1
|
Liu Y, Li X, Qin H, Huang M, Xi B, Mao J, Zhang S. Comparing the antioxidation and bioavailability of polysaccharides from extruded and unextruded Baijiu vinasses via in vitro digestion and fecal fermentation. Int J Biol Macromol 2024; 276:133681. [PMID: 38971292 DOI: 10.1016/j.ijbiomac.2024.133681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/26/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Extrusion has been proven to be a novel approach for modifying the physicochemical characteristic of Baijiu vinasses (BV) to extract polysaccharides, contributing to the sustainable development of brewing industry. However, the comparison of the bioactivity and bioavailability of extruded (EX) and unextruded (UE) BV polysaccharides was unclear, which impended the determination of the efficacy of extrusion in BV resourcing. In this study, in vitro digestion and fecal fermentation experiments were conducted to investigate the bioavailability, and the results showed that EX exhibited less variation in the monosaccharide composition and molecular weight, while exhibiting a stronger antioxidant capacity compared to UE. Moreover, during fermentation EX increased the abundance of Parasutterella and Lachnospiraceae, while UE promoted the proliferation of Bacteroides, Faecalibacterium, and Dialister, resulting in variation in short-chain fatty acids. These findings indicate that extrusion can enhance the capacity of antioxidants and bioavailability of BV polysaccharides.
Collapse
Affiliation(s)
- Yizhou Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Xiong Li
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong 511458, China
| | - Hui Qin
- National Engineering Research Center of Solid-State Brewing, Luzhou, Sichuan 646000, China
| | - Mengyang Huang
- National Engineering Research Center of Solid-State Brewing, Luzhou, Sichuan 646000, China
| | - Beidou Xi
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jian Mao
- National Engineering Research Center of Solid-State Brewing, Luzhou, Sichuan 646000, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Suyi Zhang
- National Engineering Research Center of Solid-State Brewing, Luzhou, Sichuan 646000, China
| |
Collapse
|
2
|
Guo Z, Yi D, Hu B, Zhu L, Zhang J, Yang Y, Liu C, Shi Y, Gu Z, Xin Y, Liu H, Zhang L. Supplementation with yak (Bos grunniens) bone collagen hydrolysate altered the structure of gut microbiota and elevated short-chain fatty acid production in mice. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
3
|
Hou J, Xiang J, Li D, Liu X, Pan W. Gut microbial response to host metabolic phenotypes. Front Nutr 2022; 9:1019430. [PMID: 36419554 PMCID: PMC9676441 DOI: 10.3389/fnut.2022.1019430] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/21/2022] [Indexed: 09/10/2023] Open
Abstract
A large number of studies have proved that biological metabolic phenotypes exist objectively and are gradually recognized by humans. Gut microbes affect the host's metabolic phenotype. They directly or indirectly participate in host metabolism, physiology and immunity through changes in population structure, metabolite differences, signal transduction and gene expression. Obtaining comprehensive information and specific identification factors associated with gut microbiota and host metabolic phenotypes has become the focus of research in the field of gut microbes, and it has become possible to find new and effective ways to prevent or treat host metabolic diseases. In the future, precise treatment of gut microbes will become one of the new therapeutic strategies. This article reviews the content of gut microbes and carbohydrate, amino acid, lipid and nucleic acid metabolic phenotypes, including metabolic intermediates, mechanisms of action, latest research findings and treatment strategies, which will help to understand the relationship between gut microbes and host metabolic phenotypes and the current research status.
Collapse
Affiliation(s)
- Jinliang Hou
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Jianguo Xiang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Deliang Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Xinhua Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | | |
Collapse
|
4
|
Zhang Y, Fan W, Li X, Wang WX, Liu S. Enhanced Removal of Free Radicals by Aqueous Hydrogen Nanobubbles and Their Role in Oxidative Stress. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15096-15107. [PMID: 36099323 DOI: 10.1021/acs.est.2c03707] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Elevated levels of reactive oxygen radicals caused by environmental stress are the key triggers of inflammation, aging, and disease; thus, it is critical to develop novel reactive oxygen radical scavenging methods with high efficiency and low toxicity. As a result of their selective reactive oxygen radical removal, hydrogen molecules are strong candidates, but their application is limited by the small hydrogen supply and short duration of action. In this study, we for the first time combined nanobubble (NB) technology and hydrogen water to remove reactive oxygen species (ROS) using copper ions as a representative environmental pollutant and Tetrahymena thermophila as a model organism. Hydrogen NBs displayed a remarkable capability of removing H2O2 and O2•- at molar ratios of 8:1 and 240:1, respectively, which were unable to be removed by dissolved hydrogen molecules only. During the oxidative defense phase, hydrogen NB water either directly removed ROS or increased the activity and relative expression of glutathione peroxidase (GSH-Px). During the oxidative inhibition phase, hydrogen NB water exerted antioxidant effects mainly by increasing the activities of superoxide dismutase and GSH-Px as well as the expression of the corresponding genes. Our results provide an important theoretical support for the wide application of hydrogen NBs in empowering the antioxidant defense system.
Collapse
Affiliation(s)
- You Zhang
- Department of Environmental Science and Engineering, School of Space and Environment, Beihang University, Beijing 100191, China
| | - Wenhong Fan
- Department of Environmental Science and Engineering, School of Space and Environment, Beihang University, Beijing 100191, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China
| | - Xiaomin Li
- Department of Environmental Science and Engineering, School of Space and Environment, Beihang University, Beijing 100191, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong
| | - Shu Liu
- Department of Environmental Science and Engineering, School of Space and Environment, Beihang University, Beijing 100191, China
| |
Collapse
|
5
|
Microbiome-metabolomics insights into the feces of high-fat diet mice to reveal the anti-obesity effects of yak (Bos grunniens) bone collagen hydrolysates. Food Res Int 2022; 156:111024. [DOI: 10.1016/j.foodres.2022.111024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/22/2022] [Accepted: 02/14/2022] [Indexed: 12/14/2022]
|
6
|
Air nanobubbles induced reversible self-assembly of 7S globulins isolated from pea (Pisum Sativum L.). Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
7
|
Simulated gastrointestinal digestion of yak bone collagen hydrolysates and insights into its effects on gut microbiota composition in mice. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
8
|
Fan Y, Yang X, Lei Z, Zhang Z, Kobayashi M, Adachi Y, Shimizu K. Alleviation of ammonia inhibition via nano-bubble water supplementation during anaerobic digestion of ammonia-rich swine manure: Buffering capacity promotion and methane production enhancement. BIORESOURCE TECHNOLOGY 2021; 333:125131. [PMID: 33894452 DOI: 10.1016/j.biortech.2021.125131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/28/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
Anaerobic digestion (AD) of ammonia-rich swine manure (SM) with nano-bubble water (NBW) supplementation was studied in this work with the expectation of ammonia inhibition alleviation, buffering capacity promotion, and methane production enhancement. Results indicated that cumulative methane yield was elevated by 12.3-38.7% in NBW groups. Besides, the reduced methane production rate and elongated lag phase under ammonia inhibition were increased and shortened by NBW supplementation, respectively. The rapid increase of total alkalinity (TA) and partial alkalinity (PA) could be observed with NBW supplementation, as well as the rapid decline of VFA/TA, thus improved buffering capacity and alleviated ammonia inhibition. Moreover, higher level of extracellular hydrolases and coenzyme F420 could be detected in NBW groups. In conclusion, NBW with higher mobility and zeta potential (absolute value) could be a promising strategy for the alleviation of ammonia suppression during the AD of SM.
Collapse
Affiliation(s)
- Yujie Fan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Xiaojing Yang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhongfang Lei
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhenya Zhang
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Motoyoshi Kobayashi
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Yasuhisa Adachi
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Kazuya Shimizu
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|
9
|
Sun X, Wang Z, Hu X, Zhao C, Zhang X, Zhang H. Effect of an Antibacterial Polysaccharide Produced by Chaetomium globosum CGMCC 6882 on the Gut Microbiota of Mice. Foods 2021; 10:foods10051084. [PMID: 34068357 PMCID: PMC8153350 DOI: 10.3390/foods10051084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 12/19/2022] Open
Abstract
Previously, a polysaccharide produced by Chaetomiumglobosum CGMCC 6882 was found to have antibacterial activity, but its toxic effects on body health and gut microbiota were concealed. Recent results showed that this polysaccharide was safe to Caco-2 cells and mice, while it reduced the body weight gain of mice from 10.5 ± 1.21 g to 8.4 ± 1.17 g after 28 days administration. Acetate, propionate, butyrate and total short-chain fatty acids concentrations increased from 23.85 ± 1.37 μmol/g, 10.23 ± 0.78 μmol/g, 7.15 ± 0.35 μmol/g and 41.23 ± 0.86 μmol/g to 42.77 ± 1.29 μmol/g, 20.03 ± 1.44 μmol/g, 12.06 ± 0.51 μmol/g and 74.86 ± 2.07 μmol/g, respectively. Furthermore, this polysaccharide enriched the abundance of gut microbiota and the Firmicutes/Bacteroidetes ratio was increased from 0.5172 to 0.7238. Overall, this study provides good guidance for the promising application of polysaccharides as preservatives in foods and in other fields in the future.
Collapse
Affiliation(s)
- Xincheng Sun
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (X.S.); (X.H.); (C.Z.); (X.Z.)
- Collaborative Innovation Center of Food Production and Safety, Zhengzhou 450001, China
| | - Zichao Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China;
- Correspondence:
| | - Xuyang Hu
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (X.S.); (X.H.); (C.Z.); (X.Z.)
- Collaborative Innovation Center of Food Production and Safety, Zhengzhou 450001, China
| | - Chengxin Zhao
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (X.S.); (X.H.); (C.Z.); (X.Z.)
- Collaborative Innovation Center of Food Production and Safety, Zhengzhou 450001, China
| | - Xiaogen Zhang
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou 450001, China; (X.S.); (X.H.); (C.Z.); (X.Z.)
- Collaborative Innovation Center of Food Production and Safety, Zhengzhou 450001, China
| | - Huiru Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China;
| |
Collapse
|
10
|
Fan Y, Yang X, Lei Z, Adachi Y, Kobayashi M, Zhang Z, Shimizu K. Novel insight into enhanced recoverability of acidic inhibition to anaerobic digestion with nano-bubble water supplementation. BIORESOURCE TECHNOLOGY 2021; 326:124782. [PMID: 33535153 DOI: 10.1016/j.biortech.2021.124782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/20/2021] [Accepted: 01/23/2021] [Indexed: 06/12/2023]
Abstract
Nano-bubble water (NBW) has been proven to be effective in promoting organics utilization and CH4 production during anaerobic digestion (AD) process, suggesting its potential in improving the stability of the AD process and thereby alleviating acidic inhibition. In this work, the effect of NBW on digestion stability and CH4 production was investigated to evaluate the ability of NBW on AD recovery from acidic inhibition. Results showed that NBW supplementation increased the total alkalinity (TA) and partial alkalinity (PA), and reduced the ratio of VFA/TA, thus maintained the stability of the AD process. Generation/consumption of VFAs was also enhanced with NBW supplementation under acidic inhibition with pH values of 5.5, 6.0 and 6.5. The cumulative CH4 production was 246-257 mL/g-VS in NBW groups, which was 12.1-17.2% higher than the control. Moreover, with NBW supplementation, the maximum CH4 production rate was raised according to the modeling results.
Collapse
Affiliation(s)
- Yujie Fan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Xiaojing Yang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhongfang Lei
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Yasuhisa Adachi
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Motoyoshi Kobayashi
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhenya Zhang
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Kazuya Shimizu
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|