1
|
Herzyk F, Piłakowska-Pietras D, Korzeniowska M. Supercritical Extraction Techniques for Obtaining Biologically Active Substances from a Variety of Plant Byproducts. Foods 2024; 13:1713. [PMID: 38890941 PMCID: PMC11171758 DOI: 10.3390/foods13111713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024] Open
Abstract
Supercritical fluid extraction (SFE) techniques have garnered significant attention as green and sustainable methods for obtaining biologically active substances from a diverse array of plant byproducts. This paper comprehensively reviews the use of supercritical fluid extraction (SFE) in obtaining bioactive compounds from various plant residues, including pomace, seeds, skins, and other agricultural byproducts. The main purpose of supercritical fluid extraction (SFE) is the selective isolation and recovery of compounds, such as polyphenols, essential oils, vitamins, and antioxidants, that have significant health-promoting properties. Using supercritical carbon dioxide as the solvent, supercritical fluid extraction (SFE) not only eliminates the need for hazardous organic solvents, e.g., ethanol, and methanol, but also protects heat-sensitive bioactive compounds. Moreover, this green extraction technique contributes to waste valorisation by converting plant byproducts into value-added extracts with potential applications in the food, pharmaceutical, and cosmetic industries. This review highlights the advantages of SFE, including its efficiency, eco-friendliness, and production of residue-free extracts, while discussing potential challenges and future prospects for the utilisation of SFE in obtaining biologically active substances from plant byproducts.
Collapse
Affiliation(s)
- Filip Herzyk
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Sciences, University of Environmental and Life Sciences, 51-630 Wrocław, Poland;
- Wroclaw Technology Park, 54-413 Wrocław, Poland
| | | | - Małgorzata Korzeniowska
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Sciences, University of Environmental and Life Sciences, 51-630 Wrocław, Poland;
| |
Collapse
|
2
|
Asif M, Javaid T, Razzaq ZU, Khan MKI, Maan AA, Yousaf S, Usman A, Shahid S. Sustainable utilization of apple pomace and its emerging potential for development of functional foods. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:17932-17950. [PMID: 37458891 DOI: 10.1007/s11356-023-28479-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 06/23/2023] [Indexed: 03/09/2024]
Abstract
Apple pomace, a byproduct of apple processing industry, possesses nutritional components which are of great interests for health aspects. Apple pomace is a good source of dietary fiber, minerals, carbohydrates, phenolic, and antioxidant compounds. These bioactive compounds can be extracted by different extraction techniques which have been comprehensively described in this review article. Furthermore, the incorporation of apple pomace as functional ingredients in different food products like bakery items, extrusion-based snacks, meat, dairy, and confectionary products to improve the commercial value and health benefits has been discussed briefly. This review article can be a helpful tool for industrialists, innovative researchers, and waste management authorities to manage the apple waste in an appropriate and sustainable way.
Collapse
Affiliation(s)
- Muhammad Asif
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Tahreem Javaid
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha, Pakistan
| | - Zafar Ullah Razzaq
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Muhmmad Kashif Iqbal Khan
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan.
- Department of Food Engineering, University of Agriculture, Faisalabad, Pakistan.
| | - Abid Aslam Maan
- Department of Food Engineering, University of Agriculture, Faisalabad, Pakistan
| | - Saria Yousaf
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Ayesha Usman
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Sidra Shahid
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
3
|
Interdonato L, Ferrario G, Cordaro M, D'Amico R, Siracusa R, Fusco R, Impellizzeri D, Cuzzocrea S, Aldini G, Di Paola R. Targeting Nrf2 and NF-κB Signaling Pathways in Inflammatory Pain: The Role of Polyphenols from Thinned Apples. Molecules 2023; 28:5376. [PMID: 37513248 PMCID: PMC10385557 DOI: 10.3390/molecules28145376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/29/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Diet can modulate the different stages of inflammation due to the presence of bioactive compounds such as polyphenols. Apples are a great source of phenolic compounds that show anti-inflammatory and antioxidant properties, and these might be used as a dietary supplement and/or functional element in the treatment of chronic inflammatory illnesses. The aim of our study was to evaluate the anti-inflammatory and antioxidant actions of thinned apple polyphenol (TAP) extracts in a model of paw edema. The experimental model was induced in rats via subplantar injections of 1% λ-Carrageenan (CAR) in the right hind leg, and TAP extract was administered via oral gavage 30 min before and 1 h after the CAR injection at doses of 5 mg/kg and 10 mg/kg, respectively. The inflammatory response is usually quantified by the increase in the size of the paw (edema), which is maximal about 5 h after the injection of CAR. CAR-induced inflammation generates the release of pro-inflammatory mediators and reactive oxygen species (ROS). Furthermore, the inflammatory state induces the pain that involves the peripheral nociceptors, but above all it acts centrally at the level of the spinal cord. Our results showed that the TAP extracts reduced paw histological changes, neutrophil infiltration, mast cell degranulation, and oxidative stress. Additionally, the oral administration of TAP extracts decreased thermal and mechanical hyperalgesia, along with a reduction in spinal microglia and the markers of nociception. In conclusion, we demonstrate that TAP extract is able to modulate inflammatory, oxidative, and painful processes, and is also useful in the treatment of the symptoms associated with paw edema.
Collapse
Affiliation(s)
- Livia Interdonato
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
| | - Giulio Ferrario
- Department of Pharmaceutical Sciences (DISFARM), Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Ramona D'Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences (DISFARM), Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milan, Italy
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| |
Collapse
|
4
|
Alawadi AA, Benedito VA, Skinner RC, Warren DC, Showman C, Tou JC. RNA-sequencing revealed apple pomace ameliorates expression of genes in the hypothalamus associated with neurodegeneration in female rats fed a Western diet during adolescence to adulthood. Nutr Neurosci 2023; 26:332-344. [PMID: 35296223 DOI: 10.1080/1028415x.2022.2050008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVES Apple pomace, a waste byproduct of apple processing, is rich in nutrients (e.g. polyphenols and soluble fiber) with the potential to be neuroprotective. The aim of this study was to employ RNA-sequencing (RNASeq) technology to investigate diet-gene interactions in the hypothalamus of rats after feeding a Western diet calorically substituted with apple pomace. METHODS Adolescent (age 21-29 days) female Sprague-Dawley rats were randomly assigned (n = 8 rats/group) to consume either a purified standard diet, Western (WE) diet, or Western diet calorically substituted with 10% apple pomace (WE/AP) for 8 weeks. RNA-seq was performed (n = 5 rats/group) to determine global differentially expressed genes in the hypothalamus. RESULTS RNA-seq results comparing rats fed WE to WE/AP revealed 15 differentially expressed genes in the hypothalamus. Caloric substitution of WE diet with 10% apple pomace downregulated (q < 0.06) five genes implicated in brain aging and neurodegenerative disorders: synuclein alpha, phospholipase D family member 5, NADH dehydrogenase Fe-S protein 6, choline O-acetyltransferase, and frizzled class receptor 6. DISCUSSION Altered gene expression of these five genes suggests that apple pomace ameliorated synthesis of the neurotransmitter, acetylcholine, in rats fed a WE diet. Apple pomace, a rich source of antioxidant polyphenols and soluble fiber, has been shown to reverse nonalcoholic fatty liver disease (NAFLD). Diet-induced NAFLD decreases hepatic de novo synthesis of choline, a precursor to acetylcholine. Based on preclinical evidence, apple pomace has the potential to be a sustainable functional food for maintaining brain function and for reducing the risk of neurodegeneration.
Collapse
Affiliation(s)
- Ayad A Alawadi
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, USA
| | - Vagner A Benedito
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, USA
| | - R Chris Skinner
- Food Systems Research Center, College of Agriculture and Life Sciences, University of Vermont Burlington, VT, USA
| | - Derek C Warren
- Division of Natural Sciences and Mathematics, University of Ozarks, Clarksville, AR, USA
| | - Casey Showman
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, USA
| | - Janet C Tou
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
5
|
Singh RB, Nabavizadeh F, Fedacko J, Pella D, Vanova N, Jakabcin P, Fatima G, Horuichi R, Takahashi T, Mojto V, Juneja L, Watanabe S, Jakabcinova A. Dietary Approaches to Stop Hypertension via Indo-Mediterranean Foods, May Be Superior to DASH Diet Intervention. Nutrients 2022; 15:nu15010046. [PMID: 36615704 PMCID: PMC9824062 DOI: 10.3390/nu15010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/24/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Western-type diet with high salt and sugar, sedentary behavior, obesity, tobacco and alcoholism are important risk factors for hypertension. This review aims to highlight the role of western diet-induced oxidative stress and inflammation in the pathogenesis of hypertension and the role of various types of diets in its prevention with reference to dietary approaches to stop hypertension (DASH) diet. It seems that it is crucial to alter the western type of diet because such diets can also predispose all CVDs. Western diet-induced oxidative stress is characterized by excessive production of reactive oxygen species (ROS) with an altered oxidation-reduction (redox) state, leading to a marked increase in inflammation and vascular dysfunction. Apart from genetic and environmental factors, one important cause for differences in the prevalence of hypertension in various countries may be diet quality, deficiency in functional foods, and salt consumption. The role of the DASH diet has been established. However, there are gaps in knowledge about the role of some Indo-Mediterranean foods and Japanese foods, which have been found to decrease blood pressure (BP) by improving vascular function. The notable Indo-Mediterranean foods are pulses, porridge, spices, and millets; fruits such as guava and blackberry and vegetables, which may also decrease BPs. The Japanese diet consists of soya tofu, whole rice, in particular medical rice, vegetables and plenty of fish rich in fish oil, fish peptides and taurine that are known to decrease BPs. Epidemiological studies and randomized, controlled trials have demonstrated the role of these diets in the prevention of hypertension and metabolic diseases. Such evidence is still meager from Japan, although the prevalence of hypertension is lower (15-21%) compared to other developed countries, which may be due to the high quality of the Japanese diet. Interestingly, some foods, such as berries, guava, pumpkin seeds, carrots, soya beans, and spices, have been found to cause a decrease in BPs. Omega-3 fatty acids, fish peptide, taurine, dietary vitamin D, vitamin C, potassium, magnesium, flavonoids, nitrate and l-arginine are potential nutrients that can also decrease BPs. Larger cohort studies and controlled trials are necessary to confirm our views.
Collapse
Affiliation(s)
- Ram B. Singh
- Halberg Hospital and Research Institute, Moradabad 244001, India
| | - Fatemeh Nabavizadeh
- Department of Cardiology, Emirates Hospital, Dubai 999041, United Arab Emirates
| | - Jan Fedacko
- Department of Gerontology and Geriatric, PJ Safarik University and MEDIPARK—University Research Park, PJ Safarik University, 1, 041-90 Kosice, Slovakia
- Correspondence:
| | - Dominik Pella
- 1st Department of Cardiology, PJ Safarik University Faculty of Medicine and East Slovak Institute for Cardiovascular Disease, 040-11 Kosice, Slovakia
| | - Natalia Vanova
- Department of Internal Medicine, PJ Safarik University and Agel Hospital Kosice-Saca, 040-11 Kosice, Slovakia
| | - Patrik Jakabcin
- Department of Social and Clinical Pharmacy, Faculty of Pharmacy in Hradec Králové, Charles University, 10000 Prague, Czech Republic
| | - Ghizal Fatima
- Era Medical College, Era University, Lucknow 226001, India
| | - Rie Horuichi
- Department of Food Sciences and Nutrition, Faculty of Human Environmental Sciences, Mukogawa Women’s University, Nishinomiya City 663-8558, Japan
| | - Toru Takahashi
- Department of Nutrition, Faculty of Nutrition, Kanazawa Gakuin University, Kanazawa City 920-1392, Japan
| | - Viliam Mojto
- Department of Internal Medicine, Comenius University, 813-72 Bratislava, Slovakia
| | - Lekh Juneja
- Executive Vice President, Kameda Seika Co., Ltd., Tokyo 160-0005, Japan
| | | | - Andrea Jakabcinova
- Department of Gerontology and Geriatric, Faculty of Medicine, PJ Safarik University and MEDIPARK—University Research Park, PJ Safarik University, 040-11 Kosice, Slovakia
| |
Collapse
|
6
|
Sustainable Approaches Using Green Technologies for Apple By-Product Valorisation as A New Perspective into the History of the Apple. Molecules 2022; 27:molecules27206937. [PMID: 36296530 PMCID: PMC9610383 DOI: 10.3390/molecules27206937] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/07/2022] Open
Abstract
The apple has been recognised as the most culturally important fruit crop in temperate land areas. Centuries of human exploitation and development led to the production of thousands of apple cultivars. Nowadays, the apple represents the third most widely cultivated fruit in the world. About 30% of the total production of apples is processed, being juice and cider the main resulting products. Regarding this procedure, a large quantity of apple by-product is generated, which tends to be undervalued, and commonly remains underutilised, landfilled, or incinerated. However, apple by-product is a proven source of bioactive compounds, namely dietary fibre, fatty acids, triterpenes, or polyphenols. Therefore, the application of green technologies should be considered in order to improve the functionality of apple by-product while promoting its use as the raw material of a novel product line. The present work provides a holistic view of the apple’s historical evolution, characterises apple by-product, and reviews the application of green technologies for improving its functionality. These sustainable procedures can enable the transformation of this perishable material into a novel ingredient opening up new prospects for the apple’s potential use and consumption.
Collapse
|
7
|
Polyphenols from Thinned Young Apples: HPLC-HRMS Profile and Evaluation of Their Anti-Oxidant and Anti-Inflammatory Activities by Proteomic Studies. Antioxidants (Basel) 2022; 11:antiox11081577. [PMID: 36009298 PMCID: PMC9405250 DOI: 10.3390/antiox11081577] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
The qualitative profile of thinned apple polyphenols (TAP) fraction (≈24% of polyphenols) obtained by purification through absorbent resin was fully investigated by LC-HRMS in positive and negative ion mode and using ESI source. A total of 68 polyphenols were identified belonging to six different classes: flavanols, flavonols, dihydrochalchones, flavanones, flavones and organic and phenolic acids. The antioxidant and anti-inflammatory activities were then investigated in cell models with gene reporter for NRF2 and NF-κB and by quantitative proteomic (label-free and SILAC) approaches. TAP dose-dependently activated NRF2 and in the same concentration range (10–250 µg/mL) inhibited NF-κB nuclear translocation induced by TNF-α and IL-1α as pro-inflammatory promoters. Proteomic studies elucidated the molecular pathways evoked by TAP treatment: activation of the NRF2 signaling pathway, which in turn up-regulates protective oxidoreductases and their nucleophilic substrates such as GSH and NADPH, the latter resulting from the up-regulation of the pentose phosphate pathway. The increase in the enzymatic antioxidant cellular activity together with the up-regulation of the heme-oxygenase would explain the anti-inflammatory effect of TAP. The results suggest that thinned apples can be considered as a valuable source of apple polyphenols to be used in health care products to prevent/treat oxidative and inflammatory chronic conditions.
Collapse
|
8
|
Iqbal A, Schulz P, Rizvi SS. Valorization of bioactive compounds in fruit pomace from agro-fruit industries: Present Insights and future challenges. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101384] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
9
|
Dietary Regulation of Oxidative Stress in Chronic Metabolic Diseases. Foods 2021; 10:foods10081854. [PMID: 34441631 PMCID: PMC8391153 DOI: 10.3390/foods10081854] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/06/2021] [Indexed: 12/15/2022] Open
Abstract
Oxidative stress is a status of imbalance between oxidants and antioxidants, resulting in molecular damage and interruption of redox signaling in an organism. Indeed, oxidative stress has been associated with many metabolic disorders due to unhealthy dietary patterns and may be alleviated by properly increasing the intake of antioxidants. Thus, it is quite important to adopt a healthy dietary mode to regulate oxidative stress and maintain cell and tissue homeostasis, preventing inflammation and chronic metabolic diseases. This review focuses on the links between dietary nutrients and health, summarizing the role of oxidative stress in ‘unhealthy’ metabolic pathway activities in individuals and how oxidative stress is further regulated by balanced diets.
Collapse
|
10
|
Bayram HM, Majoo FM, Ozturkcan A. Polyphenols in the prevention and treatment of non-alcoholic fatty liver disease: An update of preclinical and clinical studies. Clin Nutr ESPEN 2021; 44:1-14. [PMID: 34330452 DOI: 10.1016/j.clnesp.2021.06.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/14/2021] [Accepted: 06/17/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND & AIMS The prevention and treatment of non-alcoholic fatty liver disease (NAFLD) has become one of the most urgent problems to be solved. To date, only a lifestyle modification related to diet and physical activity is considered for these patients. Polyphenols are a group of plant natural products that when regularly consumed has been related to a reduction in the risk of several metabolic disorders associated with NAFLD. In this study, we aimed to present an overview of the relationship between polyphenols and NAFLD with current approaches. METHODS We performed a comprehensive literature search for articles on polyphenols and NAFLD published in English between January 2018 to August 2020. Keywords included in this review: "Phenolic" OR "Polyphenol" AND "Non-Alcoholic Fatty Liver Disease". The editorials, communications and conference abstracts were excluded. RESULTS Different polyphenols decreased the pro-inflammatory cytokines in both serum and liver that contribute to a decrease in fatty liver dysfunction. Additionally, polyphenols may improve the regulation of adipokines and prevent hepatic steatosis. According to human clinical studies, polyphenols are promising for NAFLD patients and associated diseases that lead to NAFLD. CONCLUSION Preclinical and clinical studies suggest that various polyphenols could prevent steatosis and its progression to non-alcoholic steatohepatitis, as well as ameliorate NAFLD. However, more clinical studies are needed to confirm this hypothesis.
Collapse
Affiliation(s)
- Hatice Merve Bayram
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Istanbul Gelisim University, Avcilar, 34310, Istanbul, Turkey.
| | - Fuzail Mohammed Majoo
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Istanbul Gelisim University, Avcilar, 34310, Istanbul, Turkey.
| | - Arda Ozturkcan
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Istanbul Gelisim University, Avcilar, 34310, Istanbul, Turkey.
| |
Collapse
|
11
|
Hussein RM. Upregulation of miR-33 and miR-155 by gum acacia mitigates hyperlipidaemia and inflammation but not weight increase induced by Western diet ingestion in mice. Arch Physiol Biochem 2021:1-7. [PMID: 33529079 DOI: 10.1080/13813455.2021.1876734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVE This study, for the first time, investigates the effect of gum acacia (GA) on the expression of miR-33 and miR-155 and its association with the obesity and inflammation induced by Western diet (WD) consumption in mice. METHODS Animals were divided into: normal diet (ND) group, WD group, GA group and GA + WD group. RESULTS The WD group exhibited higher total body, liver, visceral fat weights, blood total cholesterol, triglycerides and glucose levels compared to ND group. The liver tissues showed severe inflammation and degeneration with higher hepatic TNF-α level. Interestingly, GA + WD group showed a decrease in the biochemical parameters and hepatic TNF-α level but had no effect on the weight increase. It also showed a significant upregulation of miR-33 and miR-155 compared to WD group. CONCLUSIONS GA mitigated the hyperlipidaemia and inflammation but not weight increase induced by WD ingestion via upregulation of miR-33 and miR-155 while reducing TNF-α level.
Collapse
Affiliation(s)
- Rasha M Hussein
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Mutah University, Al-Karak, Jordan
- Department of Biochemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
12
|
Feng S, Yi J, Li X, Wu X, Zhao Y, Ma Y, Bi J. Systematic Review of Phenolic Compounds in Apple Fruits: Compositions, Distribution, Absorption, Metabolism, and Processing Stability. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7-27. [PMID: 33397106 DOI: 10.1021/acs.jafc.0c05481] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
As the most widely consumed fruit in the world, apple (Malus domestica Borkh.) fruits provide a high level of phenolics and have many beneficial effects on human health. The composition and content of phenolic compounds in natural apples differs according to the tissue types and cultivar varieties. The bioavailability of apple-derived phenolics, depending on the absorption and metabolism of phenolics during digestion, is the key determinant of their positive biological effects. Meanwhile, various processing technologies affect the composition and content of phenolic compounds in apple products, further affecting the bioavailability of apple phenolics. This review summarizes current understanding on the compositions, distribution, absorption, and metabolism of phenolic compounds in apple and their stability when subjected to common technologies during processing. We intend to provide an updated overview on apple phenolics and also suggest some perspectives for future research of apple phenolics.
Collapse
Affiliation(s)
- Shuhan Feng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Jianyong Yi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Xuan Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Xinye Wu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Yuanyuan Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Youchuan Ma
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Jinfeng Bi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| |
Collapse
|
13
|
Antonic B, Jancikova S, Dordevic D, Tremlova B. Apple pomace as food fortification ingredient: A systematic review and meta-analysis. J Food Sci 2020; 85:2977-2985. [PMID: 32966605 DOI: 10.1111/1750-3841.15449] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/10/2020] [Accepted: 08/17/2020] [Indexed: 01/04/2023]
Abstract
The present review aimed to investigate and analyze the use of byproduct apple pomace as a fortification ingredient in different types of foods. The data obtained from English published articles found on Web of Science, Scopus, and Google Scholar in the period from 2007 to 2019 were used for making the table overview and meta-analysis of results described in those studies. The systematic review confirmed the importance of apple pomace use in the food industry due to the beneficial nutritional profile and ecological issue (waste management). The main attributes of apple pomace are high content of antioxidant compounds and dietary fibers. Dietary fibers from apple pomace significantly increased total fiber content in enriched products-meaning that the transfer of the fortification can be declared health beneficial. The conducted meta-analysis showed unambiguously the different influence of apple pomace addition according to fortified food commodity. The fortification drawbacks were noticeable in plant food products because darker and brownish color was not evaluated positively by panelists. Oppositely, color, as one of the main sensory characteristics, was beneficially affected in animal origin food. The sensory properties, including color, play an important role in product acceptance by consumers. Besides color, animal origin products fortified by apple pomace showed the most acceptable textural properties and oxidative stability.
Collapse
Affiliation(s)
- Bojan Antonic
- Department of Vegetable Foodstuffs Hygiene and Technology, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1946/1, Brno, 61242, Czech Republic
| | - Simona Jancikova
- Department of Vegetable Foodstuffs Hygiene and Technology, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1946/1, Brno, 61242, Czech Republic
| | - Dani Dordevic
- Department of Vegetable Foodstuffs Hygiene and Technology, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1946/1, Brno, 61242, Czech Republic.,Department of Technology and Organization of Public Catering, South Ural State University, Lenin Prospect 76, Chelyabinsk, 454080, Russia
| | - Bohuslava Tremlova
- Department of Vegetable Foodstuffs Hygiene and Technology, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho tr. 1946/1, Brno, 61242, Czech Republic
| |
Collapse
|
14
|
Gorjanović S, Micić D, Pastor F, Tosti T, Kalušević A, Ristić S, Zlatanović S. Evaluation of Apple Pomace Flour Obtained Industrially by Dehydration as a Source of Biomolecules with Antioxidant, Antidiabetic and Antiobesity Effects. Antioxidants (Basel) 2020; 9:antiox9050413. [PMID: 32408574 PMCID: PMC7278621 DOI: 10.3390/antiox9050413] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 12/19/2022] Open
Abstract
Apple pomace flour (APF) obtained at industrial scale level by the application of innovative technological process (dehydration (5 h, T ≤ 55 °C), grinding (300 µm)) was evaluated as a source of bioactive compounds with antioxidative, antiobesity and antidiabetic effects. Proximate composition, individual (HPLC–DAD–MS/MS) and total phenols (TPC) as well as flavonoids content (TFC), antioxidant (AO) activity (DPPH, ABTS, HPMC), water and oil holding capacity (WHC and OHC) of APFs obtained from apple pomace from mixed and individual apple cultivars grown conventionally and organically were compared. The effect of APF supplementation on the glycaemic status and glucose tolerance (oral glucose tolerance test (OGTT)) of C57BL/6J mice exposed to high-fat and sucrose diet was examined. High K content (4.2–6.4 g/kg), dietary fibres (35–45 g/100 g), TPC (4.6–8.1 mg GAE/g), TFC (18.6–34.6 mg QE/g), high water and oil holding capacity (4.7–6.4 and 1.3–1.6 g/g) were observed in the APFs. Content of major phenols (phlorizin, chlorogenic acid, quercetin), TPC and TFC correlated highly with prominent AO activity. APF supplementation lowered the increase of body weight gain and blood glucose, and improved glucose tolerance significantly. Health-promoting biomolecules, AO activity, functional properties and prevention of diet-driven glucose metabolism disorders pave the way to APF exploitation in human nutrition.
Collapse
Affiliation(s)
- Stanislava Gorjanović
- Institute of General and Physical Chemistry, P.O. Box 45, 11158 Belgrade 118, Serbia;
- Correspondence: (S.G.); (S.Z.); Tel.: +381-612439803 (S.G.); +381-641119641 (S.Z.)
| | - Darko Micić
- Institute of General and Physical Chemistry, P.O. Box 45, 11158 Belgrade 118, Serbia;
| | - Ferenc Pastor
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11080 Belgrade, Serbia; (F.P.); (T.T.)
| | - Tomislav Tosti
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11080 Belgrade, Serbia; (F.P.); (T.T.)
| | - Ana Kalušević
- Institute of Meat Hygiene and Technology, Kaćanskog 13, 11000 Belgrade, Serbia;
| | - Slavica Ristić
- Faculty of Medicine, University of Belgrade, Dr Subotića 8, 11000 Belgrade, Serbia;
| | - Snežana Zlatanović
- Institute of General and Physical Chemistry, P.O. Box 45, 11158 Belgrade 118, Serbia;
- Correspondence: (S.G.); (S.Z.); Tel.: +381-612439803 (S.G.); +381-641119641 (S.Z.)
| |
Collapse
|