1
|
Giuliani ME, Bigossi G, Lai G, Marcozzi S, Brunetti D, Malavolta M. Marine Compounds and Age-Related Diseases: The Path from Pre-Clinical Research to Approved Drugs for the Treatment of Cardiovascular Diseases and Diabetes. Mar Drugs 2024; 22:210. [PMID: 38786601 PMCID: PMC11123485 DOI: 10.3390/md22050210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Ageing represents a main risk factor for several pathologies. Among them, cardiovascular diseases (CVD) and type 2 diabetes mellitus (T2DM) are predominant in the elderly population and often require prolonged use of multiple drugs due to their chronic nature and the high proportion of co-morbidities. Hence, research is constantly looking for novel, effective molecules to treat CVD and T2DM with minimal side effects. Marine active compounds, holding a great diversity of chemical structures and biological properties, represent interesting therapeutic candidates to treat these age-related diseases. This review summarizes the current state of research on marine compounds for the treatment of CVD and T2DM, from pre-clinical studies to clinical investigations and approved drugs, highlighting the potential of marine compounds in the development of new therapies, together with the limitations in translating pre-clinical results into human application.
Collapse
Affiliation(s)
- Maria Elisa Giuliani
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121 Ancona, Italy; (M.E.G.); (G.B.); (G.L.); (S.M.)
| | - Giorgia Bigossi
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121 Ancona, Italy; (M.E.G.); (G.B.); (G.L.); (S.M.)
| | - Giovanni Lai
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121 Ancona, Italy; (M.E.G.); (G.B.); (G.L.); (S.M.)
| | - Serena Marcozzi
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121 Ancona, Italy; (M.E.G.); (G.B.); (G.L.); (S.M.)
| | - Dario Brunetti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, 20126 Milano, Italy;
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Marco Malavolta
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121 Ancona, Italy; (M.E.G.); (G.B.); (G.L.); (S.M.)
| |
Collapse
|
2
|
Yang X, Chi C, Li W, Zhang Y, Yang S, Xu R, Liu R. Metabolomics and lipidomics combined with serum pharmacochemistry uncover the potential mechanism of Huang-Lian-Jie-Du decoction alleviates atherosclerosis in ApoE -/- mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117748. [PMID: 38216103 DOI: 10.1016/j.jep.2024.117748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/22/2023] [Accepted: 01/09/2024] [Indexed: 01/14/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Atherosclerosis (AS) is one of the main cardiovascular diseases (CVDs) leading to an increase in global mortality, and its key pathological features are lipid accumulation and oxidative stress. Huang-Lian-Jie-Du decoction (HLJDD), a representative formula for clearing heat and detoxifying, has been shown to reduce aortic lipid plaque and improve AS. However, multiple components and multiple targets of HLJDD pose a challenge in comprehending its comprehensive mechanism in the treatment of AS. AIM OF THE STUDY This study was designed to illustrate the anti-AS mechanisms of HLJDD in an apolipoprotein E-deficient (ApoE-/-) mouse model from a metabolic perspective. MATERIALS AND METHODS ApoE-/- mice were kept on a high-fat diet (HFD) to induce AS. Serum total cholesterol (TC), total triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) levels were determined to evaluate the influence of HLJDD on dyslipidemia. Oil red O was used to stain mouse aortic lipid plaques, and hematoxylin and eosin (HE) staining was used to assess the pathological changes in the aortic roots. Metabolomics and lipidomics combined with serum pharmacochemistry were performed to research the HLJDD mechanism of alleviating AS. RESULTS In this study, HLJDD treatment improved serum biochemical levels and histopathological conditions in AS mice. A total of 6 metabolic pathways (arginine biosynthesis, glycerophospholipid, sphingolipid, arachidonic acid, linoleic acid, and glycerolipid metabolism) related to 25 metabolic biomarkers and 41 lipid biomarkers were clarified, and 22 prototype components migrating to blood were identified after oral administration of HLJDD. CONCLUSION HLJDD improved AS induced by HFD in ApoE-/- mice. The effects of HLJDD were mainly attributed to regulating lipid metabolism by regulating the metabolic pathways of glycerophospholipids, sphingolipids, arachidonic acid, linoleic acid, and glycerolipids and reducing the levels of oxidative stress by upregulating arginine biosynthesis.
Collapse
Affiliation(s)
- Xiaoli Yang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Chenglin Chi
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Wenjing Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Yanyan Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Shufang Yang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Ruoxuan Xu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Rongxia Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China.
| |
Collapse
|
3
|
Huang Y, Liu H, Zhou Y, Lu Z, Pu Y, Zhang H. Cloning and functional characterization of the oxidative squalene cyclase gene in the deep-sea holothurian Chiridota sp. Gene 2024; 894:147971. [PMID: 37949417 DOI: 10.1016/j.gene.2023.147971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/10/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Saponins derived from holothurians have high potential medicinal value. However, the de novo synthesis of the derivatization of triterpenes is still unclear. Oxidative squalene cyclase (OSC) can catalyze 2,3-Oxidosqualene into diverse products that serve as important precursors for triterpene synthesis. However, the function of theOSCgene in Chiridotasp. hasnot been elucidated. In this study, an OSCgenederived from the deep-sea holothurianChiridota sp. was cloned and characterized functionally in a yeast system. The open reading frame of the OSC gene was 2086 bp, which encoded 695 amino acids. The Chiridota sp. OSC gene has a similarity of 66.89 % to the OSC of other holothurian species and 63.51 % to that of Acanthaster planci. The phylogenetic tree showed that the echinozoan OSCsclustered together, and then they formeda sister group to fungi and plant homologs. Chiridota sp. OSC catalyzed 2,3-Oxidosqualene into parkeol.Under high pressure, the relative enzymatic activity and stability of cyclase inChiridota sp. was higher than that in the shallow-sea holothurianStichopus horrens. The newly cloned OSC of Chiridota sp.provideskey information for the interpretation of the saponin synthesis pathway in deep-sea holothurians.
Collapse
Affiliation(s)
- Yanan Huang
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Helu Liu
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Yang Zhou
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Zaiqing Lu
- Ocean University of China, Qingdao 266100, China
| | - Yujin Pu
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haibin Zhang
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China.
| |
Collapse
|
4
|
Zhang Y, Hao R, Chen J, Li S, Huang K, Cao H, Farag MA, Battino M, Daglia M, Capanoglu E, Zhang F, Sun Q, Xiao J, Sun Z, Guan X. Health benefits of saponins and its mechanisms: perspectives from absorption, metabolism, and interaction with gut. Crit Rev Food Sci Nutr 2023; 64:9311-9332. [PMID: 37216483 DOI: 10.1080/10408398.2023.2212063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Saponins, consisting of sapogenins as their aglycones and carbohydrate chains, are widely found in plants and some marine organisms. Due to the complexity of the structure of saponins, involving different types of sapogenins and sugar moieties, investigation of their absorption and metabolism is limited, which further hinders the explanation of their bioactivities. Large molecular weight and complex structures limit the direct absorption of saponins rendering their low bioavailability. As such, their major modes of action may be due to interaction with the gastrointestinal environment, such as enzymes and nutrients, and interaction with the gut microbiota. Many studies have reported the interaction between saponins and gut microbiota, that is, the effects of saponins on changing the composition of gut microbiota, and gut microbiota playing an indispensable role in the biotransformation of saponins into sapogenins. However, the metabolic routes of saponins by gut microbiota and their mutual interactions are still sparse. Thus, this review summarizes the chemistry, absorption, and metabolic pathways of saponins, as well as their interactions with gut microbiota and impacts on gut health, to better understand how saponins exert their health-promoting functions.
Collapse
Affiliation(s)
- Yu Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, China
| | - Ruojie Hao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Junda Chen
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Sen Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, China
| | - Kai Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, China
| | - Hongwei Cao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, China
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
| | - Maurizio Battino
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu University, Zhenjiang, China
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
| | - Maria Daglia
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu University, Zhenjiang, China
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Esra Capanoglu
- Faculty of Chemical and Metallurgical Engineering, Food Engineering Department, Istanbul Technical University, Maslak, Istanbul, Turkey
| | - Fan Zhang
- Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| | - Qiqi Sun
- Joint Center for Translational Medicine, Southern Medical University Affiliated Fengxian Hospital, Shanghai, China
| | - Jianbo Xiao
- Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| | - Zhenliang Sun
- Joint Center for Translational Medicine, Southern Medical University Affiliated Fengxian Hospital, Shanghai, China
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai, China
| |
Collapse
|
5
|
Zong S, Ye H, Ye Z, He Y, Zhang X, Ye M. Polysaccharides from Lachnum sp. Inhibited colitis-associated colon tumorigenesis in mice by modulating fecal microbiota and metabolites. Int Immunopharmacol 2022; 108:108656. [PMID: 35390743 DOI: 10.1016/j.intimp.2022.108656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 11/29/2022]
Abstract
It is still uncertain whether the consumption of Lachnum sp. polysaccharides (LEP) alleviates colorectal cancer (CRC) through the gut microbiota. In this study, our efforts are focused on the influence of LEP on CRC, intestinal barrier and inflammation, and fecal microbiota and the metabolites, in azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced CRC mice. Results showed that LEP inhibited CRC mouse colon shortening and weight loss, decreased tumor incidence, restored intestinal barrier integrity, and reduced excessive inflammation. LEP consumption significantly altered microbiota overall structure and community, with reduced pernicious bacteria (such as Parabacteroides, Escherichia_Shigella, Desulfovibrio and Helicobacter), and increased beneficial bacterium (such as Alistipes, Alloprevotella and Ruminiclostridium). Fecal-metabolome profile indicated that a total of 43 metabolites were clearly changed, with 10 down-regulated and 33 up-regulated metabolites. In addition, short-chain fatty acids (SCFAs), including acetic acid, propionic acid and n-butyric acid, were significantly increased after LEP administration. Moreover, a strong correlation between the fluctuant gut microbiota and metabolites was found. These findings provided not only deeper insights into the responsibility of LEP for CRC alleviation, and but also the potential of LEP as a promising candidate for CRC prevention and treatment.
Collapse
Affiliation(s)
- Shuai Zong
- Engineering Research Center of Bio-process, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; College of Food Science and Engineering, Yangzhou University, Yang Zhou 225127, China
| | - Hongling Ye
- School of Agriculture, Forestry and Fashion Technology, Anqing Vocational and Technical College, Anqing 246003, China
| | - Ziyang Ye
- Engineering Research Center of Bio-process, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yaling He
- Engineering Research Center of Bio-process, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xinmiao Zhang
- Engineering Research Center of Bio-process, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Ming Ye
- Engineering Research Center of Bio-process, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
6
|
Chen J, Zhang Y, Guan X, Cao H, Li L, Yu J, Liu H. Characterization of Saponins from Differently Colored Quinoa Cultivars and Their In Vitro Gastrointestinal Digestion and Fermentation Properties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1810-1818. [PMID: 35119265 DOI: 10.1021/acs.jafc.1c06200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Quinoa contains rich saponins, which are removed during processing and cause ecological waste. We extracted saponins from quinoa (SEQ) in black, white, and red cultivars and compared their composition by spectrophotometric assay and high-performance liquid chromatography analysis combined with acid hydrolysis. The digestion and fermentation properties of SEQ were investigated using an in vitro model. Our results showed that acid hydrolysis released sapogenins, mainly phytolaccagenin (PA), hederagenin (HD), and oleanolic acid from SEQ. Varying from SEQ in red, SEQ in black and white had a similar composition and content of sapogenins. Gastrointestinal digestion did not release sapogenins from SEQ but reduced the antioxidant activity of SEQ. Gut microbiota from human feces released PA and HD from SEQ. Reciprocally, SEQ in black significantly increased the growth of Lactobacillus spp. and Bifidobacterium spp., while reducing the growth of Shigella spp. The present study provides guidance for further investigation about the bioactivities of saponins from quinoa.
Collapse
Affiliation(s)
- Junda Chen
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yu Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| | - Hongwei Cao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| | - Lin Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jie Yu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Hanlin Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
7
|
Yu J, Li W, Xiao X, Huang Q, Yu J, Yang Y, Han T, Zhang D, Niu X. (-)-Epicatechin gallate blocks the development of atherosclerosis by regulating oxidative stress in vivo and in vitro. Food Funct 2021; 12:8715-8727. [PMID: 34365492 DOI: 10.1039/d1fo00846c] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
(-)-Epicatechin gallate (ECG), as a compound in green tea extract polyphenols, has specific therapeutic effects against oxidative stress. Oxidative stress exists throughout the pathological development of atherosclerosis. In this study, two atherosclerosis models, oxidized low-density lipoprotein (ox-LDL)-induced vascular smooth muscle cells (VSMCs) and high fat diet (HFD)-induced ApoE-/- mice, were applied to explore the mechanism of ECG intervention on AS. In vivo and in vitro studies showed that ECG reduced the level of MDA and increased the activity of SOD, which are oxidative stress factors. ECG also improved HFD-induced disorder of lipid factor expression in the serum of ApoE-/- mice and alleviated oxidative stress by enhancing the antioxidant activity. The potential mechanism was supposed to be the inhibition of the phosphorylation of p65 by ECG in the NF-κB pathway in the aorta, thereby blocking the expression of inflammatory mediators. In addition, ECG increased the stability of atherosclerosis plaques by reducing the expression of MMP-2 and ICAM-1 in atherosclerosis diseased tissues. ECG reduced lipid accumulation in the aorta and its roots and also plaque neoplasia. Western blotting experiments indicated that ECG increased the nuclear transfer of Nrf2 and the expression of heme oxygenase 1 (HO-1) was increased. These results demonstrated that ECG significantly reduced the formation of aortic plaque in ApoE-/- mice which was possibly triggered by the inhibition of hyperlipidemia and oxidative stress that exhibited the anti-atherosclerotic potential.
Collapse
Affiliation(s)
- Jinjin Yu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P.R. China.
| | - Weifeng Li
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P.R. China.
| | - Xin Xiao
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P.R. China.
| | - Qiuxia Huang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P.R. China.
| | - Jiabao Yu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P.R. China.
| | - Yajie Yang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P.R. China.
| | - Tengfei Han
- Shaanxi Panlong Pharmaceutical Group Limited by Share LTD, Xi'an, P.R. China
| | - Dezhu Zhang
- Shaanxi Panlong Pharmaceutical Group Limited by Share LTD, Xi'an, P.R. China
| | - Xiaofeng Niu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, P.R. China.
| |
Collapse
|
8
|
Iglesias-Carres L, Hughes MD, Steele CN, Ponder MA, Davy KP, Neilson AP. Use of dietary phytochemicals for inhibition of trimethylamine N-oxide formation. J Nutr Biochem 2021; 91:108600. [PMID: 33577949 DOI: 10.1016/j.jnutbio.2021.108600] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/01/2020] [Accepted: 12/30/2020] [Indexed: 12/12/2022]
Abstract
Trimethylamine-N-oxide (TMAO) has been reported as a risk factor for atherosclerosis development, as well as for other cardiovascular disease (CVD) pathologies. The objective of this review is to provide a useful summary on the use of phytochemicals as TMAO-reducing agents. This review discusses the main mechanisms by which TMAO promotes CVD, including the modulation of lipid and bile acid metabolism, and the promotion of endothelial dysfunction and oxidative stress. Current knowledge on the available strategies to reduce TMAO formation are discussed, highlighting the effect and potential of phytochemicals. Overall, phytochemicals (i.e., phenolic compounds or glucosinolates) reduce TMAO formation by modulating gut microbiota composition and/or function, inhibiting host's capacity to metabolize TMA to TMAO, or a combination of both. Perspectives for design of future studies involving phytochemicals as TMAO-reducing agents are discussed. Overall, the information provided by this review outlines the current state of the art of the role of phytochemicals as TMAO reducing agents, providing valuable insight to further advance in this field of study.
Collapse
Affiliation(s)
- Lisard Iglesias-Carres
- Department of Food, Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC
| | - Michael D Hughes
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Cortney N Steele
- Department of Human Nutrition, Foods and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Monica A Ponder
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Kevin P Davy
- Department of Human Nutrition, Foods and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Andrew P Neilson
- Department of Food, Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC.
| |
Collapse
|
9
|
Cao Q, Zhao J, Xing M, Xiao H, Zhang Q, Liang H, Ji A, Song S. Current Research Landscape of Marine-Derived Anti-Atherosclerotic Substances. Mar Drugs 2020; 18:md18090440. [PMID: 32854344 PMCID: PMC7551282 DOI: 10.3390/md18090440] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 12/18/2022] Open
Abstract
Atherosclerosis is a chronic disease characterized by lipid accumulation and chronic inflammation of the arterial wall, which is the pathological basis for coronary heart disease, cerebrovascular disease and thromboembolic disease. Currently, there is a lack of low-cost therapeutic agents that effectively slow the progression of atherosclerosis. Therefore, the development of new drugs is urgently needed. The research and development of marine-derived drugs have gained increasing interest from researchers across the world. Many marine organisms provide a rich material basis for the development of atherosclerotic drugs. This review focuses on the latest technological advances in the structures and mechanisms of action of marine-derived anti-atherosclerotic substances and the challenges of the application of these substances including marine polysaccharides, proteins and peptides, polyunsaturated fatty acids and small molecule compounds. Here, we describe the theoretical basis of marine biological resources in the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Qi Cao
- Marine College, Shandong University, Weihai 264209, China; (Q.C.); (J.Z.); (M.X.); (H.X.); (Q.Z.); (H.L.)
| | - Jiarui Zhao
- Marine College, Shandong University, Weihai 264209, China; (Q.C.); (J.Z.); (M.X.); (H.X.); (Q.Z.); (H.L.)
| | - Maochen Xing
- Marine College, Shandong University, Weihai 264209, China; (Q.C.); (J.Z.); (M.X.); (H.X.); (Q.Z.); (H.L.)
| | - Han Xiao
- Marine College, Shandong University, Weihai 264209, China; (Q.C.); (J.Z.); (M.X.); (H.X.); (Q.Z.); (H.L.)
| | - Qian Zhang
- Marine College, Shandong University, Weihai 264209, China; (Q.C.); (J.Z.); (M.X.); (H.X.); (Q.Z.); (H.L.)
| | - Hao Liang
- Marine College, Shandong University, Weihai 264209, China; (Q.C.); (J.Z.); (M.X.); (H.X.); (Q.Z.); (H.L.)
| | - Aiguo Ji
- Marine College, Shandong University, Weihai 264209, China; (Q.C.); (J.Z.); (M.X.); (H.X.); (Q.Z.); (H.L.)
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
- Correspondence: (A.J.); (S.S.)
| | - Shuliang Song
- Marine College, Shandong University, Weihai 264209, China; (Q.C.); (J.Z.); (M.X.); (H.X.); (Q.Z.); (H.L.)
- Correspondence: (A.J.); (S.S.)
| |
Collapse
|