1
|
Liu H, Li J, Takahashi S, Toyoda A, Inoue R, Koyanagi M, Hayashi SM, Xu M, Yamamoto Y, Nagaoka K. Alpha-glycosyl isoquercitrin alleviates subchronic social defeat stress-induced depression symptoms by modulating the microbiota-gut-brain axis in mice. Life Sci 2024; 344:122561. [PMID: 38490298 DOI: 10.1016/j.lfs.2024.122561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/21/2024] [Accepted: 03/09/2024] [Indexed: 03/17/2024]
Abstract
AIMS Increasing evidence suggests a link between gut microbial dysbiosis and the pathogenesis of depression. Alpha-glycosyl isoquercitrin (AGIQ), consisting of isoquercitrin and its glycosylated quercetin, has beneficial effects on the gut microbiome and brain function. Here, we detected the potential antidepressant impact of a four-week administration of AGIQ and its underlying mechanisms using a mouse model of depression. MAIN METHODS Male C57BL/6 mice were orally administered AGIQ (0.05 % or 0.5 % in drinking water) for 28 days; subchronic social defeat stress was performed in the last 10 days. Behavior tests were conducted to assess anxiety and depressive-like behaviors. Additionally, evaluations encompassed 5-hydroxytryptamine (5-HT) levels, the gut microbiota composition, lipopolysaccharide (LPS) concentrations, short-chain fatty acids levels, and intestinal barrier integrity changes. KEY FINDINGS AGIQ significantly alleviated depression-like behaviors and increased hippocampal 5-HT levels. Further, AGIQ mitigated stress-induced gut microbial abnormalities and reduced the levels of LPS in the serum, which affected the relative gene expression levels of 5-HT biosynthesis enzymes in vitro. Furthermore, AGIQ reversed the reduced butyrate levels in cecal contents and improved the impaired intestinal barrier by increasing the expression of colonic zonula occluden-1 (ZO-1) and occludin, thereby decreasing LPS leakage. SIGNIFICANCE Our results suggest that AGIQ could improve stress-induced depression by regulating the gut microbiome, which inhibits LPS production and maintains the gut barrier. This is the first report on the potential effect of AGIQ on depression via the gut microbiota-brain axis, shedding new light on treatment options.
Collapse
Affiliation(s)
- Hong Liu
- Laboratory of Veterinary Physiology, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Junjie Li
- Laboratory of Veterinary Physiology, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Shogo Takahashi
- Laboratory of Veterinary Physiology, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Atsushi Toyoda
- Laboratory of Feed Science, College of Agriculture, Ibaraki University, Ibaraki, Japan
| | - Ryo Inoue
- Laboratory of Animal Science, Department of Applied Biological Sciences, Setsunan University, Osaka, Japan
| | | | - Shim-Mo Hayashi
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Tokyo, Japan; Division of Food Additives, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Meiyu Xu
- College of Biological Science and Technology, Beijing Forestry University, Beijing, China
| | - Yuki Yamamoto
- Laboratory of Veterinary Physiology, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Kentaro Nagaoka
- Laboratory of Veterinary Physiology, Tokyo University of Agriculture and Technology, Tokyo, Japan.
| |
Collapse
|
2
|
Okano H, Ojiro R, Zou X, Tang Q, Ozawa S, Koyanagi M, Maronpot RR, Yoshida T, Shibutani M. Exploring the effects of embryonic and neonatal exposure to lipopolysaccharides on oligodendrocyte differentiation in the rat hippocampus and the protective effect of alpha-glycosyl isoquercitrin. J Chem Neuroanat 2023; 133:102336. [PMID: 37678702 DOI: 10.1016/j.jchemneu.2023.102336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/25/2023] [Accepted: 09/02/2023] [Indexed: 09/09/2023]
Abstract
This study compared the effects of embryonic and neonatal lipopolysaccharides (LPS) exposure (E-LPS and N-LPS) on oligodendrocyte (OL) differentiation in the hippocampus of male rats and explored the protective effect of the antioxidant alpha-glycosyl isoquercitrin (AGIQ). Using SD rats, LPS exposure occurred either intraperitoneally in dams between gestational days 15 and 16 (50 µg/kg body weight/time) or in male pups on postnatal day (PND) 3 (1 mg/kg body weight). Under both regimens, AGIQ at 0.5% (w/w) was supplemented, to dams from the gestation period (before LPS exposure) until weaning on PND 21 and to male offspring from weaning until PND 77 (adulthood). Compared with a control treatment, E-LPS treatment resulted in fewer NG2+ OL progenitor cells (OPCs) and an upregulation of Tcf4 at PND 6; by PND 21, low NG2+ OPC number persisted, but OLIG2+ OL lineage cells increased, while CNPase+ mature OLs counts were unchanged. By contrast, N-LPS treatment resulted in fewer OLIG2+ cells and an upregulation of Bmp4 at PND 6; by PND 21, NG2+ OPCs decreased, while GFAP+ astrocytes increased at both PND 6 and 21. After N-LPS treatment, Kl and Yy1 were downregulated and there were fewer Klotho+ and CNPase+ cells at PND 21. Results suggest that E-LPS treatment facilitates OPC differentiation into pre- and immature OLs until weaning, while N-LPS treatment suppresses OPC differentiation into mature OLs but facilitates astrocyte generation; however, these changes spontaneously recovered by adulthood under both regimens. AGIQ treatment ameliorated the effects of LPS treatment of both regimens, suggesting that LPS-induced disruption of OPC/OL differentiation occurs via neuroinflammation.
Collapse
Affiliation(s)
- Hiromu Okano
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Ryota Ojiro
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Xinyu Zou
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Qian Tang
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Shunsuke Ozawa
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Mihoko Koyanagi
- Global Scientific and Regulatory Affairs, San-Ei Gen F.F.I. Inc., 1-1-11 Sanwa-cho, Toyonaka, Osaka 561-8588, Japan
| | - Robert R Maronpot
- Maronpot Consulting, LLC, 1612 Medfield Road, Raleigh, NC 27607, USA
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan.
| |
Collapse
|
3
|
Takashima K, Okano H, Ojiro R, Tang Q, Takahashi Y, Ozawa S, Zou X, Koyanagi M, Maronpot RR, Yoshida T, Shibutani M. Continuous exposure to alpha-glycosyl isoquercitrin from mid-gestation ameliorates polyinosinic-polycytidylic acid-disrupted hippocampal neurogenesis in rats. J Chem Neuroanat 2023; 128:102219. [PMID: 36572259 DOI: 10.1016/j.jchemneu.2022.102219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Polyinosinic-polycytidylic acid (PIC) provides a model of developmental neuropathy by inducing maternal immune activation. We investigated the effects of an antioxidant, alpha-glycosyl isoquercitrin (AGIQ), on PIC-induced developmental neuropathy in rats, focusing on postnatal hippocampal neurogenesis. On gestational day 15, PIC at 4 mg/kg body weight was administered to dams intravenously. AGIQ either at 0.25% or 0.5% was administered through the diet to dams from gestational day 10 until weaning on day 21 post-delivery and, thereafter, to offspring until postnatal day 77 (adult stage). At weaning, the numbers of TBR2+ cells and PCNA+ cells in the subgranular zone and reelin+ cells in the dentate gyrus hilus in offspring of dams treated with PIC only were decreased compared with untreated controls. In contrast, 0.5% AGIQ ameliorated these changes and increased the transcript levels of genes related to signaling of reelin (Reln and Vldlr), growth factors (Bdnf, Cntf, Igf1, and Igf1r), and Wnt/β-catenin (Wnt5a, Lrp6, Fzd1, and Fzd3). In adults, AGIQ increased the number of FOS+ granule cells at 0.25% and the transcript levels of NMDA-type glutamate receptor genes, Grin2a and Grin2b, at 0.25% and 0.5%, respectively. These results suggest that mid-gestation PIC treatment decreased the abundance of type-2b neural progenitor cells (NPCs) by reducing NPC proliferation in relation with suppression of reelin signaling at weaning. We suggest that AGIQ ameliorated the PIC-induced suppressed neurogenesis by enhancing reelin, growth factor, and Wnt/β-catenin signaling at weaning to rescue NPC proliferation and increased synaptic plasticity by enhancing glutamatergic signaling via NMDA-type receptors after maturation.
Collapse
Affiliation(s)
- Kazumi Takashima
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.
| | - Hiromu Okano
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.
| | - Ryota Ojiro
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.
| | - Qian Tang
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.
| | - Yasunori Takahashi
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.
| | - Shunsuke Ozawa
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.
| | - Xinyu Zou
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.
| | - Mihoko Koyanagi
- Global Scientific and Regulatory Affairs, San-Ei Gen F.F.I., Inc., 1-1-11 Sanwa-cho, Toyonaka-shi, Osaka 561-8588, Japan.
| | - Robert R Maronpot
- Maronpot Consulting, LLC, 1612 Medfield Road, Raleigh, NC 27607, USA.
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.
| |
Collapse
|
4
|
Tang Q, Takashima K, Zeng W, Okano H, Zou X, Takahashi Y, Ojiro R, Ozawa S, Koyanagi M, Maronpot RR, Yoshida T, Shibutani M. Amelioration of lipopolysaccharides-induced impairment of fear memory acquisition by alpha-glycosyl isoquercitrin through suppression of neuroinflammation in rats. J Toxicol Sci 2023; 48:121-137. [PMID: 36858638 DOI: 10.2131/jts.48.121] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
This study investigated the role of neuroinflammation in a lipopolysaccharides (LPS)-induced cognitive dysfunction model in rats using an antioxidant, α-glycosyl isoquercitrin (AGIQ). Six-week-old rats were dietary treated with 0.5% (w/w) AGIQ for 38 days, and LPS at 1 mg/kg body weight was administered intraperitoneally once daily on Days 8 and 10. On Day 11, LPS alone increased or tended to increase interleukin-1β and tumor necrosis factor-α in the hippocampus and cerebral cortex. Immunohistochemically, LPS alone increased the number of Iba1+ and CD68+ microglia, and GFAP+ astrocytes in the hilus of the hippocampal dentate gyrus (DG). AGIQ treatment decreased or tended to decrease brain proinflammatory cytokine levels and the number of CD68+ microglia in the DG hilus. In the contextual fear conditioning test during Day 34 and Day 38, LPS alone impaired fear memory acquisition, and AGIQ tended to recover this impairment. On Day 38, LPS alone decreased the number of DCX+ cells in the neurogenic niche, and AGIQ increased the numbers of PCNA+ cells in the subgranular zone and CALB2+ hilar interneurons. Additionally, LPS alone decreased or tended to decrease the number of synaptic plasticity-related FOS+ and COX2+ granule cells and AGIQ recovered them. The results suggest that LPS administration induced acute neuroinflammation and subsequent impairment of fear memory acquisition caused by suppressed synaptic plasticity of newborn granule cells following disruptive neurogenesis. In contrast, AGIQ exhibited anti-inflammatory effects and ameliorated LPS-induced adverse effects. These results suggest that neuroinflammation is a key factor in the development of LPS-induced impairment of fear memory acquisition.
Collapse
Affiliation(s)
- Qian Tang
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology
| | - Kazumi Takashima
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology
| | - Wen Zeng
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
| | - Hiromu Okano
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology
| | - Xinyu Zou
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology
| | - Yasunori Takahashi
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology
| | - Ryota Ojiro
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology
| | - Shunsuke Ozawa
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology
| | - Mihoko Koyanagi
- Global Scientific and Regulatory Affairs, San-Ei Gen F.F.I., Inc
| | | | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology.,Institute of Global Innovation Research, Tokyo University of Agriculture and Technology
| |
Collapse
|
5
|
Okano H, Takashima K, Takahashi Y, Ojiro R, Tang Q, Ozawa S, Zou X, Koyanagi M, Maronpot RR, Yoshida T, Shibutani M. Progressive disruption of neurodevelopment by mid-gestation exposure to lipopolysaccharides and the ameliorating effect of continuous alpha-glycosyl isoquercitrin treatment. ENVIRONMENTAL TOXICOLOGY 2023; 38:49-69. [PMID: 36125228 DOI: 10.1002/tox.23661] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
We investigated the effect of lipopolysaccharide (LPS)-induced maternal immune activation used as a model for producing neurodevelopmental disorders on hippocampal neurogenesis and behaviors in rat offspring by exploring the antioxidant effects of alpha-glycosyl isoquercitrin (AGIQ). Pregnant Sprague-Dawley rats were intraperitoneally injected with LPS (50 μg/kg body weight) at gestational days 15 and 16. AGIQ was administered in the diet to dams at 0.5% (w/w) from gestational day 10 until weaning at postnatal day 21 and then to offspring until adulthood at postnatal day 77. During postnatal life, offspring of LPS-injected animals did not show neuroinflammation or oxidative stress in the brain. At weaning, LPS decreased the numbers of type-2b neural progenitor cells (NPCs) and PCNA+ proliferating cells in the subgranular zone, FOS-expressing granule cells, and GAD67+ hilar interneurons in the dentate gyrus. In adulthood, LPS decreased type-1 neural stem cells, type-2a NPCs, and GAD67+ hilar interneurons, and downregulated Dpysl3, Sst, Fos, Mapk1, Mapk3, Grin2a, Grin2b, Bdnf, and Ntrk2. In adults, LPS suppressed locomotor activity in the open field test and suppressed fear memory acquisition and fear extinction learning in the contextual fear conditioning test. These results indicate that mid-gestation LPS injections disrupt programming of normal neurodevelopment resulting in progressive suppression of hippocampal neurogenesis and synaptic plasticity of newborn granule cells by suppressing GABAergic and glutamatergic neurotransmitter signals and BDNF/TrkB signaling to result in adult-stage behavioral deficits. AGIQ ameliorated most aberrations in hippocampal neurogenesis and synaptic plasticity, as well as behavioral deficits. Effective amelioration by continuous AGIQ treatment starting before LPS injections may reflect both anti-inflammatory and anti-oxidative stress effects during gestation and neuroprotective effects of continuous exposure through adulthood.
Collapse
Affiliation(s)
- Hiromu Okano
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Kazumi Takashima
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Yasunori Takahashi
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Ryota Ojiro
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Qian Tang
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Shunsuke Ozawa
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Xinyu Zou
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Mihoko Koyanagi
- Global Scientific and Regulatory Affairs, San-Ei Gen F.F.I. Inc., Osaka, Japan
| | | | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
6
|
Continuous Exposure to Alpha-Glycosyl Isoquercitrin from Gestation Ameliorates Disrupted Hippocampal Neurogenesis in Rats Induced by Gestational Injection of Valproic Acid. Neurotox Res 2022; 40:2278-2296. [PMID: 36094739 DOI: 10.1007/s12640-022-00574-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 08/02/2022] [Accepted: 08/29/2022] [Indexed: 01/04/2023]
Abstract
This study examined the ameliorating effect of alpha-glycosyl isoquercitrin (AGIQ), an antioxidant, on disrupted hippocampal neurogenesis in the dentate gyrus (DG) in a rat model of autism spectrum disorder induced by prenatal valproic acid (VPA) exposure. Dams were intraperitoneally injected with 500 mg/kg VPA on gestational day 12. AGIQ was administered in the diet at 0.25 or 0.5% to dams from gestational day 13 until weaning at postnatal day (PND) 21 and then to pups until PND 63. At PND 21, VPA-exposed offspring showed decreased numbers of type-2a and type-3 neural progenitor cells (NPCs) among granule cell lineage subpopulations. AGIQ treatment at both doses rescued the reduction in type-3 NPCs. AGIQ upregulated Reln and Vldlr transcript levels in the DG at 0.5% and ≥ 0.25%, respectively, and increased the number of reelin+ interneurons in the DG hilus at 0.5%. AGIQ at 0.25% and/or 0.5% also upregulated Ntrk2, Cntf, Igf1, and Chrnb2. At PND 63, there were no changes in the granule cell lineage subpopulations in response to VPA or AGIQ. AGIQ at 0.25% increased the number of FOS+ granule cells, accompanied by Gria2 and Gria3 upregulation and increasing trend in the number of FOS+ granule cells at 0.5%. There was no definitive evidence of VPA-induced oxidative stress in the hippocampus throughout postnatal life. These results indicate that AGIQ ameliorates the VPA-induced disruption of hippocampal neurogenesis at weaning involving reelin, BDNF-TrkB, CNTF, and IGF1 signaling, and enhances FOS-mediated synaptic plasticity in adulthood, potentially through AMPA-receptor upregulation. The ameliorating effects of AGIQ may involve direct interactions with neural signaling cascades rather than antioxidant capacity.
Collapse
|
7
|
Owczarek-Januszkiewicz A, Magiera A, Olszewska MA. Enzymatically Modified Isoquercitrin: Production, Metabolism, Bioavailability, Toxicity, Pharmacology, and Related Molecular Mechanisms. Int J Mol Sci 2022; 23:14784. [PMID: 36499113 PMCID: PMC9738368 DOI: 10.3390/ijms232314784] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Quercetin and its glycosides, such as isoquercitrin or rutin, are among the most ubiquitous flavonoids present in plants. They possess numerous health-promoting properties, whose applicability is, however, limited by poor water solubility and absorption issues. Enzymatically modified isoquercitrin (EMIQ) is an isoquercitrin derivative obtained from rutin via enzymatic transformations that greatly enhance its bioavailability. Due to advantageous reports on its safety and bioactivity, EMIQ is currently gaining importance as a food additive and a constituent of dietary supplements. This review summarizes the thus-far-conducted investigations into the metabolism, toxicity, biological properties, and molecular mechanisms of EMIQ and presents a comprehensive characterization of this valuable substance, which might represent the future of flavonoid supplementation.
Collapse
Affiliation(s)
| | | | - Monika Anna Olszewska
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Lodz, 1 Muszynskiego St., 90-151 Lodz, Poland
| |
Collapse
|
8
|
Okano H, Takashima K, Takahashi Y, Ojiro R, Tang Q, Ozawa S, Ogawa B, Koyanagi M, Maronpot RR, Yoshida T, Shibutani M. Ameliorating effect of continuous alpha-glycosyl isoquercitrin treatment starting from late gestation in a rat autism model induced by postnatal injection of lipopolysaccharides. Chem Biol Interact 2022; 351:109767. [PMID: 34863679 DOI: 10.1016/j.cbi.2021.109767] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/14/2021] [Accepted: 11/26/2021] [Indexed: 01/08/2023]
Abstract
The present study investigated the role of neuroinflammation and brain oxidative stress induced by neonatal treatment with lipopolysaccharides (LPS) on the development of autism spectrum disorder (ASD)-like behaviors and disruptive hippocampal neurogenesis in rats by exploring the chemopreventive effects of alpha-glycosyl isoquercitrin (AGIQ) as an antioxidant. AGIQ was dietary administered to dams at 0.25% or 0.5% (w/w) from gestational day 18 until postnatal day (PND) 21 on weaning and then to pups until the adult stage on PND 77. The pups were intraperitoneally injected with LPS (1 mg/kg body weight) on PND 3. At PND 6, LPS alone increased Iba1+ and CD68+ cell numbers without changing the CD163+ cell number and strongly upregulated pro-inflammatory cytokine gene expression (Il1a, Il1b, Il6, Nfkb1, and Tnf) in the hippocampus, and increased brain malondialdehyde levels. At PND 10, pups decreased ultrasonic vocalization (USV), suggesting the induction of pro-inflammatory responses and oxidative stress to trigger communicative deficits. By contrast, LPS alone upregulated Nfe2l2 expression at PND 6, increased Iba1+, CD68+, and CD163+ cell numbers, and upregulated Tgfb1 at PND 21, suggesting anti-inflammatory responses until the weaning period. However, LPS alone disrupted hippocampal neurogenesis at weaning and suppressed social interaction parameters and rate of freezing time at fear acquisition and extinction during the adolescent stage. On PND 77, neuroinflammatory responses had mostly disappeared; however, disruptive neurogenesis and fear memory deficits were sustained. AGIQ ameliorated most changes on acute pro-inflammatory responses and oxidative stress at PND 6, and the effects on USVs at PND 10 and neurogenesis and behavioral parameters throughout the adult stage. These results suggested that neonatal LPS treatment induced acute but transient neuroinflammation, triggering the progressive disruption of hippocampal neurogenesis leading to abnormal behaviors in later life. AGIQ treatment was effective for ameliorating LPS-induced progressive changes by critically suppressing initial pro-inflammatory responses and oxidative stress.
Collapse
Affiliation(s)
- Hiromu Okano
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Kazumi Takashima
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Yasunori Takahashi
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Ryota Ojiro
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Qian Tang
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Shunsuke Ozawa
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Bunichiro Ogawa
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Mihoko Koyanagi
- Global Scientific and Regulatory Affairs, San-Ei Gen F.F.I., Inc., 1-1-11 Sanwa-cho, Toyonaka, Osaka, 561-8588, Japan.
| | - Robert R Maronpot
- Maronpot Consulting, LLC, 1612 Medfield Road, Raleigh, NC, 27607, USA.
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| |
Collapse
|
9
|
Lewis V, Laberge F, Heyland A. Transcriptomic signature of extinction learning in the brain of the fire-bellied toad, Bombina orientalis. Neurobiol Learn Mem 2021; 184:107502. [PMID: 34391934 DOI: 10.1016/j.nlm.2021.107502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/21/2021] [Accepted: 08/08/2021] [Indexed: 11/26/2022]
Abstract
Insight into the molecular and cellular mechanisms of learning and memory from a diverse array of taxa contributes to our understanding of the evolution of these processes. The fire-bellied toad, Bombina orientalis, is a basal anuran amphibian model species who could help us describe shared and divergent characteristics of learning and memory mechanisms between amphibians and other vertebrates, and hence answer questions about the evolution of learning. Utilizing next generation sequencing techniques, we profiled gene expression patterns associated with the extinction of prey-catching conditioning in the brain of the fire-bellied toad. For this purpose, gene expression was at first compared between toads sacrificed after acquisition and extinction of the conditioned response. A second comparison was done between toads submitted to extinction following either short or long acquisition training, which results in toads displaying response extinction or resistance to extinction, respectively. We analyzed brain tissue transcription profiles common to both acquisition and extinction learning, or unique to extinction learning and resistance to extinction, and found significant overlap in gene expression related to molecular pathways involving neuronal plasticity (e.g. structural modification, transcription). However, extinction learning induced a unique GABAergic transcriptomic signal, which may be responsible for suppression of the original response memory. Further, when comparing extinction learning in short- and long-trained groups, short training engaged many pathways related to neuronal plasticity, as expected, but long training engaged molecular pathways related to the suppression of learning through epigenetic mediated transcriptional suppression and inhibitory neurotransmission. Overall, gene expression patterns associated with extinction learning in the fire-bellied toad were similar to those found in mammals submitted to extinction, although some divergent profiles highlighted potential differences in the mechanisms of learning and memory among tetrapods.
Collapse
Affiliation(s)
- Vern Lewis
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Frédéric Laberge
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Andreas Heyland
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
10
|
Nakahara J, Masubuchi Y, Takashima K, Takahashi Y, Ichikawa R, Nakao T, Koyanagi M, Maronpot RR, Yoshida T, Hayashi SM, Shibutani M. Continuous exposure to amorphous formula of curcumin from the developmental stage facilitates anti-anxiety-like behavior and fear-extinction learning in rats. Nutr Res 2020; 85:99-118. [PMID: 33460863 DOI: 10.1016/j.nutres.2020.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 10/01/2020] [Accepted: 10/23/2020] [Indexed: 11/16/2022]
Abstract
An amorphous formula of curcumin (CUR) has shown to enable an improved bioavailability after ingestion. The aim of this study was to investigate the hypothesis that exogenously administered CUR has an advantage in ameliorating post-traumatic stress disorder at low doses. To this end, Long-Evans rats were dietary exposed to CUR at 0.1% or 0.5% from gestational day 6 to postnatal day (PND) 74 or 77. Offspring exposed to 0.1% CUR revealed facilitation of anti-anxiety-like behavior in the open field test and fear-extinction learning tested during PND 62 to 74, increases in hippocampal granule cells expressing immediate-early gene proteins and a decrease in prelimbic cortical neurons expressing phosphorylated extracellular signal-regulated kinase 1/2 after the last trial of the fear-extinction learning test on PND 74. The constitutive gene expression levels of Gria1, Gria2, Grin2d, Slc17a6, and Slc17a7 were altered in the hippocampal dentate gyrus and amygdala on PND 77. These results suggest alterations in synaptic plasticity to strengthen neural circuits in promoting the behavioral effects by 0.1%-CUR. In contrast, 0.5% CUR revealed a lack of any of the changes in behavioral tests that were observed at 0.1%; however, this dose upregulated oxidative stress and neuroinflammation-related genes in the hippocampal dentate gyrus, and increased neural stem cells and proliferation activity of the subgranular zone in the dentate gyrus. These results suggest a possible preventive use of CUR at low doses in mitigating some stress disorders; however, excessively absorbed doses may prevent behavioral changes by inducing neuroinflammation that affects hippocampal neurogenesis involving neural stem cells.
Collapse
Affiliation(s)
- Junta Nakahara
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Yasunori Masubuchi
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan
| | - Kazumi Takashima
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Yasunori Takahashi
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Ryo Ichikawa
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Tomohiro Nakao
- Emulsion Laboratory, San-Ei Gen F.F.I., Inc., 1-1-11 Sanwa-cho, Toyonaka-shi, Osaka 561-8588, Japan
| | - Mihoko Koyanagi
- Global Scientific and Regulatory Affairs, San-Ei Gen F.F.I., Inc., 1-1-11 Sanwa-cho, Toyonaka-shi, Osaka 561-8588, Japan
| | - Robert R Maronpot
- Maronpot Consulting, LLC, 1612 Medfield Road, Raleigh, NC 27607, USA
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Shim-Mo Hayashi
- Global Scientific and Regulatory Affairs, San-Ei Gen F.F.I., Inc., 1-1-11 Sanwa-cho, Toyonaka-shi, Osaka 561-8588, Japan
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.
| |
Collapse
|
11
|
Masubuchi Y, Nakahara J, Kikuchi S, Okano H, Takahashi Y, Takashima K, Koyanagi M, Maronpot RR, Yoshida T, Hayashi SM, Shibutani M. Continuous exposure to α-glycosyl isoquercitrin from developmental stages to adulthood is necessary for facilitating fear extinction learning in rats. J Toxicol Pathol 2020; 33:247-263. [PMID: 33239843 PMCID: PMC7677619 DOI: 10.1293/tox.2020-0025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/20/2020] [Indexed: 01/18/2023] Open
Abstract
We previously reported that exposure to α-glycosyl isoquercitrin (AGIQ) from the fetal
stage to adulthood facilitated fear extinction learning in rats. The present study
investigated the specific AGIQ exposure period sufficient for inducing this behavioral
effect. Rats were dietarily exposed to 0.5% AGIQ from the postweaning stage to adulthood
(PW-AGIQ), the fetal stage to postweaning stage (DEV-AGIQ), or the fetal stage to
adulthood (WP-AGIQ). Fear memory, anxiety-like behavior, and object recognition memory
were assessed during adulthood. Fear extinction learning was exclusively facilitated in
the WP-AGIQ rats. Synaptic plasticity-related genes showed a similar pattern of
constitutive expression changes in the hippocampal dentate gyrus and prelimbic medial
prefrontal cortex (mPFC) between the DEV-AGIQ and WP-AGIQ rats. However, WP-AGIQ rats
revealed more genes constitutively upregulated in the infralimbic mPFC and amygdala than
DEV-AGIQ rats, as well as FOS-immunoreactive(+) neurons constitutively
increased in the infralimbic cortex. Ninety minutes after the last fear extinction trial,
many synaptic plasticity-related genes (encoding Ephs/Ephrins, glutamate
receptors/transporters, and immediate-early gene proteins and their regulator,
extracellular signal-regulated kinase 2 [ERK2]) were upregulated in the dentate gyrus and
amygdala in WP-AGIQ rats. Additionally, WP-AGIQ rats exhibited increased phosphorylated
ERK1/2+ neurons in both the prelimbic and infralimbic cortices. These results
suggest that AGIQ exposure from the fetal stage to adulthood is necessary for facilitating
fear extinction learning. Furthermore, constitutive and learning-dependent upregulation of
synaptic plasticity-related genes/molecules may be differentially involved in brain
regions that regulate fear memory. Thus, new learning-related neural circuits for
facilitating fear extinction can be established in the mPFC.
Collapse
Affiliation(s)
- Yasunori Masubuchi
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan
| | - Junta Nakahara
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Satomi Kikuchi
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Hiromu Okano
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Yasunori Takahashi
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Kazumi Takashima
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Mihoko Koyanagi
- Global Scientific and Regulatory Affairs, San-Ei Gen F.F.I., Inc., 1-1-11 Sanwa-cho, Toyonaka-shi, Osaka 561-8588, Japan
| | - Robert R Maronpot
- Maronpot Consulting, LLC, 1612 Medfield Road, Raleigh, North Carolina 27607, USA
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Shim-Mo Hayashi
- Global Scientific and Regulatory Affairs, San-Ei Gen F.F.I., Inc., 1-1-11 Sanwa-cho, Toyonaka-shi, Osaka 561-8588, Japan
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| |
Collapse
|
12
|
Masubuchi Y, Tanaka T, Okada R, Ito Y, Nakahara J, Kikuchi S, Watanabe Y, Yoshida T, Maronpot RR, Koyanagi M, Hayashi SM, Shibutani M. Lack of preventive effect of maternal exposure to α-glycosyl isoquercitrin and α-lipoic acid on developmental hypothyroidism-induced aberrations of hippocampal neurogenesis in rat offspring. J Toxicol Pathol 2019; 32:165-180. [PMID: 31404398 PMCID: PMC6682556 DOI: 10.1293/tox.2019-0018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 04/11/2019] [Indexed: 11/19/2022] Open
Abstract
Hypothyroidism during the developmental stage induces disruption of hippocampal neurogenesis in later life, as well as inducing oxidative stress in the brain. The present study investigated the preventive effect of co-exposure to an antioxidant on disruptive neurogenesis induced by developmental exposure to anti-thyroid agent in rats. For this purpose, we used two antioxidants, α-glycosyl isoquercitrin (AGIQ) and α-lipoic acid (ALA). Mated female Sprague Dawley rats were either untreated (control) or treated with 12 ppm 6-propyl-2-thiouracil (PTU), an anti-thyroid agent, in drinking water from gestational day 6 to postnatal day (PND) 21, the latter group being subjected to feeding basal diet alone or diet containing AGIQ at 5,000 ppm or ALA at 2,000 ppm during PTU exposure. On PND 21, PTU-exposed offspring showed reductions in a broad range of granule cell lineage subpopulations and a change in the number of GABAergic interneuron subpopulations. Co-exposure of AGIQ or ALA with PTU altered the transcript levels of many genes across multiple functions, suggestive of enhancement of synaptic plasticity and neurogenesis. Nevertheless, immunohistochemical results did not support these changes. PTU exposure and co-exposure of AGIQ or ALA with PTU did not alter the hippocampal lipid peroxidation level. The obtained results suggest a possibility that thyroid hormone depletion itself primarily disrupts neurogenesis and that oxidative stress may not be involved in the disruption during development. Transcript expression changes of many genes caused by antioxidants may be the result of neuroprotective actions of antioxidants rather than their antioxidant activity. However, no preventive effect on neurogenesis suggested impairment of protein synthesis via an effect on mRNA translation due to hypothyroidism.
Collapse
Affiliation(s)
- Yasunori Masubuchi
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan
| | - Takaharu Tanaka
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Rena Okada
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Yuko Ito
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan
| | - Junta Nakahara
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Satomi Kikuchi
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Yousuke Watanabe
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Robert R Maronpot
- Maronpot Consulting, LLC, 1612 Medfield Road, Raleigh, North Carolina 27607, USA
| | - Mihoko Koyanagi
- Global Scientific and Regulatory Affairs, San-Ei Gen F.F.I., Inc., 1-1-11 Sanwa-cho, Toyonaka-shi, Osaka 561-8588, Japan
| | - Shim-Mo Hayashi
- Global Scientific and Regulatory Affairs, San-Ei Gen F.F.I., Inc., 1-1-11 Sanwa-cho, Toyonaka-shi, Osaka 561-8588, Japan
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| |
Collapse
|