1
|
Zhang M, Ge T, Huang W, He J, Huang C, Ou J, Ou S, Zheng J. Formation of Hesperetin-Methylglyoxal Adducts in Food and In Vivo, and Their Metabolism In Vivo and Potential Health Impacts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11174-11184. [PMID: 38687489 DOI: 10.1021/acs.jafc.4c00481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Polyphenols with a typical meta-phenol structure have been intensively investigated for scavenging of methylglyoxal (MGO) to reduce harmful substances in food. However, less attention has been paid to the formation level of polyphenol-MGO adducts in foods and in vivo and their absorption, metabolism, and health impacts. In this study, hesperitin (HPT) was found to scavenge MGO by forming two adducts, namely, 8-(1-hydroxyacetone)-hesperetin (HPT-mono-MGO) and 6-(1-hydroxyacetone)-8-(1-hydroxyacetone)-hesperetin (HPT-di-MGO). These two adducts were detected (1.6-15.9 mg/kg in total) in cookies incorporated with 0.01%-0.5% HPT. HPT-di-MGO was the main adduct detected in rat plasma after HPT consumption. The adducts were absorbed 8-30 times faster than HPT, and they underwent glucuronidation and sulfation in vivo. HPT-mono-MGO would continue to react with endogenous MGO in vivo to produce HPT-di-MGO, which effectively reduced the cytotoxicity of HPT and HPT-mono-MGO. This study provided data on the safety of employing HPT as a dietary supplement to scavenge MGO in foods.
Collapse
Affiliation(s)
- Mianzhang Zhang
- Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, China
| | - Tiansi Ge
- Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, China
| | - Weijian Huang
- Institute of Laboratory Animal Science, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jun He
- Institute of Laboratory Animal Science, Jinan University, Guangzhou, Guangdong 510632, China
| | - Caihuan Huang
- Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, China
| | - Juanying Ou
- Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, China
| | - Shiyi Ou
- Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, China
- Guangzhou College of Technology and Business, Guangzhou, Guangdong 510580, China
| | - Jie Zheng
- Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, China
- Guangdong-Hong Kong Joint Innovation Platform for the Safety of Bakery Products, Guangzhou 510632, China
| |
Collapse
|
2
|
Lin YL, Wu YHS, Chao MY, Yang DJ, Liu CW, Tseng JK, Chen YC. An alleviative effect of Lonicerae japonicae flos water extract against liver fibrogenesis in vitro and in vivo. ENVIRONMENTAL TOXICOLOGY 2024; 39:2881-2892. [PMID: 38294203 DOI: 10.1002/tox.24154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/04/2024] [Accepted: 01/18/2024] [Indexed: 02/01/2024]
Abstract
Lonicerae japonicae (L. japonicae) flos is a medical and food homology herb. This study investigated the phenolic acid and flavonoid contents in L. japonicae flos water extract solution (LJWES) and the preventive effects of LJWES against liver fibrogenesis via FL83B cells and rats. LJWES contains many polyphenols, such as chlorogenic acid, morin, and epicatechin. LJWES increased cell viability and decreased cytotoxicity in thioacetamide (TAA)-treated FL83B cells (75 mM) (p < .05). LJWES decreased (p < .05) gene expressions of Tnf-α, Tnfr1, Bax, and cytochrome c but upregulated Bcl-2 and Bcl-xl in TAA-treated cells; meanwhile, increased protein levels of P53, cleaved caspase 3, and cleaved caspase 9 in TAA treated cells were downregulated (p < .05) by LJWES supplementation. In vivo, results indicated that TAA treatment increased serum liver damage indices (alanine aminotransferase [ALT] and alkaline phosphatase [ALP]) and cytokines (interleukin-6 and transforming growth factor-β1) levels and impaired liver antioxidant capacities (increased thiobarbituric acid reactive substance value but decreased catalase/glutathione peroxidase activities) in rats (p < .05) while LJWES supplementation amended (p < .05) them. Liver fibrosis scores, collagen deposition, and alpha-smooth muscle actin deposition in TAA-treated rats were also decreased by LJWES supplementation (p < .05). To sum up, LJWES could be a potential hepatoprotective agent against liver fibrogenesis by enhancing antioxidant ability, downregulating inflammation in livers, and reducing apoptosis in hepatocytes.
Collapse
Affiliation(s)
- Yi-Ling Lin
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
- Undergraduate and Graduate Programs of Nutrition Science, National Taiwan Normal University, Taipei, Taiwan
| | - Yi-Hsieng Samuel Wu
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ming-Yuan Chao
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Deng-Jye Yang
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Cheng-Wei Liu
- Department of Smart and Quality Agriculture, MingDao University, Changhua, Taiwan
| | - Jung-Kai Tseng
- Department of Optometry, Asia University, Taichung, Taiwan
| | - Yi-Chen Chen
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
- Master Program in Global Agriculture Technology and Genomic Science, International College, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
3
|
Wang WG, Li MY, Diao L, Zhang C, Tao LM, Zhou WX, Xu WP, Zhang Y. The health risk of acetochlor metabolite CMEPA is associated with lipid accumulation induced liver injury. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121857. [PMID: 37245791 DOI: 10.1016/j.envpol.2023.121857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/01/2023] [Accepted: 05/18/2023] [Indexed: 05/30/2023]
Abstract
Liver injury may cause many diseases, such as non-alcoholic fatty liver disease (NAFLD). Acetochlor is one of the representative chloroacetamide herbicides, and its metabolite 2-chloro-N-(2-ethyl-6-methyl phenyl) acetamide (CMEPA) is the main form of exposure in the environment. It has been shown that acetochlor can cause mitochondrial damage of HepG2 cells and induce apoptosis by activating Bcl/Bax pathway (Wang et al., 2021). But there has been less research on CMEPA. we explored the possibility of CMEPA and liver injury through biological experiments. In vivo, CMEPA (0-16 mg/L) induced liver damage in zebrafish larvae, including increased lipid droplets, changes in liver morphology (>1.3-fold) and increased TC/TG content (>2.5-fold). In vitro, we selected L02 (human normal liver cells) as the model, and explored its molecular mechanism. We found that CMEPA (0-160 mg/L) induced apoptosis (similar to 40%), mitochondrial damage and oxidative stress in L02 cells. CMEPA induced intracellular lipid accumulation by inhibiting AMPK/ACC/CPT-1A signaling pathway and activating SREBP-1c/FAS signaling pathway. Our study provides evidence of a link between CMEPA and liver injury. This raises concerns regarding the health risks of pesticide metabolites to liver health.
Collapse
Affiliation(s)
- Wei-Guo Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Mu-Yao Li
- Research Center for Econophysics, School of Business, East China University of Science and Technology, Shanghai, 200237, China
| | - Lin Diao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Cheng Zhang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, 75390, United States
| | - Li-Ming Tao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Wei-Xing Zhou
- Research Center for Econophysics, School of Business, East China University of Science and Technology, Shanghai, 200237, China
| | - Wen-Ping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
4
|
Hikisz P, Jacenik D. Diet as a Source of Acrolein: Molecular Basis of Aldehyde Biological Activity in Diabetes and Digestive System Diseases. Int J Mol Sci 2023; 24:6579. [PMID: 37047550 PMCID: PMC10095194 DOI: 10.3390/ijms24076579] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 03/25/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Acrolein, a highly reactive α,β-unsaturated aldehyde, is a compound involved in the pathogenesis of many diseases, including neurodegenerative diseases, cardiovascular and respiratory diseases, diabetes mellitus, and the development of cancers of various origins. In addition to environmental pollution (e.g., from car exhaust fumes) and tobacco smoke, a serious source of acrolein is our daily diet and improper thermal processing of animal and vegetable fats, carbohydrates, and amino acids. Dietary intake is one of the main routes of human exposure to acrolein, which is a major public health concern. This review focuses on the molecular mechanisms of acrolein activity in the context of its involvement in the pathogenesis of diseases related to the digestive system, including diabetes, alcoholic liver disease, and intestinal cancer.
Collapse
Affiliation(s)
- Pawel Hikisz
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, ul. Pomorska 141/143, 90-236 Lodz, Poland
| | - Damian Jacenik
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, ul. Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
5
|
Apigenin and apigenin-7, 4'-O-dioctanoate protect against acrolein-aggravated inflammation via inhibiting the activation of NLRP3 inflammasome and HMGB1/MYD88/NF-κB signaling pathway in Human umbilical vein endothelial cells (HUVEC). Food Chem Toxicol 2022; 168:113400. [PMID: 36055550 DOI: 10.1016/j.fct.2022.113400] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 08/05/2022] [Accepted: 08/26/2022] [Indexed: 12/29/2022]
Abstract
Exposure to acrolein, one environmental and dietary pollutant, has been shown to cause inflammation. Here, we reported for the first time that acrolein aggravated lipopolysaccharide (LPS)-induced inflammation in Human umbilical vein endothelial cells (HUVEC) as evidenced by the further increased mRNA expression of three pro-inflammatory cytokines, including interleukin 1β (IL-1β), interleukin 6 (IL-6), and tumor necrosis factor-alpha (TNF-α). Acrolein also further increased the generation of reactive oxygen species (ROS) and decreased the activity of glutathione peroxidase (GSH-Px) in LPS-pretreated HUVEC. Moreover, acrolein treatment further increased the nucleotide oligomerization domain-like receptor protein 3 (NLRP3) and apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC) expression, caspase-1 cleavage, and downstream matures interleukin 18 (IL-18) and IL-1β level in LPS-pretreated HUVEC. Acrolein treatment also further increased the expressions of high-mobility group box 1 (HMGB1), toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), and phospho-NF-κB P65 (P-P65) in the LPS pre-treated HUVEC. Thus, acrolein aggravated LPS-induced HUVEC inflammation through induction of oxidative stress, and activation of NLRP3 inflammasome and HMGB1/MYD88/NF-κB signaling pathway. In addition, apigenin and apigenin-7, 4'-O-dioctanoate attenuated acrolein-aggravated inflammation by targeting the above signaling pathways. Our findings could help to develop potential therapeutic strategies against acrolein-enhanced inflammation.
Collapse
|
6
|
Protective Effects of Ferulic Acid on Deoxynivalenol-Induced Toxicity in IPEC-J2 Cells. Toxins (Basel) 2022; 14:toxins14040275. [PMID: 35448884 PMCID: PMC9027710 DOI: 10.3390/toxins14040275] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 02/04/2023] Open
Abstract
Deoxynivalenol (DON), a mycotoxin that contaminates crops such as wheat and corn, can cause severe acute or chronic injury when ingested by animals or humans. This study investigated the protective effect of ferulic acid (FA), a polyphenolic substance, on alleviating the toxicity induced by DON (40 μM) in IPEC-J2 cells. The experiments results showed that FA not only alleviated the decrease in cell viability caused by DON (p < 0.05), but increased the level of superoxide dismutase (SOD) (p < 0.01), glutathione peroxidase (GSH-Px), (catalase) CAT and glutathione (GSH) (p < 0.05) through the nuclear factor erythroid 2-related factor 2 (Nrf2)-epoxy chloropropane Kelch sample related protein-1 (keap1) pathway, and then decreased the levels of intracellular oxidative stress. Additionally, FA could alleviate DON-induced inflammation through mitogen-activated protein kinases (MAPKs) and nuclear factor kappa-B (NF-κB) pathways, down-regulated the secretion of interleukin-6 (IL-6) (p < 0.0001), interleukin-8 (IL-8) (p < 0.05), interleukin-1β (IL-1β), interferon-γ (IFN-γ) and further attenuated the DON-induced intracellular apoptosis (10.7% to 6.84%) by regulating the expression of Bcl2-associated X protein (Bax) (p < 0.0001), B-cell lymphoma-2 (Bcl-2) (p < 0.0001), and caspase-3 (p < 0.0001). All these results indicate that FA exhibits a significantly protective effect against DON-induced toxicity.
Collapse
|
7
|
Liu D, Cheng Y, Mei X, Xie Y, Tang Z, Liu J, Cao X. Mechanisms of acrolein induces toxicity in human umbilical vein endothelial cells: Oxidative stress, DNA damage response, and apoptosis. ENVIRONMENTAL TOXICOLOGY 2022; 37:708-719. [PMID: 34908224 DOI: 10.1002/tox.23436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/03/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
Acrolein is a ubiquitous environmental pollutant that produced by the incomplete combustion of cigarette smoke, forest fires, petroleum fuels, plastic materials, and cooking fumes. Inhalation is a common form of people exposure to acrolein, increasing evidence demonstrates that acrolein impairs the cardiovascular system by targeting vascular endothelial cells. However, the molecular mechanism of the cytotoxicity of acrolein exposure on vascular endothelial cells remains unclear. This work focused on the toxicity of acrolein on human umbilical vein endothelial cells (HUVECs). The molecular mechanism was studied based on oxidative stress, DNA damage response (DDR), and mitochondrial apoptosis pathways. After HUVECs were treated with 12.5, 25, and 50 μM acrolein for 24 h, cell viability, cell colony formation, mitochondrial membrane potential, and adenosine triphosphate content significantly reduced, and acrolein increased intracellular reactive oxygen species, apoptosis rate, and 8-hydroxy-2 deoxyguanosine (8-OHdG) level. Furthermore, p38MAPK and c-Jun N-terminal kinase signaling pathways were activated in response to oxidative stress. Moreover, acrolein induced G0/G1phase arrest, promoted the expression of γ-H2AX, activated the DDR signaling pathway (Ataxia-Telangiectasia-Mutated [ATM] and Rad-3-related/Chk1 and ATM/Chk2), and triggered the consequent cell cycle checkpoints. Finally, the protein expression of Bax/Bcl-2 and cleaved Caspase-3 was up-regulated, suggesting apoptosis was induced by triggering the mitochondrial apoptosis pathway. All these results indicated that acrolein induced HUVECs cytotoxicity by regulating oxidative stress, DNA damage, and apoptosis. This study provides a novel perspective on the mechanism of acrolein-induced cardiovascular toxicity, it will be helpful for the prevention of acrolein-induced cardiovascular disease.
Collapse
Affiliation(s)
- Dan Liu
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, China
| | - Ye Cheng
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, China
| | - Xueying Mei
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, China
| | - Yanzhen Xie
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, China
| | - Zhipeng Tang
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, China
| | - Jianli Liu
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, China
| | - Xiangyu Cao
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, China
| |
Collapse
|
8
|
Poly-adenine-mediated spherical nucleic acid probes for live cell fluorescence imaging of tumor-related microRNAs. Mol Biol Rep 2022; 49:3705-3712. [DOI: 10.1007/s11033-022-07210-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/27/2022] [Indexed: 11/24/2022]
|