1
|
Li Y, Li S, Zhao X, Shi C, Chai Y, Huang A, Shi Y. Novel insights into whey protein among Yak, Yellow Cattle, and Cattle-Yak milk. Food Chem X 2024; 22:101384. [PMID: 38681228 PMCID: PMC11046070 DOI: 10.1016/j.fochx.2024.101384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 05/01/2024] Open
Abstract
This study identified characteristic whey proteins from Zhongdian Yak (ZY), Diqing Yellow Cattle (DYC), and Cattle Yak (CY), revealing insights into their potential functions and released peptides. A total of 118 whey proteins were quantified in milk obtained from the three breeds of cattle, including seven characteristic proteins (IGL@ protein, 40S ribosomal protein S9, calreticulin, etc.) in CY milk and two characteristic proteins (RNA helicase and uncharacterized protein (A0A3Q1LFQ2)) in ZY milk. These characteristic proteins are involved in the phagosome and Fc gamma R-mediated phagocytosis pathways, exhibiting immunoprotective activities, verified through molecular docking. Furthermore, the molecular docking results showed five whey proteins (IGL@ protein, rho GDP-dissociation inhibitor 1, small monomeric GTPase, action-like protein 3, and adenylyl cyclase-associated protein) interacted with TLR4 through multiple hydrogen and hydrophobic bonds. Therefore, these proteins may exert immunomodulatory functions by inhibiting TLR4. Meanwhile, whey proteins produced bioactive peptides, such as antioxidant peptides and ACE inhibitory peptides after simulated gastrointestinal digestion (SGID). The whey proteins and bioactive peptides from CY exhibited more types and activities than the ZY and DYC whey proteins. This study provides a theoretical basis for promoting formula milk powder production.
Collapse
Affiliation(s)
- Yufang Li
- College of Food Science & Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Shijun Li
- College of Food Science & Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Xingwen Zhao
- College of Food Engineering, Dali Vocational and Technical College of Agriculture and Forestry, Dali 671003, China
| | - Chongying Shi
- College of Food Science & Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Yunmei Chai
- College of Food Science & Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Aixiang Huang
- College of Food Science & Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Yanan Shi
- College of Food Science & Technology, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
2
|
Zhao B, Liu K, Liu X, Li Q, Li Z, Xi J, Xie F, Li X. Plant-derived flavonoids are a potential source of drugs for the treatment of liver fibrosis. Phytother Res 2024; 38:3122-3145. [PMID: 38613172 DOI: 10.1002/ptr.8193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/28/2024] [Accepted: 03/10/2024] [Indexed: 04/14/2024]
Abstract
Liver fibrosis is a dynamic pathological process that can be triggered by any chronic liver injury. If left unaddressed, it will inevitably progress to the severe outcomes of liver cirrhosis or even hepatocellular carcinoma. In the past few years, the prevalence and fatality of hepatic fibrosis have been steadily rising on a global scale. As a result of its intricate pathogenesis, the quest for pharmacological interventions targeting liver fibrosis has remained a formidable challenge. Currently, no pharmaceuticals are exhibiting substantial clinical efficacy in the management of hepatic fibrosis. Hence, it is of utmost importance to expedite the development of novel therapeutics for the treatment of this condition. Various research studies have revealed the ability of different natural flavonoid compounds to alleviate or reverse hepatic fibrosis through a range of mechanisms, which are related to the regulation of liver inflammation, oxidative stress, synthesis and secretion of fibrosis-related factors, hepatic stellate cells activation, and proliferation, and extracellular matrix synthesis and degradation by these compounds. This review summarizes the progress of research on different sources of natural flavonoids with inhibitory effects on liver fibrosis over the last decades. The anti-fibrotic effects of natural flavonoids have been increasingly studied, making them a potential source of drugs for the treatment of liver fibrosis due to their good efficacy and biosafety.
Collapse
Affiliation(s)
- Bolin Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kai Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xing Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiuxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhibei Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingjing Xi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fan Xie
- Hospital of Chengdu University of Traditional Chinese Medicine 610032, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
Liu Z, Liu W, Han M, Wang M, Li Y, Yao Y, Duan Y. A comprehensive review of natural product-derived compounds acting on P2X7R: The promising therapeutic drugs in disorders. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155334. [PMID: 38554573 DOI: 10.1016/j.phymed.2023.155334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 12/30/2023] [Indexed: 04/01/2024]
Abstract
BACKGROUND The P2X7 receptor (P2X7R) is known to play a significant role in regulating various pathological processes associated with immune regulation, neuroprotection, and inflammatory responses. It has emerged as a potential target for the treatment of diseases. In addition to chemically synthesized small molecule compounds, natural products have gained attention as an important source for discovering compounds that act on the P2X7R. PURPOSE To explore the research progress made in the field of natural product-derived compounds that act on the P2X7R. METHODS The methods employed in this review involved conducting a thorough search of databases, include PubMed, Web of Science and WIKTROP, to identify studies on natural product-derived compounds that interact with P2X7R. The selected studies were then analyzed to categorize the compounds based on their action on the receptor and to evaluate their therapeutic applications, chemical properties, and pharmacological actions. RESULTS The natural product-derived compounds acting on P2X7R can be classified into three categories: P2X7R antagonists, compounds inhibiting P2X7R expression, and compounds regulating the signaling pathway associated with P2X7R. Moreover, highlight the therapeutic applications, chemical properties and pharmacological actions of these compounds, and indicate areas that require further in-depth study. Finally, discuss the challenges of the natural products-derived compounds exploration, although utilizing compounds from natural products for new drug research offers unique advantages, problems related to solubility, content, and extraction processes still exist. CONCLUSION The detailed information in this review will facilitate further development of P2X7R antagonists and potential therapeutic strategies for P2X7R-associated disorders.
Collapse
Affiliation(s)
- Zhenling Liu
- Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China
| | - Wenjin Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Mengyao Han
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Mingzhu Wang
- Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China
| | - Yinchao Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Yongfang Yao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Pingyuan Laboratory (Zhengzhou University), Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China.
| | - Yongtao Duan
- Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China; Henan International Joint Laboratory of Prevention and Treatment of Pediatric Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China; Henan Neurodevelopment Engineering Research Center for Children, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China.
| |
Collapse
|
4
|
Abd El Salam ASG, Abd Elrazik NA. Cinnamaldehyde/lactulose combination therapy alleviates thioacetamide-induced hepatic encephalopathy via targeting P2X7R-mediated NLRP3 inflammasome signaling. Life Sci 2024; 344:122559. [PMID: 38479595 DOI: 10.1016/j.lfs.2024.122559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/03/2024] [Accepted: 03/09/2024] [Indexed: 03/22/2024]
Abstract
AIMS Cinnamaldehyde (CA), the main active constituent of cinnamon oil, is reported to have neuroprotective effects. However, the potential benefits of CA for brain protection in hepatic encephalopathy (HE) are still not understood. Thus, the present study investigates the possible ameliorative effect of CA (70 mg/kg/day, I.P.) either alone or in combination with lactulose (Lac) (5.3 g/kg/day, oral) against thioacetamide (TAA)-induced hepatic encephalopathy in rats. MATERIALS AND METHODS For induction of HE, TAA (200 mg/kg) was intraperitoneally administered for 1 week at alternative days. CA, Lac and Lac+CA were administered for 14 days prior to and for further 7 days together with TAA injection. KEY FINDINGS CA, Lac and Lac+CA combination effectively attenuated TAA-induced HE; as indicated by the improvement in behavioral tests, mitigation of pathological abnormalities in both liver and brain, the significant reduction in serum hyperammonemia and amelioration in liver function biomarkers; ALT and AST. This was accompanied with a substantial restoration of redox state in liver and brain; MDA and GSH levels. Moreover, CA, Lac and Lac+CA combination reduced neuroinflammation as demonstrated by the notable attenuation of P2X7R, NLRP3, caspase-1, IL-1β, GFAP and Iba1 brain levels, as well as the amelioration of brain edema as manifested by reduction in AQP4 levels in brain. SIGNIFICANCE Our study has demonstrated that CA in combination with Lac possesses a superior neuroprotective effect over Lac alone against TAA-induced HE by attenuation of P2X7R/NLRP3 mediated neuroinflammation and relieving brain edema.
Collapse
Affiliation(s)
| | - Nesma A Abd Elrazik
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
5
|
Zhan J, Gu Z, Wang H, Liu Y, Wu Y, Huo J. Rutin alleviated lipopolysaccharide-induced damage in goat rumen epithelial cells. Anim Biosci 2024; 37:303-314. [PMID: 37905323 PMCID: PMC10766485 DOI: 10.5713/ab.23.0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/01/2023] [Accepted: 09/04/2023] [Indexed: 11/02/2023] Open
Abstract
OBJECTIVE Rutin, also called vitamin P, is a flavonoids from plants. Previous studies have indicated that rutin can alleviate the injury of tissues and cells by inhibiting oxidative stress and ameliorating inflammation. There is no report on the protective effects of rutin on goat rumen epithelial cells (GRECs) at present. Hence, we investigated whether rutin can alleviate lipopolysaccharide (LPS)-induced damage in GRECs. METHODS GRECs were cultured in basal medium or basal medium containing 1 μg/mL LPS, or 1 μg/mL LPS and 20 μg/mL rutin. Six replicates were performed for each group. After 3-h culture, the GRECs were harvested to detect the relevant parameters. RESULTS Rutin significantly enhanced the cell activity (p<0.05) and transepithelial electrical resistance (TEER) (p<0.01) and significantly reduced the apoptosis rate (p<0.05) of LPSinduced GRECs. Rutin significantly increased superoxide dismutase, glutathione peroxidase, and catalase activity (p<0.01) and significantly decreased lactate dehydrogenase activity and reactive oxygen species and malondialdehyde (MDA) levels in LPS-induced GRECs (p<0.01). The mRNA and protein levels of interleukin 6 (IL-6), IL-1β, and C-X-C motif chemokine ligand 8 (CXCL8) and the mRNA level of tumor necrosis factor-α (TNF-α) and chemokine C-C motif ligand 5 (CCL5) were significantly increased in LPS-induced GRECs (p<0.05 or p<0.01), while rutin supplementation significantly decreased the mRNA and protein levels of IL-6, TNF-α, and CXCL8 in LPS-induced GRECs (p<0.05 or p<0.01). The mRNA level of toll-like receptor 2 (TLR2), and the mRNA and protein levels of TLR4 and nuclear factor κB (NF-κB) was significantly improved in LPS-induced GRECs (p<0.05 or p<0.01), whereas rutin supplementation could significantly reduce the mRNA and protein levels of TLR4 (p<0.05 or p<0.01). In addition, rutin had a tendency of decreasing the protein levels of CXCL6, NF-κB, and inhibitor of nuclear factor kappa-B alpha (0.05< p<0.10). Rutin could significantly decreased interferon regulatory factor 3 mRNA expression in LPS-induced GRECs (p<0.05), whereas interferon induced protein with tetratricopeptide repeats 3 (IFIT3) and toll-interacting protein (TOLLIP) mRNA expression was not significantly different between the groups. LPS reduced the tight junction protein zonula occludin 1 (ZO-1) level in GRECs whereas rutin enhanced it. Rutin significantly improved tight junction protein Claudin-1 mRNA expression in LPS-induced GRECs (p<0.01), but could not affect tight junction protein Occludin mRNA expression. CONCLUSION Rutin alleviated LPS-induced barrier damage in GRECs by improving oxidation resistance and anti-inflammatory activity, which may be related to TLR/NF-κB signaling pathway inhibition.
Collapse
Affiliation(s)
- Jinshun Zhan
- Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200,
China
| | - Zhiyong Gu
- Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200,
China
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384,
China
| | - Haibo Wang
- Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200,
China
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070,
China
| | - Yuhang Liu
- Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200,
China
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070,
China
| | - Yanping Wu
- Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200,
China
| | - Junhong Huo
- Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200,
China
| |
Collapse
|
6
|
Dou J, Cui H, Cui Z, Xuan M, Gao C, Li Z, Lian L, Nan J, Wu Y. Pterostilbene exerts cytotoxicity on activated hepatic stellate cells by inhibiting excessive proliferation through the crosstalk of Sirt1 and STAT3 pathways. Food Chem Toxicol 2023; 181:114042. [PMID: 37722617 DOI: 10.1016/j.fct.2023.114042] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/03/2023] [Accepted: 09/14/2023] [Indexed: 09/20/2023]
Abstract
Pterostilbene (PTE), a natural analogue of resveratrol, abundantly exists in blueberries and grapes and has several beneficial potentials against oxidative stress, inflammation, and cancer. In current study, we investigated the effects of PTE on hepatic fibrosis in vitro and in vivo. Activation of hepatic stellate cells (HSCs) is an initiating event in the initiation of hepatic fibrosis. MTT assay revealed that PTE (3.125-12.5 μM) displayed cytotoxicity on activated HSCs, no cytotoxicity on AML-12 and quiescent HSCs. PTE significantly inhibited the expressions of α-SMA, collagen Ⅰ and TIMP-1/MMP13 ratio; suppressed inflammatory cascade activation to reduce inflammatory cytokines release, such as Caspase-1, IL-1β and IL-6. PTE activated Sirt1 and decreased STAT3 phosphorylation, functioning as SRT1720 and Niclosamide. Sirt1 deficiency significantly elevated p-STAT3 expression, while STAT3 deficiency resulted in Sirt1 increasing and inhibited fibrosis and inflammatory cytokines expressions. In mice with hepatic fibrosis induced by thioacetamide (TAA), PTE significantly decreased ALT and AST activities, reduced fibrosis markers, STAT3 phosphorylation and activated Sirt1 expression. PTE showed cytotoxicity on activated HSCs to ameliorate hepatic fibrosis via regulating fibrogenesis, energy metabolism and inflammation and targeting the crosstalk of Sirt1 and STAT3. In conclusion, PTE could be potentially beneficial as a natural plant metabolite in preventing and treating hepatic fibrosis.
Collapse
Affiliation(s)
- Jiayi Dou
- Key Laboratory of Natural Medicines of the Changbai Mountain (Yanbian University), Ministry of Education, Key Laboratory for Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs, College of Pharmacy, Yanbian University, Yanji, Jilin Province, 133002, China
| | - Haozhen Cui
- Department of Chinese Traditional Medicine, Medical College, Yanbian University, Yanji, Jilin Province, 133002, China
| | - Zhenyu Cui
- Key Laboratory of Natural Medicines of the Changbai Mountain (Yanbian University), Ministry of Education, Key Laboratory for Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs, College of Pharmacy, Yanbian University, Yanji, Jilin Province, 133002, China
| | - Meiyan Xuan
- School of Pharmaceutical Sciences, Josai University, Sakado, Saitama, Japan
| | - Chong Gao
- Key Laboratory of Natural Medicines of the Changbai Mountain (Yanbian University), Ministry of Education, Key Laboratory for Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs, College of Pharmacy, Yanbian University, Yanji, Jilin Province, 133002, China
| | - Zhaoxu Li
- Key Laboratory of Natural Medicines of the Changbai Mountain (Yanbian University), Ministry of Education, Key Laboratory for Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs, College of Pharmacy, Yanbian University, Yanji, Jilin Province, 133002, China
| | - Lihua Lian
- Key Laboratory of Natural Medicines of the Changbai Mountain (Yanbian University), Ministry of Education, Key Laboratory for Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs, College of Pharmacy, Yanbian University, Yanji, Jilin Province, 133002, China
| | - Jixing Nan
- Key Laboratory of Natural Medicines of the Changbai Mountain (Yanbian University), Ministry of Education, Key Laboratory for Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs, College of Pharmacy, Yanbian University, Yanji, Jilin Province, 133002, China.
| | - Yanling Wu
- Key Laboratory of Natural Medicines of the Changbai Mountain (Yanbian University), Ministry of Education, Key Laboratory for Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs, College of Pharmacy, Yanbian University, Yanji, Jilin Province, 133002, China.
| |
Collapse
|
7
|
Elbaset MA, Mohamed BMSA, Moustafa PE, Mansour DF, Afifi SM, Esatbeyoglu T, Abdelrahman SSM, Fayed HM. Erythropoietin Suppresses the Hepatic Fibrosis Caused by Thioacetamide: Role of the PI3K/Akt and TLR4 Signaling Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:5514248. [PMID: 37649466 PMCID: PMC10465256 DOI: 10.1155/2023/5514248] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/16/2023] [Accepted: 07/21/2023] [Indexed: 09/01/2023]
Abstract
Erythropoietin (EPO) is recognized for its function in erythropoiesis; however, its potential antifibrotic effect against liver fibrosis remains unknown. This study examined whether EPO affects thioacetamide (TAA)-induced liver fibrosis by concentrating on the Toll-like receptor 4 (TLR4) cascade and the phosphatidylinositol 3-kinase (PI3K)/Akt pathway as possible pathways. Male Wistar rats were randomized into four groups, which included: the negative control group, the TAA group (intraperitoneal; TAA 100 mg/kg three times per week for 2 weeks), and EPO-treated groups (150 and 300 IU/kg, i.p.) for 2 weeks after TAA injections. EPO attenuated hepatic fibrosis in a dosage-dependent way, as manifested by the diminution in serum alanine aminotransferase and aspartate aminotransferase activities, as well as the increase in albumin level. EPO inhibited the increase in tissue levels of tumor necrosis factors-α, interleukin-1β, transforming growth factor-β1, and TLR4 and raised tissue levels of PI3K and p-PI3K. EPO antioxidant properties were demonstrated by restoring hepatic glutathione and superoxide dismutase by preventing the accumulation of hepatic malondialdehyde. Further, EPO increased the protein expression of PI3K and Akt and decreased TLR4 protein expression. Immunohistochemically, EPO treatment altered tissue histology and downregulated mitogen-activated protein kinase protein expression. Overall, the research suggested that EPO could prevent TAA-induced hepatic fibrosis through upregulating the PI3K/Akt signaling cascade and downregulation the TLR4 downstream axis.
Collapse
Affiliation(s)
- Marawan A. Elbaset
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, 33 El-Bohouth St., Dokki, P.O. Box 12622, Cairo, Egypt
| | - Bassim M. S. A. Mohamed
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, 33 El-Bohouth St., Dokki, P.O. Box 12622, Cairo, Egypt
| | - Passant E. Moustafa
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, 33 El-Bohouth St., Dokki, P.O. Box 12622, Cairo, Egypt
| | - Dina F. Mansour
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, 33 El-Bohouth St., Dokki, P.O. Box 12622, Cairo, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Galala University, Attaka, Suez, Egypt
| | - Sherif M. Afifi
- Pharmacognosy Department, Faculty of Pharmacy, University of Sadat City, Sadat City 32897, Egypt
| | - Tuba Esatbeyoglu
- Department of Food Development and Food Quality, Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University Hannover, Am Kleinen Felde 30, Hannover 30167, Germany
| | - Sahar S. M. Abdelrahman
- Department of Pathology, College of Veterinary Medicine, Cairo University, P.O. Box 12211, Cairo, Egypt
| | - Hany M. Fayed
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, 33 El-Bohouth St., Dokki, P.O. Box 12622, Cairo, Egypt
| |
Collapse
|
8
|
Zhang S, Nie H, Yang Y, Yang L, He J. Activating Blood Circulation, Anti-Inflammatory and Diuretic Effects of Leonurus japonicus Extract on a Rat Model of Trauma Blood Stasis and Its Phytochemical Profiling. Chem Biodivers 2023; 20:e202201176. [PMID: 36746759 DOI: 10.1002/cbdv.202201176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/08/2023]
Abstract
Leonurus japonicus Houtt. has been traditionally used to treat many ailments. This study evaluated the activating blood circulation, anti-inflammatory, and diuretic effects of L. japonicus extract (LJ) and identified its phytochemicals. In this work, the phytochemicals in LJ were identified using liquid chromatography mass spectrometry. Rats were randomly assigned to three groups (n=8): Control group was treated with saline, while the Model group (saline) and LJ group (426 mg/kg) had induced traumatic injury. All rats were treated with once by daily oral gavage for one week. The biochemical indices and protein expression were measured. Herein, 79 constituents were identified in LJ, which were effective in elevating body weight, food consumption, water intake, and urinary excretion volume, as well as in ameliorating traumatic muscle tissues in model rats. In addition, LJ prominently decreased the contents of plasma viscosity, platelet aggregation rate, thrombin time, prothrombin time, activated partial thromboplastin time, fibrinogen, thromboxane B2 (TXB2), TXB2/6-keto-prostaglandin F1α (6-keto-PGF1α), urokinase-type plasminogen activator (u-PA), plasminogen activator inhibitor 1 (PAI-1), PAI-1/tissue-type PA (t-PA), and PAI-1/u-PA, while significantly increasing antithrombin III, 6-keto-PGF1α, and t-PA contents. Furthermore, LJ notably inhibited tumor necrosis factor alpha, interleukin 6 (IL-6), IL-8, angiotensin II, antidiuretic hormone, aldosterone, aquaporin 1 (AQP1), AQP2, and AQP3 levels, and markedly elevating IL-10 and natriuretic peptide levels. Finally, LJ markedly reduced the protein expression of AQP1, AQP2, and AQP3 compared to the model group. Collectively, LJ possessed prominent activating blood circulation, anti-inflammatory, and diuretic effects, thus supporting the clinical application of L. japonicus.
Collapse
Affiliation(s)
- Shengyuan Zhang
- Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Aeras, Jiaying University, Meizhou, 514015, P. R. China
| | - Hua Nie
- Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Aeras, Jiaying University, Meizhou, 514015, P. R. China
| | - Yali Yang
- Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Aeras, Jiaying University, Meizhou, 514015, P. R. China
| | - Li Yang
- Jiangxi University of Chinese Medicine, Nanchang, 330004, P. R. China
| | - Junwei He
- Jiangxi University of Chinese Medicine, Nanchang, 330004, P. R. China
| |
Collapse
|
9
|
Chen W, Yang X, Sun J, Chen Y, Zhao W, He C, An H, Pang J, Xu W, Wen B, Sun H, He S. Biejiajian pill inhibits progression of hepatocellular carcinoma by downregulating PDGFRβ signaling in cancer-associated fibroblasts. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115825. [PMID: 36240978 DOI: 10.1016/j.jep.2022.115825] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Biejiajian pill (BJJP) is a canonical formula that is clinically used to treat chronic liver disease, especially to decrease the incidence of hepatocellular carcinoma (HCC). However, the mechanisms underlying the prevention of HCC progression by BJJP remain unclear. AIM OF THE STUDY This study aimed to determine whether BJJP inhibits HCC progression by downregulating platelet-derived growth factor receptor beta (PDGFRβ) signaling in cancer-associated fibroblasts (CAFs) in a mouse model of diethylnitrosamine (DEN)/carbon tetrachloride (CCl4)-induced HCC. MATERIALS AND METHODS C57BL/6 male mice were intraperitoneally injected with DEN 2 weeks after birth, followed by repeated injections of CCl4 weekly from 6 weeks of age onwards, to recapitulate features of HCC. At week 14, BJJP was orally administered to mice. The effects of BJJP on HCC progression were evaluated using histology, immunohistochemistry, and serum biochemical marker levels. Transcriptome analysis, molecular docking, quantitative real-time PCR, and Western blot were used to study the genes targeted by BJJP and the associated signaling pathway. The effects of BJJP on PDGFRβ signaling in CAFs and the underlying mechanism were demonstrated. RESULTS BJJP treatment significantly suppressed carcinogenesis and cancer progression, and it ameliorated liver inflammation in mice with HCC. A total of 176 genes, including PDGFRβ, were significantly downregulated after BJJP treatment and five components of BJJP with high binding affinity to PDGFRβ were identified. BJJP inhibited the phosphorylation of phosphatidylinositol 3-kinase (PI3K), protein kinase B (AKT), and glycogen synthase kinase 3 beta (GSK3β) by suppressing PDGFRβ expression in CAFs, and it also downregulated the expression of the downstream proteins hepatocyte growth factor (HGF) and vascular endothelial growth factor A (VEGF-A). Furthermore, BJJP-containing serum consistently reduced PDGFRβ, HGF, and VEGF-A expression levels in HSC-derived CAFs in vitro. Importantly, PDGF-BB induced PDGFRβ activation in CAFs and both BJJP and sunitinib (a kinase inhibitor) inhibited PDGF-BB/PDGFRβ signaling. CONCLUSION BJJP inhibits the progression of HCC through suppressing VEGF-A and HGF expression in CAFs by downregulating PDGFRβ signaling.
Collapse
Affiliation(s)
- Weicong Chen
- Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Xuemei Yang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Jialing Sun
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China.
| | - Yuyao Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Wenting Zhao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Chunyu He
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Haiyan An
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Jie Pang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Wei Xu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Bin Wen
- Department of Traditional Chinese Medicine, The Air Force Hospital of Southern Theatre Command of People's Liberation Army, Guangzhou, 510602, China.
| | - Haitao Sun
- Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Songqi He
- Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
10
|
Carneiro ADA, Sinoti SBP, de Freitas MM, Simeoni LA, Fagg CW, Magalhães PDO, Silveira D, Fonseca-Bazzo YM. Hydroethanolic Extract of Morus nigra L. Leaves: A Dual PPAR-α/γ Agonist with Anti-Inflammatory Properties in Lipopolysaccharide-Stimulated RAW 264.7. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11223147. [PMID: 36432875 PMCID: PMC9693183 DOI: 10.3390/plants11223147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 05/14/2023]
Abstract
Inhibition of systemic inflammation has been a beneficial strategy in treating several non-communicable diseases, which represent one of the major causes of mortality in the world. The Peroxisome Proliferator-Activated Receptors (PPAR) are interesting pharmacological targets, since they can act both through the metabolic and anti-inflammatory pathways. Morus nigra L. has flavonoids in its chemical composition with recognized anti-oxidant activity and often associated with anti-inflammatory activity. Therefore, this study aimed to evaluate the hydroethanolic extract of M. nigra leaves' ability to activate PPAR and promote anti-inflammatory effects in lipopolysaccharide (LPS)-stimulated murine macrophage cells. The leaf extract was prepared by cold maceration, and the chemical profile was obtained by HPLC-DAD. Activation of PPAR α and γ was evaluated by the luciferase reporter assay. The anti-inflammatory activity was assessed by measuring the reactive oxygen species (ROS), nitric oxide (NO), and Tumor Necrosis Factor-α (TNF-α) in RAW 264.7 cells after stimulation with LPS from Escherichia coli. The HPLC-DAD analysis identified two major compounds: rutin and isoquercitrin. The extract showed agonist activity for the two types of PPAR, α and γ, although its major compounds, rutin and isoquercitrin, did not significantly activate the receptors. In addition, the extract significantly reduced the production of ROS, NO, and TNF-α. Treatment with the specific PPAR-α antagonist, GW 6471, was able to partially block the anti-inflammatory effect caused by the extract.
Collapse
Affiliation(s)
- Amanda de Assis Carneiro
- Natural Products Laboratory, Department of Pharmacy, Health Sciences School, University of Brasília (UnB), Campus Darcy Ribeiro, Asa Norte, Brasilia 70910-900, Brazil
| | - Simone Batista Pires Sinoti
- Molecular Pharmacology Laboratory, Department of Pharmacy, Health Sciences School, University of Brasília (UnB), Campus Darcy Ribeiro, Asa Norte, Brasilia 70910-900, Brazil
| | - Marcela Medeiros de Freitas
- Natural Products Laboratory, Department of Pharmacy, Health Sciences School, University of Brasília (UnB), Campus Darcy Ribeiro, Asa Norte, Brasilia 70910-900, Brazil
| | - Luiz Alberto Simeoni
- Molecular Pharmacology Laboratory, Department of Pharmacy, Health Sciences School, University of Brasília (UnB), Campus Darcy Ribeiro, Asa Norte, Brasilia 70910-900, Brazil
| | - Christopher William Fagg
- Department of Botany, Institute of Biological Science, School of Pharmacy, Ceilândia Campus, University of Brasília, Brasilia 70910-900, Brazil
| | - Pérola de Oliveira Magalhães
- Natural Products Laboratory, Department of Pharmacy, Health Sciences School, University of Brasília (UnB), Campus Darcy Ribeiro, Asa Norte, Brasilia 70910-900, Brazil
| | - Dâmaris Silveira
- Natural Products Laboratory, Department of Pharmacy, Health Sciences School, University of Brasília (UnB), Campus Darcy Ribeiro, Asa Norte, Brasilia 70910-900, Brazil
| | - Yris Maria Fonseca-Bazzo
- Natural Products Laboratory, Department of Pharmacy, Health Sciences School, University of Brasília (UnB), Campus Darcy Ribeiro, Asa Norte, Brasilia 70910-900, Brazil
- Correspondence:
| |
Collapse
|
11
|
Khan A, Khan SU, Khan A, Shal B, Rehman SU, Rehman SU, Htar TT, Khan S, Anwar S, Alafnan A, Rengasamy KRR. Anti-Inflammatory and Anti-Rheumatic Potential of Selective Plant Compounds by Targeting TLR-4/AP-1 Signaling: A Comprehensive Molecular Docking and Simulation Approaches. Molecules 2022; 27:molecules27134319. [PMID: 35807562 PMCID: PMC9268648 DOI: 10.3390/molecules27134319] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/23/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
Plants are an important source of drug development and numerous plant derived molecules have been used in clinical practice for the ailment of various diseases. The Toll-like receptor-4 (TLR-4) signaling pathway plays a crucial role in inflammation including rheumatoid arthritis. The TLR-4 binds with pro-inflammatory ligands such as lipopolysaccharide (LPS) to induce the downstream signaling mechanism such as nuclear factor κappa B (NF-κB) and mitogen activated protein kinases (MAPKs). This signaling activation leads to the onset of various diseases including inflammation. In the present study, 22 natural compounds were studied against TLR-4/AP-1 signaling, which is implicated in the inflammatory process using a computational approach. These compounds belong to various classes such as methylxanthine, sesquiterpene lactone, alkaloid, flavone glycosides, lignan, phenolic acid, etc. The compounds exhibited different binding affinities with the TLR-4, JNK, NF-κB, and AP-1 protein due to the formation of multiple hydrophilic and hydrophobic interactions. With TLR-4, rutin had the highest binding energy (−10.4 kcal/mol), poncirin had the highest binding energy (−9.4 kcal/mol) with NF-κB and JNK (−9.5 kcal/mol), respectively, and icariin had the highest binding affinity (−9.1 kcal/mol) with the AP-1 protein. The root means square deviation (RMSD), root mean square fraction (RMSF), and radius of gyration (RoG) for 150 ns were calculated using molecular dynamic simulation (MD simulation) based on rutin’s greatest binding energy with TLR-4. The RMSD, RMSF, and RoG were all within acceptable limits in the MD simulation, and the complex remained stable for 150 ns. Furthermore, these compounds were assessed for the potential toxic effect on various organs such as the liver, heart, genotoxicity, and oral maximum toxic dose. Moreover, the blood–brain barrier permeability and intestinal absorption were also predicted using SwissADME software (Lausanne, Switzerland). These compounds exhibited promising physico-chemical as well as drug-likeness properties. Consequently, these selected compounds portray promising anti-inflammatory and drug-likeness properties.
Collapse
Affiliation(s)
- Ashrafullah Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.K.); (A.K.); (B.S.)
- Faculty of Pharmaceutical Sciences, Abasyn University, Peshawar 25000, Pakistan;
| | - Shafi Ullah Khan
- Faculty of Pharmaceutical Sciences, Abasyn University, Peshawar 25000, Pakistan;
- Product & Process Innovation Department, Qarshi Brands (Pvt) Ltd., Hattar 22610, Pakistan
| | - Adnan Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.K.); (A.K.); (B.S.)
| | - Bushra Shal
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.K.); (A.K.); (B.S.)
- Faculty of Health Sciences, IQRA University, Islamabad Campus (Chak Shahzad), Park link Rd., Islamabad 44000, Pakistan
| | - Sabih Ur Rehman
- Department of Pharmacy, Forman Christian College (A Chartered University), Lahore 54600, Pakistan; (S.U.R.); (S.U.R.)
| | - Shaheed Ur Rehman
- Department of Pharmacy, Forman Christian College (A Chartered University), Lahore 54600, Pakistan; (S.U.R.); (S.U.R.)
| | - Thet Thet Htar
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia;
| | - Salman Khan
- Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.K.); (A.K.); (B.S.)
- Correspondence: or (S.K.); (K.R.R.)
| | - Sirajudheen Anwar
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail 55211, Saudi Arabia; (S.A.); (A.A.)
| | - Ahmed Alafnan
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail 55211, Saudi Arabia; (S.A.); (A.A.)
| | - Kannan RR Rengasamy
- Center of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Dental College, Chennai 600077, India
- Correspondence: or (S.K.); (K.R.R.)
| |
Collapse
|
12
|
Hou LS, Zhang YW, Li H, Wang W, Huan ML, Zhou SY, Zhang BL. The regulatory role and mechanism of autophagy in energy metabolism-related hepatic fibrosis. Pharmacol Ther 2022; 234:108117. [PMID: 35077761 DOI: 10.1016/j.pharmthera.2022.108117] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 02/06/2023]
Abstract
Hepatic fibrosis is a key pathological process of chronic liver diseases, caused by alcohol, toxic and aberrant energy metabolism. It progresses to cirrhosis or even hepatic carcinoma without effective treatment. Studies have shown that autophagy has important regulatory effects on hepatic stellate cells (HSCs) energy metabolism, and then affect the activation state of HSCs. Autophagy maintains hepatic energy homeostasis, and the dysregulation of autophagy can lead to the activation of HSCs and the occurrence and development of hepatic fibrosis. It is necessary to explore the mechanism of autophagy in energy metabolism-related hepatic fibrosis. Herein, the current study summarizes the regulating mechanisms of autophagy through different targets and signal pathways in energy metabolism-related hepatic fibrosis, and discusses the regulatory effect of autophagy by natural plant-derived, endogenous and synthetic compounds for the treatment of hepatic fibrosis. A better comprehension of autophagy in hepatic stellate cells energy metabolism-related hepatic fibrosis may provide effective intervention of hepatic fibrosis, explore the potential clinical strategies and promote the drug treatment of hepatic fibrosis.
Collapse
Affiliation(s)
- Li-Shuang Hou
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Yao-Wen Zhang
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Hua Li
- Key Laboratory of Pharmacology of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi'an 710032, China; Department of Natural Medicine, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Wei Wang
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Meng-Lei Huan
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China; Key Laboratory of Pharmacology of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Si-Yuan Zhou
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China; Key Laboratory of Pharmacology of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Bang-Le Zhang
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China; Key Laboratory of Pharmacology of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
13
|
Molecular simulation and experimental study on the inclusion of rutin with β-cyclodextrin and its derivative. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Tian C, Shao Y, Jin Z, Liang Y, Li C, Qu C, Sun S, Cui C, Liu M. The protective effect of rutin against lipopolysaccharide induced acute lung injury in mice based on the pharmacokinetic and pharmacodynamic combination model. J Pharm Biomed Anal 2021; 209:114480. [PMID: 34839052 DOI: 10.1016/j.jpba.2021.114480] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 11/08/2021] [Accepted: 11/14/2021] [Indexed: 11/19/2022]
Abstract
Rutin is a flavonoid compound with many pharmacological activities, including antioxidation, anti-inflammation and cardiovascular and cerebrovascular protection. However, there are great limitations in clinical application in view of its poor solubility and slow absorption in vivo. In this study, a pharmacokinetic and pharmacodynomic model was adopted to study the correlation of the pharmacokinetics and pharmacodynomics of rutin in lipopolysaccharide-induced acute lung injury mice. Rutin was intragastrically administered continuously for 5 days at a dose of 200 mg/kg/d, and pharmacokinetic and pharmacodynamic indicators were measured every day after administration, including the blood concentration of rutin, the W/D ratio of lungs, the nitric oxide content and the expression levels of TLR4, TRAF6, IκB and P-IκB proteins. The results indicated that rutin can exert an anti-inflammatory protective effect by improving lung tissue injury, significantly decreasing the synthesis of the inflammatory mediator nitric oxide, and inhibiting the protein expression levels of TLR4, TRAF6 and P-IκB. The absorption of rutin conformed to a one-compartment model with the pharmacokinetic parameters as follows: t1/2α= 9.76 h, t1/2β= 19.44 h, Tmax= 24.00 h, Cmax= 22.65 μg/ml and AUC(0-t)= 518.58 μg/ml·h. A PK-PD combination model was established to fit the optimal administration time of rutin with a one-compartment-Sigmod Emax model connected to the effect site. Meanwhile,the PK-PD combination model was a better approach for evaluating the relationships between the five pharmacodynamic indicators and the pharmacokinetic characteristics of rutin. The correlation between the pharmacokinetics and pharmacodynamics of rutin was quantitatively analysed to provide a theoretical basis for the research and development of new anti-inflammatory drugs in clinical practice.
Collapse
Affiliation(s)
- Chunlian Tian
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, No 120 Dongling Road Shenhe Dist. 110866, Shenyang Liaoning Prov., People's Republic of China; Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, 264005 Yantai Shangdong Prov., People's Republic of China
| | - Yi Shao
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, No 120 Dongling Road Shenhe Dist. 110866, Shenyang Liaoning Prov., People's Republic of China
| | - Zhaodong Jin
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, No 120 Dongling Road Shenhe Dist. 110866, Shenyang Liaoning Prov., People's Republic of China
| | - Yinfeng Liang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, No 120 Dongling Road Shenhe Dist. 110866, Shenyang Liaoning Prov., People's Republic of China
| | - Chongyang Li
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, No 120 Dongling Road Shenhe Dist. 110866, Shenyang Liaoning Prov., People's Republic of China
| | - Chenghu Qu
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, No 120 Dongling Road Shenhe Dist. 110866, Shenyang Liaoning Prov., People's Republic of China
| | - Sheng Sun
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, No 120 Dongling Road Shenhe Dist. 110866, Shenyang Liaoning Prov., People's Republic of China
| | - Cancan Cui
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, No 120 Dongling Road Shenhe Dist. 110866, Shenyang Liaoning Prov., People's Republic of China
| | - Mingchun Liu
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, No 120 Dongling Road Shenhe Dist. 110866, Shenyang Liaoning Prov., People's Republic of China.
| |
Collapse
|
15
|
Dou JY, Jiang YC, Hu ZH, Yao KC, Yuan MH, Bao XX, Zhou MJ, Liu Y, Li ZX, Lian LH, Nan JX, Wu YL. Betulin Targets Lipin1/2-Meidated P2X7 Receptor as a Therapeutic Approach to Attenuate Lipid Accumulation and Metaflammation. Biomol Ther (Seoul) 2021; 30:246-256. [PMID: 34815367 PMCID: PMC9047492 DOI: 10.4062/biomolther.2021.136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/19/2021] [Accepted: 11/01/2021] [Indexed: 11/06/2022] Open
Abstract
The present study focused on the potential mechanism of betulin (BT), a pentacyclic triterpenoid isolated from the bark of white birch (Betula pubescens), against chronic alcohol-induced lipid accumulation and metaflammation. AML-12 and RAW 264.7 cells were administered ethanol (EtOH), lipopolysaccharide (LPS) or BT. Male C57BL/6 mice were fed Lieber-DeCarli liquid diets containing 5% EtOH for 4 weeks, followed by single EtOH gavage on the last day and simultaneous treatment with BT (20 or 50 mg/kg) by oral gavage once per day. In vitro, MTT showed that 0-25 mM EtOH and 0-25 μM BT had no toxic effect on AML-12 cells. BT could regulate sterolregulatory-element-binding protein 1 (SREBP1), lipin1/2, P2X7 receptor (P2X7r) and NOD-like receptor family, pyrin domains-containing protein 3 (NLRP3) expressions again EtOH-stimulation. Oil Red O staining also indicated that BT significantly reduced lipid accumulation in EtOH-stimulated AML-12 cells. Lipin1/2 deficiency indicated that BT might mediate lipin1/2 to regulate SREBP1 and P2X7r expression and further alleviate lipid accumulation and inflammation. In vivo, BT significantly alleviated histopathological changes, reduced serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and triglyceride (TG) levels, and regulated lipin1/2, SREBP1, peroxisome proliferator activated receptor α/γ (PPARα/γ) and PGC-1α expression compared with the EtOH group. BT reduced the secretion of inflammatory factors and blocked the P2X7r-NLRP3 signaling pathway. Collectively, BT attenuated lipid accumulation and metaflammation by regulating the lipin1/2-mediated P2X7r signaling pathway.
Collapse
Affiliation(s)
- Jia-Yi Dou
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Yu-Chen Jiang
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Zhong-He Hu
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Kun-Chen Yao
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Ming-Hui Yuan
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Xiao-Xue Bao
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Mei-Jie Zhou
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Yue Liu
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Zhao-Xu Li
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Li-Hua Lian
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Ji-Xing Nan
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Yan-Ling Wu
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| |
Collapse
|
16
|
Prasathkumar M, Sadhasivam S. Chitosan/Hyaluronic acid/Alginate and an assorted polymers loaded with honey, plant, and marine compounds for progressive wound healing-Know-how. Int J Biol Macromol 2021; 186:656-685. [PMID: 34271047 DOI: 10.1016/j.ijbiomac.2021.07.067] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/04/2021] [Accepted: 07/11/2021] [Indexed: 02/07/2023]
Abstract
Biomaterials are being extensively used in regenerative medicine including tissue engineering applications, as these enhance tissue development, repair, and help in the process of angiogenesis. Wound healing is a crucial biological process of regeneration of ruptured tissue after getting injury to the skin and other soft tissue in humans and animals. Besides, the accumulation of microbial biofilms around the wound surface can increase the risk and physically obstruct the wound healing activity, and may even lead to amputation. Hence, in both acute and chronic wounds, prominent biomaterials are required for wound healing along with antimicrobial agents. This review comprehensively addresses the antimicrobial and wound healing effects of chitosan, chitin, cellulose acetate, hyaluronic acid, pullulan, bacterial cellulose, fibrin, alginate, etc. based wound dressing biomaterials fabricated with natural resources such as honey, plant bioactive compounds, and marine-based polymers. Due to their excellent biocompatibility and biodegradability, bioactive compounds derived from honey, plants, and marine resources are commonly used in biomedical and tissue engineering applications. Different types of polymer-based biomaterials including hydrogel, film, scaffold, nanofiber, and sponge dressings fabricated with bioactive agents including honey, curcumin, tannin, quercetin, andrographolide, gelatin, carrageenan, etc., can exhibit significant wound healing process in, diabetic wounds, diabetic ulcers, and burns, and help in cartilage repair along with good biocompatibility and antimicrobial effects. Among the reviewed biomaterials, carbohydrate polymers such as chitosan-based biomaterials are prominent and widely used for wound healing applications followed by hyaluronic acid and alginate-based biomaterials loaded with honey, plant, and marine compounds. This review first provides an overview of the vast natural resources used to formulate different biomaterials for the treatment of antimicrobial, acute, and chronic wound healing processes.
Collapse
Affiliation(s)
- Murugan Prasathkumar
- Biomaterials and Bioprocess Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore 641046, India
| | - Subramaniam Sadhasivam
- Biomaterials and Bioprocess Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore 641046, India; Department of Extension and Career Guidance, Bharathiar University, Coimbatore 641046, India.
| |
Collapse
|
17
|
Lakshmanan DK, Murugesan S, Rajendran S, Ravichandran G, Elangovan A, Raju K, Prathiviraj R, Pandiyan R, Thilagar S. Brassica juncea (L.) Czern. leaves alleviate adjuvant-induced rheumatoid arthritis in rats via modulating the finest disease targets - IL2RA, IL18 and VEGFA. J Biomol Struct Dyn 2021; 40:8155-8168. [PMID: 33792526 DOI: 10.1080/07391102.2021.1907226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Brassica juncea (BJ) is a familiar edible crop, which has been used as a dietary ingredient and to prepare anti-inflammatory/anti-arthritic formulations in Ayurveda. But, the scientific validation or confirmation of its therapeutic properties is very limited. This study was performed to determine the efficiency of BJ leaves for the treatment of Rheumatoid arthritis using in vivo and in silico systems. Standard in vitro procedures was followed to study the total phenolic, flavonoid contents and free radical scavenging ability of the extracts of BJ. The effective extract was screened and the presence of bioactive chemicals was studied using HPLC. Further, the possible therapeutic actions of the BJ active principles against the disease targets were studied using PPI networking and docking analysis. IL2RA, IL18 and VEGFA are found to be the potential RA target and the compounds detected from BJ extract have shown great binding efficiency towards the target from molecular docking study. The resulting complexes were then subject to 100 ns molecular dynamics simulation studies with the GROMACS package to analyze the stability of docked protein-ligand complexes and to assess the fluctuation and conformational changes during protein-ligand interactions. To confirm the anti-arthritic activity of BJ, the extract was tested in CFA-induced arthritic Wistar rats. The test groups administered with BJ extract showed retrieval of altered hematological parameters and substantial recovery from inflammation and degeneration of rat hind paw.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Dinesh Kumar Lakshmanan
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Selvakumar Murugesan
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Sasikala Rajendran
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Guna Ravichandran
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Abbirami Elangovan
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Karthik Raju
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India.,Department of Biotechnology, Srinivasan College of Arts and Science, Perambalur, Tamil Nadu, India
| | | | - Ramya Pandiyan
- Department of Biochemistry, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Sivasudha Thilagar
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| |
Collapse
|
18
|
Collagen I Modifies Connexin-43 Hemichannel Activity via Integrin α2β1 Binding in TGFβ1-Evoked Renal Tubular Epithelial Cells. Int J Mol Sci 2021; 22:ijms22073644. [PMID: 33807408 PMCID: PMC8038016 DOI: 10.3390/ijms22073644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/23/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic Kidney Disease (CKD) is associated with sustained inflammation and progressive fibrosis, changes that have been linked to altered connexin hemichannel-mediated release of adenosine triphosphate (ATP). Kidney fibrosis develops in response to increased deposition of extracellular matrix (ECM), and up-regulation of collagen I is an early marker of renal disease. With ECM remodeling known to promote a loss of epithelial stability, in the current study we used a clonal human kidney (HK2) model of proximal tubular epithelial cells to determine if collagen I modulates changes in cell function, via connexin-43 (Cx43) hemichannel ATP release. HK2 cells were cultured on collagen I and treated with the beta 1 isoform of the pro-fibrotic cytokine transforming growth factor (TGFβ1) ± the Cx43 mimetic Peptide 5 and/or an anti-integrin α2β1 neutralizing antibody. Phase microscopy and immunocytochemistry observed changes in cell morphology and cytoskeletal reorganization, whilst immunoblotting and ELISA identified changes in protein expression and secretion. Carboxyfluorescein dye uptake and biosensing measured hemichannel activity and ATP release. A Cytoselect extracellular matrix adhesion assay assessed changes in cell-substrate interactions. Collagen I and TGFβ1 synergistically evoked increased hemichannel activity and ATP release. This was paralleled by changes to markers of tubular injury, partly mediated by integrin α2β1/integrin-like kinase signaling. The co-incubation of the hemichannel blocker Peptide 5, reduced collagen I/TGFβ1 induced alterations and inhibited a positive feedforward loop between Cx43/ATP release/collagen I. This study highlights a role for collagen I in regulating connexin-mediated hemichannel activity through integrin α2β1 signaling, ahead of establishing Peptide 5 as a potential intervention.
Collapse
|
19
|
Askari N, Salarizadeh N, Askari MB. Electrochemical determination of rutin by using NiFe 2O 4 nanoparticles-loaded reduced graphene oxide. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN ELECTRONICS 2021; 32:9765-9775. [PMID: 38624849 PMCID: PMC7954365 DOI: 10.1007/s10854-021-05636-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 02/24/2021] [Indexed: 05/10/2023]
Abstract
A binary transition metal oxide containing nickel and iron (NiFe2O4) and hybridization of this nanomaterial with reduced graphene oxide (rGO) are synthesized by the hydrothermal method. X-ray diffraction (XRD) and Raman spectroscopy confirm the successful synthesis of these materials. Also, scanning electron microscope (SEM) and transmission electron microscope (TEM) images illustrated the particle morphology with the particle size of 20 nm. The synthesized material is then examined as a sensor on the surface of the glassy carbon electrode to detect a very small amount of rutin. Some electrochemical tests such as cyclic voltammetry, differential pulse voltammetry (DPV), and impedance spectroscopy indicate the remarkable accuracy of this sensor and its operation in a relatively wide range of concentrations of rutin (100 nM-100 µM). The accuracy of the proposed electrochemical sensors is approximately 100 nM in 0.1 M PBS, (pH = 3) which is relatively impressive and can be reported. Also, the stability rate after 100 DPV was about 95 %, which is a considerable and relatively excellent value. Considering the very good results, it seems that the NiFe2O4-rGO can be considered as a new proposal in the development of accurate and inexpensive electrochemical sensors.
Collapse
Affiliation(s)
- Nahid Askari
- Department of Biotechnology, Institute of Sciences and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Navvabeh Salarizadeh
- Protein Biotechnology Research Lab (PBRL), School of Biology, College of Science, University of Tehran, Tehran, Iran
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Phycology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Bagher Askari
- Department of Physics, Faculty of Science, University of Guilan, P.O. Box: 41335-1914, Rasht, Iran
- Department of Physics, Payame Noor University, P.O.Box: 19395-3697, Tehran, Iran
| |
Collapse
|
20
|
Squires PE, Price GW, Mouritzen U, Potter JA, Williams BM, Hills CE. Danegaptide Prevents TGFβ1-Induced Damage in Human Proximal Tubule Epithelial Cells of the Kidney. Int J Mol Sci 2021; 22:2809. [PMID: 33802083 PMCID: PMC7999212 DOI: 10.3390/ijms22062809] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic kidney disease (CKD) is a global health problem associated with a number of comorbidities. Recent evidence implicates increased hemichannel-mediated release of adenosine triphosphate (ATP) in the progression of tubulointerstitial fibrosis, the main underlying pathology of CKD. Here, we evaluate the effect of danegaptide on blocking hemichannel-mediated changes in the expression and function of proteins associated with disease progression in tubular epithelial kidney cells. Primary human proximal tubule epithelial cells (hPTECs) were treated with the beta1 isoform of the pro-fibrotic cytokine transforming growth factor (TGFβ1) ± danegaptide. qRT-PCR and immunoblotting confirmed mRNA and protein expression, whilst a cytokine antibody array assessed the expression/secretion of proinflammatory and profibrotic cytokines. Carboxyfluorescein dye uptake and ATP biosensing measured hemichannel activity and ATP release, whilst transepithelial electrical resistance was used to assess paracellular permeability. Danegaptide negated carboxyfluorescein dye uptake and ATP release and protected against protein changes associated with tubular injury. Blocking Cx43-mediated ATP release was paralleled by partial restoration of the expression of cell cycle inhibitors, adherens and tight junction proteins and decreased paracellular permeability. Furthermore, danegaptide inhibited TGFβ1-induced changes in the expression and secretion of key adipokines, cytokines, chemokines, growth factors and interleukins. The data suggest that as a gap junction modulator and hemichannel blocker, danegaptide has potential in the future treatment of CKD.
Collapse
Affiliation(s)
- Paul E. Squires
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln LN6 7DL, UK; (P.E.S.); (G.W.P.); (J.A.P.); (B.M.W.)
| | - Gareth W. Price
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln LN6 7DL, UK; (P.E.S.); (G.W.P.); (J.A.P.); (B.M.W.)
| | - Ulrik Mouritzen
- Ciana Therapeutics, Ved Hegnet 2, 2960 Rungsted Kyst, Copenhagen, Denmark;
| | - Joe A. Potter
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln LN6 7DL, UK; (P.E.S.); (G.W.P.); (J.A.P.); (B.M.W.)
| | - Bethany M. Williams
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln LN6 7DL, UK; (P.E.S.); (G.W.P.); (J.A.P.); (B.M.W.)
| | - Claire E. Hills
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln LN6 7DL, UK; (P.E.S.); (G.W.P.); (J.A.P.); (B.M.W.)
| |
Collapse
|
21
|
Comparison of Centella with Flavonoids for Treatment of Symptoms in Hemorrhoidal Disease and After Surgical Intervention: A Randomized Clinical Trial. Sci Rep 2020; 10:8009. [PMID: 32409760 PMCID: PMC7224176 DOI: 10.1038/s41598-020-64772-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 04/20/2020] [Indexed: 12/13/2022] Open
Abstract
Phlebotonics’ effects were evaluated to reduce time-to-stop bleeding and anal irritation in 130 patients who complained of hemorrhoidal disease (HD); bleeding and pain after hemorrhoidectomy (31 patients) and hemorrhoidal thrombosis (34 patients) in the short time. Sixty patients were randomized to receive the routine treatment (both conservative and surgical) (control Group C). The treated group (both conservative and surgical) was divided into two subgroups: one treated with flavonoids (Group A, n = 73), the other with Centella (Group B, n = 66). Time-to-stop bleeding was checked at baseline and checkups (0 up to day 42). Healing was estimated with Kaplan-Meier method, the Kruskal-Wallis test estimated changes in the VAS scores. The HD median time-to-stop bleeding was 2 weeks for Groups A and B; 3 weeks for Group C. VAS scores comparison among Groups (irritation): A vs C, p = 0.007; B vs C, p = 0.041; and A vs B, p = 0.782 resulted respectively. As for operated hemorrhoids, the time-to-stop bleeding was 3 and 4 weeks in Groups A and B and 5 in Group C. Histopathology showed an association between flavonoids and piles’ fibrosis (p = 0.008). Phlebotonics in HD, as well as after surgery, showed significant beneficial effects. Flavonoids are the most effective phlebotonics against bleeding and anal irritation.
Collapse
|