1
|
Yao W, Yu X, Zhou Y, Han Y, Li S, Yin X, Huang X, Huang F. Effects of different processing techniques of broken rice on processing quality of pellet feed, nutrient digestibility, and gut microbiota of weaned piglets. J Anim Sci 2023; 101:skad158. [PMID: 37184888 PMCID: PMC10237224 DOI: 10.1093/jas/skad158] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/15/2023] [Indexed: 05/16/2023] Open
Abstract
The present study was conducted to assess the effect of different processing techniques of broken rice on processing quality of pellet feed, growth performance, nutrient digestibility, blood biochemical parameters, and fecal microbiota of weaned piglets. A total of 400 crossbred piglets (Duroc × Landrace × Yorkshire) with a mean initial body weight (BW) of 7.24 ± 0.52 kg were used in a 28-d experiment. Piglets were randomly distributed to one of 4 treatment and 10 replicate pens per treatment, with 10 piglets per pen. The dietary treatments were as follows: CON, corn as the main cereal type in the dietary; BR, 70% of the corn replaced by broken rice; ETBR, 70% of the corn replaced by extruded broken rice; EPBR, 70% of the corn replaced by expanded broken rice. Extruded broken rice and expanded broken rice supplementation significantly (P < 0.05) increased hardness, pellet durability index, crispness, and starch gelatinization degree. Extruded broken rice and expanded broken rice generated a higher (P < 0.05) average daily feed intake, increased (P < 0.05) average daily gain, decreased (P < 0.05) feed conversion ratio, and lowered (P < 0.05) the diarrhea rate. Piglets fed extruded broken rice displayed high apparent total tract digestibility levels of dry matter (P < 0.05), gross energy (P < 0.05), crude protein (P < 0.05), and organic matter (P < 0.05). In addition, extruded broken rice and expanded broken rice supplementation had increased Lactobacillus and Bifidobacterium levels in gut, whereas a lower abundance of the potential pathogens Clostridium_sensu_strictio_1 and Streptococcus was observed. Dietary supplementation of extruded broken rice and expanded broken rice failed to show significant effects on blood biochemical parameters. Combined, 70% corn substituted with broken rice failed to show significant effects. Collectively, extruded broken rice and expanded broken rice supplementation had positively enhanced the pellet quality, growth performance, nutrient digestibility, and gut microbiota of weaned piglets.
Collapse
Affiliation(s)
- Weilei Yao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
| | - Xinhong Yu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
| | - Yan Zhou
- Wuhan Academy of Agricultural Sciences, Wuhan 430072, China
| | - Yanxu Han
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
| | - Shimin Li
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
| | - Xinyi Yin
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
| | - Xinlei Huang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
| | - Feiruo Huang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
| |
Collapse
|
2
|
Ji H, Liu J, McClements DJ, Bai Y, Li Z, Chen L, Qiu C, Zhan X, Jin Z. Malto-oligosaccharides as critical functional ingredient: a review of their properties, preparation, and versatile applications. Crit Rev Food Sci Nutr 2022; 64:3674-3686. [PMID: 36260087 DOI: 10.1080/10408398.2022.2134291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Malto-oligosaccharides (MOS) are α-1,4 glycosidic linked linear oligosaccharides of glucose, which have a diverse range of functional applications in the food, pharmaceutical, and other industries. They can be used to modify the physicochemical properties of foods thereby improving their quality attributes, or they can be included as prebiotics to improve their nutritional attributes. The degree of polymerization of MOS can be controlled by using specific enzymes, which means their functionality can be tuned for specific applications. In this article, we review the chemical structure, physicochemical properties, preparation, and functional applications of MOS in the food, health care, and other industries. Besides, we offer an overview for this saccharide from the perspective of prospect functional ingredient, which we feel lacks in the current literature. MOS could be expected to provide a novel promising substitute for functional oligosaccharides.
Collapse
Affiliation(s)
- Hangyan Ji
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Jialin Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | | | - Yuxiang Bai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Zhitao Li
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Long Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Chao Qiu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Xiaobei Zhan
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu Province, China
| |
Collapse
|
3
|
Huang Z, Yang W, Wang X, Guo F, Cheng Y, Cao L, Zhu W, Sun Y, Xiong H. Industrially Produced Rice Protein Ameliorates Dextran Sulfate Sodium-Induced Colitis via Protecting the Intestinal Barrier, Mitigating Oxidative Stress, and Regulating Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4952-4965. [PMID: 35412826 DOI: 10.1021/acs.jafc.2c00585] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Inflammatory bowel disease (IBD) poses a threat to health and compromises the immune system and gut microflora. The present study aimed to explore the effects of rice protein (RP) purified from rice dregs (RD) on acute colitis induced by dextran sulfate sodium (DSS) and the underlying mechanisms. Results showed that RP treatment could alleviate the loss of body weight, colon shortening and injury, and the level of disease activity index, repair colonic function (claudin-1, ZO-1 and occludin), regulate inflammatory factors, and restore oxidative balance (malondialdehyde (MDA), catalase (CAT), superoxide dismutase (SOD), and total antioxidant capability (T-AOC)) in mice. Also, RP treatment could activate the Kelch-like ECH-associating protein 1 (Keap1)-nuclear factor E2-related factor 2 (Nrf2) signaling pathway, mediate the expression of downstream antioxidant protease (NQO-1, HO-1, and Gclc), regulate gut microbiota by enhancing the relative abundance of Akkermansia and increasing the value of F/B, and adjust short-chain fatty acid levels to alleviate DSS-induced colitis in mice. Thus, RP may be an effective therapeutic dietary resource for ulcerative colitis.
Collapse
Affiliation(s)
- Zhenghua Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, P. R. China
| | - Wenting Yang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, P. R. China
| | - Xiaoya Wang
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi, P. R. China
| | - Fanghua Guo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, P. R. China
| | - Yibin Cheng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, P. R. China
| | - Leipeng Cao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, P. R. China
| | - Wenting Zhu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, P. R. China
| | - Yong Sun
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, P. R. China
| | - Hua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, P. R. China
| |
Collapse
|
4
|
|
5
|
Ding N, Zhao B, Ban X, Li C, Venkataram Prasad BV, Gu Z, Li Z. Carbohydrate-Binding Module and Linker Allow Cold Adaptation and Salt Tolerance of Maltopentaose-Forming Amylase From Marine Bacterium Saccharophagus degradans 2-40 T. Front Microbiol 2021; 12:708480. [PMID: 34335544 PMCID: PMC8317173 DOI: 10.3389/fmicb.2021.708480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/21/2021] [Indexed: 11/13/2022] Open
Abstract
Marine extremophiles produce cold-adapted and/or salt-tolerant enzymes to survive in harsh conditions. These enzymes are naturally evolved with unique structural features that confer a high level of flexibility, solubility and substrate-binding ability compared to mesophilic and thermostable homologs. Here, we identified and characterized an amylase, SdG5A, from the marine bacterium Saccharophagus degradans 2-40 T . We expressed the protein in Bacillus subtilis and found that the purified SdG5A enabled highly specific production of maltopentaose, an important health-promoting food and nutrition component. Notably, SdG5A exhibited outstanding cold adaptation and salt tolerance, retaining approximately 30 and 70% of its maximum activity at 4°C and in 3 M NaCl, respectively. It converted 68 and 83% of starch into maltooligosaccharides at 4 and 25°C, respectively, within 24 h, with 79% of the yield being the maltopentaose. By analyzing the structure of SdG5A, we found that the C-terminal carbohydrate-binding module (CBM) coupled with an extended linker, displayed a relatively high negative charge density and superior conformational flexibility compared to the whole protein and the catalytic domain. Consistent with our bioinformatics analysis, truncation of the linker-CBM region resulted in a significant loss in activities at low temperature and high salt concentration. This highlights the linker-CBM acting as the critical component for the protein to carry out its activity in biologically unfavorable condition. Together, our study indicated that these unique properties of SdG5A have great potential for both basic research and industrial applications in food, biology, and medical and pharmaceutical fields.
Collapse
Affiliation(s)
- Ning Ding
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi, China
| | - Boyang Zhao
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | - Xiaofeng Ban
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi, China
| | - Caiming Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi, China
| | - B. V. Venkataram Prasad
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
- The Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Zhengbiao Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi, China
| | - Zhaofeng Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi, China
| |
Collapse
|
6
|
Yan S, Wang K, Wang X, Ou A, Wang F, Wu L, Xue X. Effect of fermented bee pollen on metabolic syndrome in high-fat diet-induced mice. FOOD SCIENCE AND HUMAN WELLNESS 2021. [DOI: 10.1016/j.fshw.2021.02.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
da Silva JM, Barão CE, Esmerino EA, Cruz AG, Pimentel TC. Prebiotic frozen dessert processed with water-soluble extract of rice byproduct: Vegan and nonvegan consumers perception using preferred attribute elicitation methodology and acceptance. J Food Sci 2021; 86:523-530. [PMID: 33438322 DOI: 10.1111/1750-3841.15566] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/30/2020] [Accepted: 12/02/2020] [Indexed: 02/06/2023]
Abstract
The objective of this study was to assess the perceptions (using the preferred attribute elicitation [PAE] methodology) and acceptance of frozen dessert processed with water-soluble extract of rice byproduct and added with prebiotic components (long-chain inulin, medium-chain inulin, oligofructose, or polydextrose, 5 g/100 g) by vegan or nonvegan consumers. Most of the elicited attributes (9 out of 13 attributes, yellow color, brightness, creamy appearance, passion fruit aroma, sweet taste, passion fruit flavor, acid taste, sour taste, and creamy texture) were considered important for the characterization and/or acceptance of the frozen dessert formulations by both groups (vegan and nonvegan), but the order of importance was different between the groups. The sensory profile (Rv = 0.48, P = 0.03 in MFA) of the frozen dessert formulations was similar between vegan and nonvegan groups, and polydextrose contributed to increase firmness/consistency of the frozen dessert, while long-chain inulin contributed to the increase in the creaminess of the products. Finally, oligofructose and polydextrose could reduce the sour taste of the products. The consumers gave scores from 6 to 8 in a 9-point hedonic scale for the products, suggesting suitable acceptance. However, vegan consumers gave lower scores for the same products. In conclusion, PAE methodology can be used to compare the perception of different consumer groups, and vegan and nonvegan consumers have a similar perception about prebiotic frozen dessert processed with water-soluble extract of rice byproduct. Furthermore, the frozen dessert developed had suitable consumer acceptance, although vegan gave lower scores than nonvegan consumers. PRACTICAL APPLICATION: This is the first study involving the development of prebiotic frozen dessert from water-soluble extract of rice byproduct and application of PAE to assess the sensory perception of vegan and nonvegan consumers. The results are important for the industry as they indicate that the PAE methodology can be used to characterize food products, compare the perception of different consumer groups, and elicit attributes that are important for the products, suggesting that universal marketing strategies could be used and that the developed frozen dessert could serve both vegan consumers and those on conventional diets.
Collapse
Affiliation(s)
| | | | - Erick Almeida Esmerino
- Instituto de Tecnologia - Departamento de Tecnologia de Alimentos, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Rodovia BR-465, Km 07, Seropédica, Rio de Janeiro, 23897000, Brasil
| | - Adriano Gomes Cruz
- Departamento de Alimentos, Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro (IFRJ), Rio de Janeiro, 20270-021, Brazil
| | - Tatiana Colombo Pimentel
- Universidade Estadual de Maringá (UEM), Campus Sede, Maringá, 87020-900, Brazil.,Instituto Federal do Paraná (IFPR), Campus Paranavaí, Paraná, 87703-536, Brazil
| |
Collapse
|
8
|
da Silva JM, Klososki SJ, Silva R, Raices RSL, Silva MC, Freitas MQ, Barão CE, Pimentel TC. Passion fruit-flavored ice cream processed with water-soluble extract of rice by-product: What is the impact of the addition of different prebiotic components? Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109472] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|