1
|
Wang Y, Li Z, Bao Y, Cui H, Li J, Song B, Wang M, Li H, Cui X, Chen Y, Chen W, Yang S, Yang Y, Jin Z, Si X, Li B. Colon-targeted delivery of polyphenols: construction principles, targeting mechanisms and evaluation methods. Crit Rev Food Sci Nutr 2023:1-23. [PMID: 37823723 DOI: 10.1080/10408398.2023.2266842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Polyphenols have received considerable attention for their promotive effects on colonic health. However, polyphenols are mostly sensitive to harsh gastrointestinal environments, thus, must be protected. It is necessary to design and develop a colon-targeted delivery system to improve the stability, colon-targeting and bioavailability of polyphenols. This paper mainly introduces research on colon-targeted controlled release of polyphenols. The physiological features affecting the dissolution, release and absorption of polyphenol-loaded delivery systems in the colon are first discussed. Simultaneously, the types of colon-targeted carriers with different release mechanisms are described, and colon-targeting assessment models that have been studied so far and their advantages and limitations are summarized. Based on the current research on polyphenols colon-targeting, outlook and reflections are proposed, with the goal of inspiring strategic development of new colon-targeted therapeutics to ensure that the polyphenols reach the colon with complete bioactivity.
Collapse
Affiliation(s)
- Yidi Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Zhiying Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Yiwen Bao
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Huijun Cui
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Jiaxin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Baoge Song
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Mengzhu Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Haikun Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Xingyue Cui
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Wei Chen
- Faculty of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Shufang Yang
- Zhejiang Lanmei Technology Co., Ltd, Zhu-ji City, Zhejiang Province, China
| | - Yiyun Yang
- Zhejiang Lanmei Technology Co., Ltd, Zhu-ji City, Zhejiang Province, China
| | - Zhufeng Jin
- Zhejiang Lanmei Technology Co., Ltd, Zhu-ji City, Zhejiang Province, China
| | - Xu Si
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| |
Collapse
|
2
|
Hou J, Xiang J, Li D, Liu X, Pan W. Gut microbial response to host metabolic phenotypes. Front Nutr 2022; 9:1019430. [PMID: 36419554 PMCID: PMC9676441 DOI: 10.3389/fnut.2022.1019430] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/21/2022] [Indexed: 09/10/2023] Open
Abstract
A large number of studies have proved that biological metabolic phenotypes exist objectively and are gradually recognized by humans. Gut microbes affect the host's metabolic phenotype. They directly or indirectly participate in host metabolism, physiology and immunity through changes in population structure, metabolite differences, signal transduction and gene expression. Obtaining comprehensive information and specific identification factors associated with gut microbiota and host metabolic phenotypes has become the focus of research in the field of gut microbes, and it has become possible to find new and effective ways to prevent or treat host metabolic diseases. In the future, precise treatment of gut microbes will become one of the new therapeutic strategies. This article reviews the content of gut microbes and carbohydrate, amino acid, lipid and nucleic acid metabolic phenotypes, including metabolic intermediates, mechanisms of action, latest research findings and treatment strategies, which will help to understand the relationship between gut microbes and host metabolic phenotypes and the current research status.
Collapse
Affiliation(s)
- Jinliang Hou
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Jianguo Xiang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Deliang Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Xinhua Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | | |
Collapse
|
3
|
Jung J, Bugenyi AW, Lee MR, Choi YJ, Song KD, Lee HK, Son YO, Lee DS, Lee SC, Son YJ, Heo J. High-quality metagenome-assembled genomes from proximal colonic microbiomes of synbiotic-treated korean native black pigs reveal changes in functional capacity. Sci Rep 2022; 12:14595. [PMID: 36109557 PMCID: PMC9478101 DOI: 10.1038/s41598-022-18503-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/12/2022] [Indexed: 11/22/2022] Open
Abstract
Synbiotics are feed supplements with the potential to promote health and productivity in pigs partly, through modulation of the intestinal microbiome. Our study used shotgun sequencing and 16S rRNA gene sequencing techniques to characterize the effect of a synbiotic containing three Lactobacillus species and a fructo-oligosaccharide on the proximal colonic microbiome of 4- to 7-month-old Korean native black gilts. With shotgun sequencing we constructed unique metagenome-assembled genomes of gut microbiota in Native Black Pig for the first time, which we then used for downstream analysis. Results showed that synbiotic treatment did not alter microbial diversity and evenness within the proximal colons, but altered composition of some members of the Lactobacillaceae, Enterococcaceae and Streptococcaceae families. Functional analysis of the shotgun sequence data revealed 8 clusters of orthologous groups (COGs) that were differentially represented in the proximal colonic microbiomes of synbiotic-treated Jeju black pigs relative to controls. In conclusion, our results show that administering this synbiotic causes changes in the functional capacity of the proximal colonic microbiome of the Korean native black pig. This study improves our understanding of the potential impact of synbiotics on the colonic microbiome of Korean native black pigs.
Collapse
Affiliation(s)
- Jaehoon Jung
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 151-742, Republic of Korea
- eGnome, 26 Beobwon-ro, Songpa-gu, Seoul, 05836, Republic of Korea
| | - Andrew W Bugenyi
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, 54896, Republic of Korea
- National Agricultural Research Organization, Mbarara, Uganda
| | - Ma-Ro Lee
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Yeon-Jae Choi
- International Agricultural Development and Cooperation Center, Jeonbuk National University, Jeonju, 54896, Korea
| | - Ki-Duk Song
- The Animal Molecular Genetics and Breeding Center, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Hak-Kyo Lee
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju, 54896, Republic of Korea
- International Agricultural Development and Cooperation Center, Jeonbuk National University, Jeonju, 54896, Korea
- The Animal Molecular Genetics and Breeding Center, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Young-Ok Son
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences and Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju, 63243, Republic of Korea
- Jeju Microbiome Research Center, Jeju National University, Jeju, Jeju Special Self-Governing Province, 63243, Republic of Korea
| | - Dong-Sun Lee
- Faculty of Biotechnology, College of Applied Life Sciences and Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju, 63243, Republic of Korea
- Jeju Microbiome Research Center, Jeju National University, Jeju, Jeju Special Self-Governing Province, 63243, Republic of Korea
| | | | | | - Jaeyoung Heo
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
4
|
Bamigbade GB, Subhash AJ, Kamal-Eldin A, Nyström L, Ayyash M. An Updated Review on Prebiotics: Insights on Potentials of Food Seeds Waste as Source of Potential Prebiotics. Molecules 2022; 27:molecules27185947. [PMID: 36144679 PMCID: PMC9505924 DOI: 10.3390/molecules27185947] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 01/19/2023] Open
Abstract
Prebiotics are a group of biological nutrients that are capable of being degraded by microflora in the gastrointestinal tract (GIT), primarily Lactobacilli and Bifidobacteria. When prebiotics are ingested, either as a food additive or as a supplement, the colonic microflora degrade them, producing short-chain fatty acids (SCFA), which are simultaneously released in the colon and absorbed into the blood circulatory system. The two major groups of prebiotics that have been extensively studied in relation to human health are fructo-oligosaccharides (FOS) and galactooligosaccharides (GOS). The candidature of a compound to be regarded as a prebiotic is a function of how much of dietary fiber it contains. The seeds of fruits such as date palms have been reported to contain dietary fiber. An increasing awareness of the consumption of fruits and seeds as part of the daily diet, as well as poor storage systems for seeds, have generated an enormous amount of seed waste, which is traditionally discarded in landfills or incinerated. This cultural practice is hazardous to the environment because seed waste is rich in organic compounds that can produce hazardous gases. Therefore, this review discusses the potential use of seed wastes in prebiotic production, consequently reducing the environmental hazards posed by these wastes.
Collapse
Affiliation(s)
- Gafar Babatunde Bamigbade
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al-Ain P.O. Box 15551, United Arab Emirates
| | - Athira Jayasree Subhash
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al-Ain P.O. Box 15551, United Arab Emirates
| | - Afaf Kamal-Eldin
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al-Ain P.O. Box 15551, United Arab Emirates
| | - Laura Nyström
- Department of Health Science and Technology, Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland
| | - Mutamed Ayyash
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al-Ain P.O. Box 15551, United Arab Emirates
- Correspondence:
| |
Collapse
|
5
|
Cui S, Guo W, Chen C, Tang X, Zhao J, Mao B, Zhang H. Metagenomic Analysis of the Effects of Lactiplantibacillus plantarum and Fructooligosaccharides (FOS) on the Fecal Microbiota Structure in Mice. Foods 2022; 11:foods11091187. [PMID: 35563910 PMCID: PMC9102988 DOI: 10.3390/foods11091187] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 02/04/2023] Open
Abstract
Understanding the association between food composition and intestinal microbiota in the context of individual health is a critical problem in personalized nutrition. The objective of the present research was to elucidate the influence of Lactiplantibacillus plantarum ST-III and fructooligosaccharides (FOS) on the intestinal microbiota structure. We found that L. plantarum ST-III and FOS interventions remarkably enhanced the levels of cecal short-chain fatty acids (SCFAs), especially acetic, butyric, and valeric acids. Moreover, L. plantarum ST-III and/or FOS intervention obviously altered the intestinal microbiota structure. At the genus level, L. plantarum ST-III and/or FOS intervention remarkably elevated the proportion of Sutterella, Pediococcus, Proteus, Parabacteroides, Prevotella and Desulfovibrio. Correlation analysis further uncovered that the specific compositional features of intestinal microbiota were strongly related to the concentration of cecal SCFAs. Our results offered scientific evidence to understanding the association between food composition and intestinal microbiota.
Collapse
Affiliation(s)
- Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (S.C.); (W.G.); (C.C.); (X.T.); (J.Z.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Weiling Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (S.C.); (W.G.); (C.C.); (X.T.); (J.Z.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Cailing Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (S.C.); (W.G.); (C.C.); (X.T.); (J.Z.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (S.C.); (W.G.); (C.C.); (X.T.); (J.Z.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (S.C.); (W.G.); (C.C.); (X.T.); (J.Z.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (S.C.); (W.G.); (C.C.); (X.T.); (J.Z.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Correspondence:
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (S.C.); (W.G.); (C.C.); (X.T.); (J.Z.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
6
|
Míguez B, Vila C, Venema K, Parajó JC, Alonso JL. Prebiotic effects of pectooligosaccharides obtained from lemon peel on the microbiota from elderly donors using an in vitro continuous colon model (TIM-2). Food Funct 2021; 11:9984-9999. [PMID: 33119011 DOI: 10.1039/d0fo01848a] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The development of new prebiotics capable of modulating the gut microbiota in the elderly has become an area of great interest due to the particular vulnerability and frailty of this population. In the present work, mixtures of pectin-derived oligosaccharides (POS) were manufactured from lemon peel waste and evaluated for their capability to modulate the gut microbiota using, as inoculum, a pool of faeces from elderly donors. Both changes in the microbiota and the metabolic activity were assessed and compared with commercial fructooligosaccharides (FOS) and the standard ileal efflux medium (SIEM) using the TIM-2 in vitro colon model. POS fermentation led to similar or even better effects than FOS at phylum, family and genus levels. Higher increments in beneficial species such as Faecalibacterium prausnitzii and larger alpha diversity values were observed with POS in comparison with FOS and in some cases with SIEM. The PCoA analyses revealed that the microbial profiles resulting from POS and FOS bacterial fermentation were rather similar and differed from those observed after SIEM fermentation. Finally, although butyrate cumulative production was comparable among substrates, the highest short chain fatty acid (SCFA) and the lowest branched chain fatty acid (BCFA) cumulative production was observed in POS experiments. These results support the potential of pectin-derived oligosaccharides as prebiotic candidates targeting gut health in the elderly.
Collapse
Affiliation(s)
- Beatriz Míguez
- Chemical Engineering Department - University of Vigo, Polytechnic Building (Campus Ourense), University Campus As Lagoas s/n, 32004 Ourense, Spain.
| | | | | | | | | |
Collapse
|
7
|
Isolation, characterization and immunomodulatory activity of oligosaccharides from Codonopsis pilosula. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104070] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
8
|
Khangwal I, Shukla P. Prospecting prebiotics, innovative evaluation methods, and their health applications: a review. 3 Biotech 2019; 9:187. [PMID: 31065487 PMCID: PMC6485268 DOI: 10.1007/s13205-019-1716-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 04/12/2019] [Indexed: 02/06/2023] Open
Abstract
Prebiotics are necessary natural and synthetic food ingredients that help in the growth and development of gut microflora. There is a complex relationship between gut dysbiosis and microbes, so alteration in both probiotics and prebiotics can reduce illness of gut, which further plays a decisive role in human health. The prebiotic efficiency can be validated using various in vitro and in vivo experiments, and this gives an important insight to this field. This review focuses on these aspects including the standardized assessment of prebiotics and its metabolic products for customary applications. This review has also summarized the mechanism of their beneficial actions such as immunomodulation, nutrient absorption, pathogen inhibition, etc., and its significance in human nutrition. In addition to this, some fascinating applications of prebiotics in health-related disorders have also discussed, with current challenges in this facet.
Collapse
Affiliation(s)
- Ishu Khangwal
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| |
Collapse
|