy Sci 2024:S0022-0302(24)01102-0. [PMID: 39218067 DOI: 10.3168/jds.2024-25114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
This study evaluated the impact of thermal, ultrasonication, and UV treatment on the structural and functional properties of whey proteins from donkey milk (DWP). Whey proteins exhibited notable stability in non-heat-treated environments, while their structural and functional characteristics were notably impacted by excessive heat treatment. The application of high-temperature long-time thermal treatment (HTLT) resulted in a decrease in fluorescence intensity, foaming and emulsification stability, and considerable damage to the active components of the proteins. Specifically, the preservation of lysozyme activity was only 23%, and lactoferrin and immunoglobulin G exhibited a significant loss of 70% and 77%, respectively. Non-thermal treatment methods showed superior efficacy in preserving the active components in whey proteins compared with heat treatment. Ultrasonic treatment has demonstrated a notable capability in diminishing protein particle size and turbidity, and UV treatment has been observed to have the ability to oxidize internal disulfide bonds within proteins, consequently augmenting the presence of free sulfhydryl groups, which were beneficial to foaming and emulsification stability. This study not only offers a scientific basis for the processing and application of DWP but also serves as a guide to produce dairy products, aiding in the development of dairy products tailored to specific health functions.
Collapse
Affiliation(s)
- Mengjia Ma
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China 250353
| | - Juanjuan Luo
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China 250353
| | - Xipeng Wang
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China 250353
| | - Ning Wang
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China 250353
| | - Cunfang Wang
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China 250353.
| | - Guiqin Liu
- College of Agronomy, Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, Shandong Donkey Industry Technology Collaborative Innovation Center, Liaocheng University, Liaocheng, Shandong, China, 252000.
| | - Hua Jiang
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China 250353
| | - Xiaoning Zhang
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China 250353
| | - Cunzhong Yuan
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China, 250012.
| |
Collapse
|
3
|
Xu Y, Yu Z, Li S, Zhang T, Zhu F, Gong J. Pouchitis Is Associated with Paneth Cell Dysfunction and Ameliorated by Exogenous Lysosome in a Rat Model Undergoing Ileal Pouch Anal Anastomosis. Microorganisms 2023; 11:2832. [PMID: 38137976 PMCID: PMC10745344 DOI: 10.3390/microorganisms11122832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/05/2023] [Accepted: 11/09/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Pouchitis is a common complication of restorative proctocolectomy and ileal pouch anal anastomosis (IPAA) for ulcerative colitis (UC), significantly affecting the postoperative quality of life. Paneth cells play an important role in the maintenance of gut homeostasis. This study aimed to investigate the role of Paneth cells in the pathogenesis of pouchitis. METHOD Endoscopic biopsies from the pouch body and terminal ileum of UC patients undergoing IPAA with or without pouchitis were obtained to analyze Paneth cell function. Acute pouchitis was induced with 5% dextran sulfate sodium (DSS) for seven consecutive days in a rat model of IPAA. The Paneth cell morphology was examined by immunofluorescence and electron microscopy. The effect of exogenous lysozyme supplementation on pouchitis was also investigated. The fecal microbiota profile after DSS and lysozyme treatment was determined by 16s rRNA ITS2 sequence analysis. RESULT Abnormal mucosal lysozyme expression was observed in patients with pouchitis. The rat model of pouchitis showed increased pouch inflammation, increased CD3+ and CD45+ T cell infiltration, and decreased tight junction proteins, including ZO-1 and Occludin. There is a significant deficiency of Paneth cell-derived lysozyme granules in the rat model of pouchitis. Supplementation with exogenous lysozyme significantly ameliorated pouchitis, lowering the levels of inflammatory cytokines such as TNF-α and IL-6 in the pouch tissue. 16s rRNA analysis revealed a higher Lachnospiraceae level after lysosome treatment. CONCLUSIONS Paneth cell dysfunction is prominent in patients and rat models of pouchitis and may be one of its causes. The decrease in Lachnospiraceae, a characteristic of dysbiosis in pouchitis, could be reserved by lysosome treatment. Lysozyme supplementation shows promise as a novel treatment strategy for pouchitis.
Collapse
Affiliation(s)
| | | | | | | | | | - Jianfeng Gong
- Department of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210093, China; (Y.X.); (Z.Y.); (S.L.); (T.Z.); (F.Z.)
| |
Collapse
|
4
|
Zhang Z, Huang B, Wang Y, Zhu M, Liu G, Wang C. A survey report on the donkey original breeding farms in China: Current aspects and future prospective. Front Vet Sci 2023; 10:1126138. [PMID: 37008357 PMCID: PMC10060844 DOI: 10.3389/fvets.2023.1126138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
Introduction The number of the large-scale donkey breeding farms in China has increased dramatically. However, information regarding the situation of a Chinese donkey population under large-scale donkey breeding farms is limited. Methods This survey report was conducted using questionnaires online to investigate the current situation of the donkey original breeding farms in China, in terms of donkey stock, local breeds, reproductive parameters, growth and lactation performance, and future perspectives. China has developed the donkey reserve system based on national, provincial and non-governmental (self-own) donkey original breeding farms. Results In the present study, a total of 38 donkey original breeding farms concentrated in Northern of China were studied, and 52% of them keep their donkeys with a stocking density of 100-500 donkeys. China is rich in various local donkey breeds, and 16 local donkey breeds including large-sized, medium-sized and small-sized breeds were collected in our survey. Dezhou donkey are prevalent with a percentage of more than 57% of the total donkeys, while the Cullen donkeys belong to small-sized donkey breeds are scare. The reproductive efficiency and donkey productivity were different across donkey farms, indicating potential differences in management and breeding practices between different donkey original breeding farms. The artificial insemination has been performed in these donkey farms with an average proportion of 73%. Regarding the donkey productivity, the national and provincial donkey original breeding farms showed a higher birthweight and fat content in donkey milk than self-own farms. Furthermore, our results indicate that the donkey breeds with different body size also have important influence on the reproduction parameters and donkey productivity, with the large-sized donkeys had better performance compared to the small-sized donkeys. Discussion In summary, our survey provided valuable baseline information on the situation of donkey population dynamics in the donkey original breeding farms. However, further study is required in the future to investigate the factors such as donkey health care, management and nutrition during breeding, fattening and lactation that influence donkey productivity under large-scale farm systems.
Collapse
Affiliation(s)
| | | | | | | | | | - Changfa Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Agricultural Science and Engineering School, Liaocheng University, Liaocheng, China
| |
Collapse
|
5
|
Farias SDS, Dierings AC, Mufalo VC, Sabei L, Parada Sarmiento M, da Silva AN, Ferraz PA, Pugliesi G, Ribeiro CVDM, Oliveira CADA, Zanella AJ. Asinine milk mitigates stress-mediated immune, cortisol and behavioral responses of piglets to weaning: A study to foster future interventions in humans. Front Immunol 2023; 14:1139249. [PMID: 37122716 PMCID: PMC10140756 DOI: 10.3389/fimmu.2023.1139249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/24/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction The present study assessed whether asinine milk supplementation improved the immune and behavioral responses of piglets during an early life weaning stress event as a model for its future use in humans. Methods For this, 48 piglets from 4 different litters were used. At 20 days of age, piglets were weighed and allocated with their litter and dam into group pens until 28 days of age. Four piglets from each litter were then randomly assigned to either (1) asinine milk supplementation (n = 16) (2), skimmed cow milk supplementation (n = 16) or (3) no supplementation (n = 16; control group). The supplementations were voluntarily administered for 3 days preweaning and 3 days postweaning using a baby bottle. The effects on the weaning stress response were assessed through salivary cortisol measurements; behavioral tests such as the open field, novel object end elevated plus maze tests; and gene expression of HSD11B1, NR3C1 and IL1B in PBMCs, which was determined by RT-qPCR and normalized to GAPDH and UBB. To test the effect of the supplementations on weight, milk intake, gene expression, and behavior, a randomized block design was used with repeated measurements over time by the PROC MIXED procedure. Results and discussion The effects on salivary cortisol were determined using the ratio between the morning and afternoon concentrations, considering the time before and after the weaning event. Principal component analysis (PCA) and Fisher's test were performed to evaluate the behavior test data. When comparing salivary cortisol concentrations between the pre- and postweaning periods, there was a difference (p < 0.05) between the supplementation groups in the afternoon period, suggesting that piglets fed asinine milk had lower afternoon cortisol concentrations postweaning than their counterparts. For the behavioral tests, the supplementations had no measurable effects. No difference was between groups pre- and postweaning for the expression of HSD11B2, which codes for an enzyme that breaks down cortisol. However, the expression of NR3C1, which encodes the glucocorticoid receptor, was significantly upregulated in piglets supplemented with cow milk (mean 1.245; p < 0.05). Conclusion Asinine milk downregulated 1L1B gene expression, which codes for an inflammatory cytokine. In conclusion, these results suggest that supplementation with asinine milk may represent a strategy to diminish the damage associated with an early life event by modulating IL1B expression and reducing salivary cortisol levels in piglets undergoing weaning stress. Further transcriptomic and metabolomic studies may improve our understanding of the molecular pathways that mediate this systemic immune-mediated response.
Collapse
Affiliation(s)
- Sharacely de Souza Farias
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
- *Correspondence: Sharacely de Souza Farias, ; Adroaldo José Zanella,
| | - Ana Carolina Dierings
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Vinicius Cardoso Mufalo
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Leandro Sabei
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Marisol Parada Sarmiento
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Arthur Nery da Silva
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Priscila Assis Ferraz
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Guilherme Pugliesi
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Claudio Vaz Di Mambro Ribeiro
- Department of Animal Science, School of Veterinary Medicine and Animal Science, Federal University of Bahia, Salvador, Brazil
| | - Chiara Albano de Araujo Oliveira
- Department of Preventive Veterinary Medicine and Animal Production, School of Veterinary Medicine and Animal Science, Federal University of Bahia, Salvador, Brazil
| | - Adroaldo José Zanella
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
- *Correspondence: Sharacely de Souza Farias, ; Adroaldo José Zanella,
| |
Collapse
|
6
|
Guan B, Gao Y, Chai Y, Xiakouna A, Chen X, Cao X, Yue X. Glycoproteomics reveal differences in site-specific N-glycosylation of whey proteins between donkey colostrum and mature milk. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Miao X, Yu Y, Zhao Z, Wang Y, Qian X, Wang Y, Li S, Wang C. Chromosome-Level Haplotype Assembly for Equus asinu. Front Genet 2022; 13:738105. [PMID: 35692816 PMCID: PMC9186339 DOI: 10.3389/fgene.2022.738105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Haplotype provides significant insights into understanding genomes at both individual and population levels. However, research on many non-model organisms is still based on independent genetic variations due to the lack of haplotype.Results: We conducted haplotype assembling for Equus asinu, a non-model organism that plays a vital role in human civilization. We described the hybrid single individual assembled haplotype of the Dezhou donkey based on the high-depth sequencing data from single-molecule real-time sequencing (×30), Illumina short-read sequencing (×211), and high-throughput chromosome conformation capture (×56). We assembled a near-complete haplotype for the high-depth sequenced Dezhou donkey individual and a phased cohort for the resequencing data of the donkey population.Conclusion: Here, we described the complete chromosome-scale haplotype of the Dezhou donkey with more than a 99.7% phase rate. We further phased a cohort of 156 donkeys to form a donkey haplotype dataset with more than 39 million genetic variations.
Collapse
Affiliation(s)
- Xinyao Miao
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
- Department of Computer Science, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
- College of Forensic & Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Yonghan Yu
- Department of Computer Science, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Zicheng Zhao
- Shenzhen Byoryn Technology Co., Ltd., Shenzhen, China
| | - Yinan Wang
- College of Forensic & Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Xiaobo Qian
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Yonghui Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Shengbin Li
- College of Forensic & Medicine, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Shengbin Li, ; Changfa Wang,
| | - Changfa Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
- *Correspondence: Shengbin Li, ; Changfa Wang,
| |
Collapse
|
8
|
Liu Y, Zhou M, Yang M, Jin C, Song Y, Chen J, Gao M, Ai Z, Su D. Pulsatilla chinensis Saponins Ameliorate Inflammation and DSS-Induced Ulcerative Colitis in Rats by Regulating the Composition and Diversity of Intestinal Flora. Front Cell Infect Microbiol 2021; 11:728929. [PMID: 34804990 PMCID: PMC8602866 DOI: 10.3389/fcimb.2021.728929] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/01/2021] [Indexed: 12/19/2022] Open
Abstract
Pulsatilla chinensis (Bunge) Regel is a commonly used Chinese medicine for clearing away heat and detoxification, cooling blood, stopping dysentery, and anti-inflammatory effects. Pulsatilla chinensis saponins (PRS) have been identified to be responsible for producing these pharmacological activities. Studies have shown that Pulsatilla decoction has a good therapeutic effect on ulcerative colitis (UC), however, the therapeutic effect of PRS on UC has not been reported. Therefore, the purpose of this study was to investigate the possible anti-UC activity of PRS using a dextran sulfate sodium (DSS)-induced rat model, and further study the mechanism of PRS in the treatment of UC. The fecal and colon samples were collected from rats to monitor the changes in the composition and diversity of the intestinal flora, and pathological colon sections were also made to examine the mesenteric hemorheological characteristics. The results showed that PRS significantly reduced the mesenteric blood flow in UC rats and significantly alleviated the inflammatory response, which indicates that saponins are involved in the anti-UC effects of PRS. At the same time, it is also suggested that the regulation of intestinal flora by Pulsatilla chinensis saponins is an important pathway for its anti-UC activity, which may be ascribed to the increase in beneficial bacteria like norank_F_Muribaculaceae and norank_F_norank_O_Clostridia_UCG-014, and decrease in the harmful Bacteroides.
Collapse
Affiliation(s)
- Yali Liu
- Key Laboratory of Depression Animal Model Based on Traditional Chinese Medicine (TCM) Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Impairment, Jiangxi University of Chinese Medicine, Nanchang, China.,Department of Pharmacy, Nanchang Medical College, Nanchang, China
| | - Mingyue Zhou
- Key Laboratory of Depression Animal Model Based on Traditional Chinese Medicine (TCM) Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Impairment, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Ming Yang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, State Key Lab of Innovation Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Chen Jin
- Key Laboratory of Depression Animal Model Based on Traditional Chinese Medicine (TCM) Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Impairment, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yonggui Song
- Key Laboratory of Depression Animal Model Based on Traditional Chinese Medicine (TCM) Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Impairment, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Jingbin Chen
- Key Laboratory of Depression Animal Model Based on Traditional Chinese Medicine (TCM) Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Impairment, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Meng Gao
- Key Laboratory of Depression Animal Model Based on Traditional Chinese Medicine (TCM) Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Impairment, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Zhifu Ai
- Key Laboratory of Depression Animal Model Based on Traditional Chinese Medicine (TCM) Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Impairment, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Dan Su
- Key Laboratory of Depression Animal Model Based on Traditional Chinese Medicine (TCM) Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Impairment, Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
9
|
Gubatan J, Holman DR, Puntasecca CJ, Polevoi D, Rubin SJS, Rogalla S. Antimicrobial peptides and the gut microbiome in inflammatory bowel disease. World J Gastroenterol 2021; 27:7402-7422. [PMID: 34887639 PMCID: PMC8613745 DOI: 10.3748/wjg.v27.i43.7402] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/13/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023] Open
Abstract
Antimicrobial peptides (AMP) are highly diverse and dynamic molecules that are expressed by specific intestinal epithelial cells, Paneth cells, as well as immune cells in the gastrointestinal (GI) tract. They play critical roles in maintaining tolerance to gut microbiota and protecting against enteric infections. Given that disruptions in tolerance to commensal microbiota and loss of barrier function play major roles in the pathogenesis of inflammatory bowel disease (IBD) and converge on the function of AMP, the significance of AMP as potential biomarkers and novel therapeutic targets in IBD have been increasingly recognized in recent years. In this frontier article, we discuss the function and mechanisms of AMP in the GI tract, examine the interaction of AMP with the gut microbiome, explore the role of AMP in the pathogenesis of IBD, and review translational applications of AMP in patients with IBD.
Collapse
Affiliation(s)
- John Gubatan
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Redwood City, CA 94063, United States
| | - Derek R Holman
- Department of Radiology, Molecular Imaging Program at Stanford , Stanford University, Stanford , CA 94305, United States
| | | | - Danielle Polevoi
- Stanford University School of Medicine, Stanford University, Stanford, CA 94063, United States
| | - Samuel JS Rubin
- Stanford University School of Medicine, Stanford University, Stanford, CA 94063, United States
| | - Stephan Rogalla
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Redwood City, CA 94063, United States
| |
Collapse
|
10
|
Li Y, Ma Q, Liu G, Wang C. Effects of donkey milk on oxidative stress and inflammatory response. J Food Biochem 2021; 46:e13935. [PMID: 34519070 DOI: 10.1111/jfbc.13935] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/20/2021] [Accepted: 08/28/2021] [Indexed: 12/12/2022]
Abstract
Donkey milk is gaining interest as a natural nutritional and medicinal product, mainly because its composition is similar to that of human milk, and it has some potential biological properties, such as antioxidant, anti-inflammatory, antiaging, antimicrobial, and anticancer properties. Considering the increasing prevalence of several chronic diseases related to oxidative stress and inflammation and the multiple beneficial properties and nutritional value of donkey milk, an up-to-date review of the current studies related to the antioxidative and anti-inflammatory abilities of donkey milk is necessary. Therefore, this review aims to discuss the relationship between inflammation and oxidative stress; and to further systematically review the progress of recent research on donkey milk, mainly including its nutritional value and functional properties. Particularly, we highlighted the anti-inflammatory and antioxidative properties of donkey milk using in vitro model, animal model, and the potential role of donkey milk in alleviating some chronic diseases related to inflammation. PRACTICAL APPLICATIONS: This paper was conducted on anti-inflammation and antioxidant activities of donkey milk and its related products, in addition to a summary of the relationship between oxidative stress and inflammation and the value of donkey milk. Donkey milk and its related products have been shown to scavenge reactive oxygen species, activate the antioxidant system, enhance immune function, and maintain the balance of intestinal flora in in vitro and in vivo models. This paper should provide a better understanding of the influences of oxidative stress and inflammation on host health and the biological functions and application of donkey milk, and will provide a certain basis for the nutritional regulation of several chronic diseases related to oxidative stress and inflammation. However, the underlying mechanism is poorly understood. In addition, few clinical studies have been performed to establish its multiple benefits in humans. Further research is warranted to evaluate its impacts on health at molecular levels.
Collapse
Affiliation(s)
- Yan Li
- College of Agronomy, Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, Liaocheng University, Liaocheng, China
| | - Qingshan Ma
- College of Agronomy, Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, Liaocheng University, Liaocheng, China
| | - Guiqin Liu
- College of Agronomy, Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, Liaocheng University, Liaocheng, China
| | - Changfa Wang
- College of Agronomy, Shandong Engineering Technology Research Center for Efficient Breeding and Ecological Feeding of Black Donkey, Liaocheng University, Liaocheng, China
| |
Collapse
|
11
|
Lu Y, Zhou Y, Lin Y, Li W, Tian S, Hao X, Guo H. Preventive effects of donkey milk powder on the ovalbumin-induced asthmatic mice. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
12
|
Martini M, Altomonte I, Tricò D, Lapenta R, Salari F. Current Knowledge on Functionality and Potential Therapeutic Uses of Donkey Milk. Animals (Basel) 2021; 11:ani11051382. [PMID: 34067986 PMCID: PMC8152225 DOI: 10.3390/ani11051382] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary This paper examines scientific evidence on the positive effects of donkey milk consumption on human health and its possible therapeutic applications. The most investigated clinical use of donkey milk is in feeding infants with food allergies, in whom donkey milk is well tolerated in the 82.6–98.5% of cases. Donkey milk has shown several beneficial properties, including immunomodulatory activity, antioxidant and detoxifying effects, modulation of the intestinal microbiota, and lowering of blood sugar and triglycerides, which have been tested almost exclusively in experimental animals. Inhibitory actions on microorganisms have been also observed in vitro studies. This literature review highlights the need for new clinical trials to collect stronger evidence about the positive effects observed in experimental models which could lead to new therapeutic applications of donkey milk in humans. Abstract The increase of knowledge on the composition of donkey milk has revealed marked similarities to human milk, which led to a growing number of investigations focused on testing the potential effects of donkey milk in vitro and in vivo. This paper examines the scientific evidence regarding the beneficial effects of donkey milk on human health. Most clinical studies report a tolerability of donkey milk in 82.6–98.5% of infants with cow milk protein allergies. The average protein content of donkey milk is about 18 g/L. Caseins, which are main allergenic components of milk, are less represented compared to cow milk (56% of the total protein in donkey vs. 80% in cow milk). Donkey milk is well accepted by children due to its high concentration of lactose (about 60 g/L). Immunomodulatory properties have been reported in one study in humans and in several animal models. Donkey milk also seems to modulate the intestinal microbiota, enhance antioxidant defense mechanisms and detoxifying enzymes activities, reduce hyperglycemia and normalize dyslipidemia. Donkey milk has lower calorie and fat content compared with other milks used in human nutrition (fat ranges from 0.20% to 1.7%) and a more favourable fatty acid profile, being low in saturated fatty acids (3.02 g/L) and high in alpha-linolenic acid (about 7.25 g/100 g of fat). Until now, the beneficial properties of donkey milk have been mostly related to whey proteins, among which β-lactoglobulin is the most represented (6.06 g/L), followed by α-lactalbumin (about 2 g/L) and lysozyme (1.07 g/L). So far, the health functionality of donkey milk has been tested almost exclusively on animal models. Furthermore, in vitro studies have described inhibitory action against bacteria, viruses, and fungi. From the literature review emerges the need for new randomized clinical trials on humans to provide stronger evidence of the potential beneficial health effects of donkey milk, which could lead to new applications as an adjuvant in the treatment of cardiometabolic diseases, malnutrition, and aging.
Collapse
Affiliation(s)
- Mina Martini
- Department of Veterinary Science, University of Pisa, 56124 Pisa, Italy; (M.M.); (R.L.); (F.S.)
- Interdepartmental Center for Agricultural and Environmental Research “E. Avanzi,”, University of Pisa, San Piero a Gardo (PI), 56122 Pisa, Italy
| | - Iolanda Altomonte
- Interdepartmental Center for Agricultural and Environmental Research “E. Avanzi,”, University of Pisa, San Piero a Gardo (PI), 56122 Pisa, Italy
- Correspondence:
| | - Domenico Tricò
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, 56100 Pisa, Italy;
| | - Riccardo Lapenta
- Department of Veterinary Science, University of Pisa, 56124 Pisa, Italy; (M.M.); (R.L.); (F.S.)
| | - Federica Salari
- Department of Veterinary Science, University of Pisa, 56124 Pisa, Italy; (M.M.); (R.L.); (F.S.)
| |
Collapse
|
13
|
Li Q, Li M, Zhang J, Shi X, Yang M, Zheng Y, Cao X, Yue X, Ma S. Donkey milk inhibits triple-negative breast tumor progression and is associated with increased cleaved-caspase-3 expression. Food Funct 2021; 11:3053-3065. [PMID: 32191229 DOI: 10.1039/c9fo02934f] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Donkey milk is considered an ideal substitute for human milk and is considered a potential complementary dairy product for the treatment of a variety of human diseases, including cancer. The purpose of this study was to investigate the inhibitory effect of donkey colostrum (DC) and mature milk (DM) on 4T1 triple-negative breast cancer (TNBC) tumors in mice. Metabolomics analyses showed that a total of 476 possible metabolites were found in both types of milk. Among them, 34 differential metabolites were identified, including 25 up-regulated and 9 down-regulated metabolites in the DC compared with DM. Both DC and DM are rich in many known anticancer constituents. The inhibitory effects of DC and DM on 4T1 primary tumors and the relative organ weight of the liver and lungs were determined by measuring the volume of primary tumors and weighing the liver and lungs. Both DC and DM significantly reduced both the primary tumor size and relative organ weight of the liver and lungs in 4T1 mice without affecting the bodyweight of mice. When the expression of cleaved caspase-3, Bax, and MMP2 was investigated by immunohistochemistry, the results showed that DC and DM inhibited the progression of 4T1 tumors by inducing the expression of cleaved-caspase-3 and Bax, and inhibiting the expression of MMP2 and CD31. Our data suggest that DC and DM inhibit the growth and metastasis of mouse 4T1 tumors by inducing apoptosis.
Collapse
Affiliation(s)
- Qilong Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China. and College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Mohan Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Juan Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Xinyang Shi
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Mei Yang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Yan Zheng
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Xueyan Cao
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Shiliang Ma
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| |
Collapse
|
14
|
Mei F, Meng K, Gu Z, Yun Y, Zhang W, Zhang C, Zhong Q, Pan F, Shen X, Xia G, Chen H. Arecanut ( Areca catechu L.) Seed Polyphenol-Ameliorated Osteoporosis by Altering Gut Microbiome via LYZ and the Immune System in Estrogen-Deficient Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:246-258. [PMID: 33382620 DOI: 10.1021/acs.jafc.0c06671] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Polyphenol can improve osteoporosis and is closely associated with gut microbiota, while the mechanism and the relationship among polyphenol, osteoporosis, and gut microbiota colonization remain unclear. Here, an osteoporosis rat model established by ovariectomy was employed to investigate the improving mechanism of arecanut (Areca catechu L.) seed polyphenol (ACP) on osteoporosis by regulating gut microbiota. We analyzed the bone microstructure, Paneth cells, regulating microbial protein (lysozyme (LYZ)), proinflammatory cytokines, macrophage infiltration levels, and gut microbial communities in a rat. ACP improved the trabecular microstructure compared to OVX, including the increased trabecular number (Tb.N) (P < 0.01) and trabecular thickness (Tb.Th) (P < 0.001) and decreased trabecular separation (Tb.Sp) (P < 0.01). At the phylum level, Bacteroidetes was increased after ovariectomy (P < 0.001) and Firmicutes and Proteobacteria were increased in ACP (P < 0.001). Antiosteoporosis groups with lower LYZ and Paneth cells (P < 0.001) showed that the microbiota Alistipes, which have a negative effect on bone metabolism were decreased in ACP (P < 0.001). Altogether, these studies showed that the estrogen deficiency could induce the shedding of Paneth cells, which leads to the decrease of LYZ, while ACP could increase the LYZ expression by maintaining the population of Paneth cells in an estrogen-deficient host, which were implicated in gut microbiota regulation and improved osteoporosis by controlling the inflammatory reaction.
Collapse
Affiliation(s)
- Fengfeng Mei
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, China
- College of Food Science and Technology, Hainan University, Haikou, Hainan 570228, China
| | - Keke Meng
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, China
- College of Food Science and Technology, Hainan University, Haikou, Hainan 570228, China
| | - Zhipeng Gu
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, China
- College of Food Science and Technology, Hainan University, Haikou, Hainan 570228, China
| | - Yonghuan Yun
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Haikou 570228, China
| | - Weimin Zhang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Haikou 570228, China
| | - Chenghui Zhang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Haikou 570228, China
| | - Qiuping Zhong
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Haikou 570228, China
| | - Feibing Pan
- Huachuang Institute of Areca Research-Hainan, Haikou, Hainan 570228, China
| | - Xuanri Shen
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Haikou 570228, China
- College of Food Science and Technology, Hainan University, Haikou, Hainan 570228, China
| | - Guanghua Xia
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Haikou 570228, China
- College of Food Science and Technology, Hainan University, Haikou, Hainan 570228, China
- Huachuang Institute of Areca Research-Hainan, Haikou, Hainan 570228, China
| | - Haiming Chen
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, Haikou 570228, China
- College of Food Science and Technology, Hainan University, Haikou, Hainan 570228, China
- Huachuang Institute of Areca Research-Hainan, Haikou, Hainan 570228, China
| |
Collapse
|
15
|
Lei L, Li X, Yuan YJ, Chen ZL, He JH, Wu JH, Cai XS. Inhibition of proprotein convertase subtilisin/kexin type 9 attenuates 2,4,6-trinitrobenzenesulfonic acid-induced colitis via repressing toll-like receptor 4/nuclear factor-kappa B. Kaohsiung J Med Sci 2020; 36:705-711. [PMID: 32396274 DOI: 10.1002/kjm2.12225] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/13/2020] [Accepted: 04/16/2020] [Indexed: 12/16/2022] Open
Abstract
Inflammatory bowel disease (IBD) is characterized by recurring inflammatory disorders in digestive system, and devoid of effective treatment. Proprotein convertase subtilisin/kexin type 9 (PCSK9), stimulated via inflammation whose inhibition could decrease secretion of inflammatory factors. We then determined whether inhibition of PCSK9 could improve the inflammation. First, rats model of colitis was first established via administration of 2,4,6-trinitrobenzenesulfonic acid (TNBS), and then verified via determination of body weight loss, myeloperoxidase (MPO) activity, and histopathological analysis of colonic damage. Results showed that treatment with TNBS induced a great body weight loss, MPO activity increase, and serious colonic damage, showing an obviously character of IBD. PCSK9 was elevated in TNBS-induced rats, and PCSK9 inhibition delivered by adenovirus vector increased the body weight, decreased MPO activity, and ameliorated histological change of colon. Second, the protective effect of PCSK9 inhibition against TNBS-induced colitis was accompanied by decrease of proinflammatory factors secretion, including tumor necrosis factor-α, interleukin-1β, interleukin-6, intercellular adhesion molecule 1, and monocyte chemoattractant protein-1. TNBS could activate toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB) signaling pathway, while PCSK9 inhibition suppressed activation of TLR4/NF-κB in TNBS-induced rats. In conclusion, PCSK9 inhibition attenuated TNBS-induced rat colitis through anti-inflammatory effect under inactivation of TLR4/NF-κB, suggesting potential therapeutic strategy in IBD.
Collapse
Affiliation(s)
- Lei Lei
- GI Medicine, The Central Hospital of Enshi Autonomous Prefecture, Enshi, China
| | - Xu Li
- Cardiothoracic Surgery, The Central Hospital of Enshi Autonomous Prefecture, Enshi, China
| | - You-Jun Yuan
- Department of Emergency, WenZhou Central Hospital, Wenzhou City, China
| | - Zhi-Li Chen
- Department of Emergency, WenZhou Central Hospital, Wenzhou City, China
| | - Jian-Hua He
- GI Medicine, The Central Hospital of Enshi Autonomous Prefecture, Enshi, China
| | - Jian-Hua Wu
- Department of Emergency, WenZhou Central Hospital, Wenzhou City, China
| | - Xiao-Sheng Cai
- Department of Emergency, WenZhou Central Hospital, Wenzhou City, China
| |
Collapse
|
16
|
Li H, Liu F, Lu J, Shi J, Guan J, Yan F, Li B, Huo G. Probiotic Mixture of Lactobacillus plantarum Strains Improves Lipid Metabolism and Gut Microbiota Structure in High Fat Diet-Fed Mice. Front Microbiol 2020; 11:512. [PMID: 32273874 PMCID: PMC7113563 DOI: 10.3389/fmicb.2020.00512] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/10/2020] [Indexed: 12/13/2022] Open
Abstract
The global prevalence of obesity is rising year by year, which has become a public health problem worldwide. In recent years, animal studies and clinical studies have shown that some lactic acid bacteria possess an anti-obesity effect. In our previous study, mixed lactobacilli (Lactobacillus plantarum KLDS1.0344 and Lactobacillus plantarum KLDS1.0386) exhibited anti-obesity effects in vivo by significantly reducing body weight gain, Lee's index and body fat rate; however, its underlying mechanisms of action remain unclear. Therefore, the present study aims to explore the possible mechanisms for the inhibitory effect of mixed lactobacilli on obesity. C57BL/6J mice were randomly divided into three groups including control group (Control), high fat diet group (HFD) and mixed lactobacilli group (MX), and fed daily for eight consecutive weeks. The results showed that mixed lactobacilli supplementation significantly improved blood lipid levels and liver function, and alleviated liver oxidative stress. Moreover, the mixed lactobacilli supplementation significantly inhibited lipid accumulation in the liver and regulated lipid metabolism in epididymal fat pads. Notably, the mixed lactobacilli treatment modulated the gut microbiota, resulting in a significant increase in acetic acid and butyric acid. Additionally, Spearman's correlation analysis found that several specific genera were significantly correlated with obesity-related indicators. These results indicated that the mixed lactobacilli supplementation could manipulate the gut microbiota and its metabolites (acetic acid and butyric acid), resulting in reduced liver lipid accumulation and improved lipid metabolism of adipose tissue, which inhibited obesity.
Collapse
Affiliation(s)
- Huizhen Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
- College of Food, Northeast Agricultural University, Harbin, China
| | - Fei Liu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Jingjing Lu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
- College of Food, Northeast Agricultural University, Harbin, China
| | - Jialu Shi
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
- College of Food, Northeast Agricultural University, Harbin, China
| | - Jiaqi Guan
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
- College of Food, Northeast Agricultural University, Harbin, China
| | - Fenfen Yan
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
- College of Food, Northeast Agricultural University, Harbin, China
| | - Bailiang Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
- College of Food, Northeast Agricultural University, Harbin, China
| | - Guicheng Huo
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
- College of Food, Northeast Agricultural University, Harbin, China
| |
Collapse
|
17
|
Yuan Z, Yang L, Zhang X, Ji P, Wei Y. Therapeutic effect of n-butanol fraction of Huang-lian-Jie-du Decoction on ulcerative colitis and its regulation on intestinal flora in colitis mice. Biomed Pharmacother 2019; 121:109638. [PMID: 31810136 DOI: 10.1016/j.biopha.2019.109638] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/30/2019] [Accepted: 11/01/2019] [Indexed: 02/09/2023] Open
Abstract
Huang-lian-Jie-du Decoction (HLJDD) is a classical prescription for clearing away heat and detoxification. In order to screen the effective fraction of HLJDD in the treatment of ulcerative colitis (UC) in mice and explore its effects on intestinal flora in UC mice, we prepared different polar fractions of HLJDD by system solvent extraction method. Subsequently, the contents of 13 active compounds in different polar fractions of HLJDD were determined by HPLC. Further, the UC model induced by dextran sodium sulfate was used to evaluate the therapeutic effects of different polar fractions of HLJDD. Finally, cecal contents were used for sequencing and analysis of bacterial 16S rRNA genes. The results showed that the yield of HLJDD-n-butanol (HLJDD-NBA) fraction was the highest, and the content or proportion of 13 active compounds in HLJDD-NBA fraction were the most similar to HLJDD. In addition, in vivo pharmacodynamic experiments showed that HLJDD-NBA intervention not only significantly alleviated the clinical symptoms of UC mice and ameliorated the pathological damage of colon tissue, but also showed significant anti-inflammatory and antioxidative effects (p < 0.05), which were comparable to HLJDD (p > 0.05). Moreover, both HLDD and HLJDD-NBA treatments can restore the intestinal flora homeostasis of UC mice by inhibiting the growth of intestinal pathogens and preventing the decrease of beneficial bacteria. Meanwhile, they can also significantly correct the dysfunction of intestinal flora in UC mice. In conclusion, we proved that HLJDD-NBA fraction is an effective fraction of HLJDD in treating UC in mice, and it can maintain the intestinal flora homeostasis of UC mice, which increases our understanding of the mechanism of HLJDD in treating UC and lays a foundation for the development of new anti-ulcer drugs.
Collapse
Affiliation(s)
- Ziwen Yuan
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Lihong Yang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Xiaosong Zhang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Peng Ji
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yanming Wei
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China.
| |
Collapse
|
18
|
Vargas-Robles H, Castro-Ochoa KF, Citalán-Madrid AF, Schnoor M. Beneficial effects of nutritional supplements on intestinal epithelial barrier functions in experimental colitis models in vivo. World J Gastroenterol 2019; 25:4181-4198. [PMID: 31435172 PMCID: PMC6700707 DOI: 10.3748/wjg.v25.i30.4181] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/12/2019] [Accepted: 07/05/2019] [Indexed: 02/06/2023] Open
Abstract
Acute and chronic colitis affect a huge proportion of the population world-wide. The etiology of colitis cases can be manifold, and diet can significantly affect onset and outcome of colitis. While many forms of acute colitis are easily treatable, chronic forms of colitis such as ulcerative colitis and Crohn's disease (summarized as inflammatory bowel diseases) are multifactorial with poorly understood pathogenesis. Inflammatory bowel diseases are characterized by exacerbated immune responses causing epithelial dysfunction and bacterial translocation. There is no cure and therapies aim at reducing inflammation and restoring intestinal barrier function. Unfortunately, most drugs can have severe side effects. Changes in diet and inclusion of nutritional supplements have been extensively studied in cell culture and animal models, and some supplements have shown promising results in clinical studies. Most of these nutritional supplements including vitamins, fatty acids and phytochemicals reduce oxidative stress and inflammation and have shown beneficial effects during experimental colitis in rodents induced by dextran sulphate sodium or 2,4,6-trinitrobenzene sulfonic acid, which remain the gold standard in pre-clinical colitis research. Here, we summarize the mechanisms through which such nutritional supplements contribute to epithelial barrier stabilization.
Collapse
Affiliation(s)
- Hilda Vargas-Robles
- Department for Molecular Biomedicine, Cinvestav-IPN, Mexico City 07360, Mexico
| | | | | | - Michael Schnoor
- Department for Molecular Biomedicine, Cinvestav-IPN, Mexico City 07360, Mexico
| |
Collapse
|
19
|
Wang J, Lei B, Yan J, Li J, Zhou X, Ren F, Guo H. Donkey milk oligosaccharides influence the growth-related characteristics of intestinal cells and induce G2/M growth arrest via the p38 pathway in HT-29 cells. Food Funct 2019; 10:4823-4833. [PMID: 31318010 DOI: 10.1039/c8fo02584c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Donkey milk is considered to be a valuable nutritional source. Deeper knowledge of the constituents of donkey milk is necessary. As multifunctional components of milk, oligosaccharides have been reported to have the potential to support intestine development. We studied the composition and content of donkey milk oligosaccharides (DMOs). Sialylated oligosaccharides were found to be the primary oligosaccharides in DMOs, consisting of 3'-sialyllactose (SL) and 6'-SL. The amount of 3'-SL and 6'-SL in donkey milk was 18.3 ± 0.7 mg L-1 and 33.1 ± 0.7 mg L-1, respectively. Moreover, we found that DMOs induced differentiation, promoted apoptosis and inhibited proliferation in HT-29, Caco-2 and HIEC cells in a concentration-dependent manner, suggesting that DMOs promote maturation of intestinal epithelial cells. The mechanism of the DMOs' effects on HT-29 cells was associated with activation of the p38 pathway and cell cycle arrest at the G2/M phase. Our research will help understand the biological functions of DMOs and assess their potential roles in infant nutrition.
Collapse
Affiliation(s)
- Jingxuan Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | | | | | | | | | | | | |
Collapse
|