1
|
Wei X, Cooper DML. The various meanings and uses of bone "remodeling" in biological anthropology: A review. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023; 182:318-329. [PMID: 37515465 DOI: 10.1002/ajpa.24825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/28/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023]
Abstract
OBJECTIVES In modern bone biology, the term "remodeling" generally refers to internal bone turnover that creates secondary osteons. However, it is also widely used by skeletal biologists, including biological anthropologists as a catch-all term to refer to different skeletal changes. In this review, we investigated how "remodeling" is used across topics on skeletal biology in biological anthropology to demonstrate potential problems with such pervasive use of a generalized term. METHODS Using PubMed and Google Scholar, we selected and reviewed 205 articles that use the term remodeling to describe skeletal processes and have anthropological implications. Nine edited volumes were also reviewed as examples of collaborative work by different experts to demonstrate the diverse and extensive use of the term remodeling. RESULTS Four general meanings of bone "remodeling" were identified, namely, internal turnover, functional adaptation, fracture repair, and growth remodeling. Additionally, remodeling is also used to refer to a broad array of pathological skeletal changes. DISCUSSION Although we initially identified four general meanings of bone remodeling, they are not mutually exclusive and often occur in combination. The term "remodeling" has become an extensively used catch-all term to refer to different processes and outcomes of skeletal changes, which inevitably lead to misunderstanding and a loss of information. Such ambiguity and confusion are potentially problematic as the field of biological anthropology becomes increasingly multidisciplinary. Therefore, we advocate for precise, context-specific definitions and explanations of bone remodeling as it continues to be used across disciplines within and beyond biological anthropology.
Collapse
Affiliation(s)
- Xuan Wei
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - David M L Cooper
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
2
|
Pharmacological History of Missing Subjects: Perspective of a Correction Factor to Aid in the Study of Bone Remains. BIOLOGY 2022; 11:biology11081128. [PMID: 36009755 PMCID: PMC9404937 DOI: 10.3390/biology11081128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 11/30/2022]
Abstract
Simple Summary The reconstruction of the biological profile of skeletal remains of missing subjects is also based on the analysis of the quality of bone tissue. The density of bone mass is a factor that allows us to inscribe the subject in a specific age group. Bone density varies not only according to age but also by the intake of certain drugs and certain abuse substances. The objective of our study is to propose the introduction of pharmacological history in the profile of missing persons. Information on drugs or abuse substances taken by the missing person is a useful corrective factor for tracing the chronological age of bone remains found, increasing the likelihood of identification. We emphasize the usefulness of this information also for the characterization of bone injuries and for the dating of antemortem fractures, useful elements to trace the cause and dynamics of death. The evaluation of these findings is also based on the characteristics of the bone tissue of skeletal remains which is also affected by any drugs and/or substances of abuse. Therefore, we believe that the pharmacological history of the missing subjects could be a new and interesting tool to help the activity of the forensic anthropologist. Abstract In forensic anthropology, bone mineral density and the estimation of the dating of fractures based on the degree of progress of healing processes are important parameters of study on bone remains. With our article we aim, on the one hand, to highlight the importance that these parameters have in the reconstruction of the biological profile of the subject, as well as the time and the cause of death; on the other hand, we aim to limit their variability according to the medical substances and/or abuse assumed during life by the subject. The aim of this article is to encourage the introduction of the pharmacological history of missing persons as a new correction factor for the study of bone remains, possibly based on new scientific studies that allow us to establish with greater specificity the effect that certain pharmacological therapies produce on bone mass and the speed of remodeling.
Collapse
|
3
|
Viero A, Biehler-Gomez L, Messina C, Cappella A, Giannoukos K, Viel G, Tagliaro F, Cattaneo C. Utility of micro-CT for dating post-cranial fractures of known post-traumatic ages through 3D measurements of the trabecular inner morphology. Sci Rep 2022; 12:10543. [PMID: 35732857 DOI: 10.1038/s41598-022-14530-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 06/08/2022] [Indexed: 11/09/2022] Open
Abstract
Fracture dating is an issue at the forefront of forensic sciences. While dating fracture is crucial to understanding and verifying the chronology of events in cases of abuse and violent death, its application is the subject of considerable discussion in the scientific community, filled with limitations and difficulties. Current methods for fracture dating are mainly based on a qualitative assessment through macroscopy, microscopy, and imaging and subject to variations depending on the experience of the observer. In this paper, we investigated the potential of quantifiable micro-CT analysis for fracture dating. Five histomorphometric parameters commonly used for the study of the 3D bone trabecular microarchitecture with micro-CT were calculated based on nine fractures of known post-traumatic ages, including the degree of anisotropy, connectivity density, bone volume fraction, trabecular thickness, and trabecular separation. As a result, trends in the evolution of the microarchitecture of the bone relative to age of the callus could be identified, in particular concerning anisotropy, trabecular separation and connectivity density, consistent with the healing bone process. The findings obtained in this pilot study encourage further research in quantifiable parameters of the bone microarchitecture as they could represent useful features for the construction of objective models for fracture dating.
Collapse
Affiliation(s)
- Alessia Viero
- Legal Medicine and Toxicology Unit, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padua, Italy.,Unit of Forensic Medicine, Department of Diagnostics and Public Health, University of Verona, P.le Scuro, 10, 37134, Verona, Italy.,Laboratorio Di Antropologia E Odontologia Forense (LABANOF), Sezione Di Medicina Legale, Department of Biomedical Sciences for Health, Università Degli Studi Di Milano, Via Mangiagalli 37, 20133, Milan, Italy
| | - Lucie Biehler-Gomez
- Laboratorio Di Antropologia E Odontologia Forense (LABANOF), Sezione Di Medicina Legale, Department of Biomedical Sciences for Health, Università Degli Studi Di Milano, Via Mangiagalli 37, 20133, Milan, Italy.
| | - Carmelo Messina
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy.,Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Annalisa Cappella
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy.,Laboratorio Di Morfologia Umana Applicata, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Konstantinos Giannoukos
- Elettra-Sincrotrone Trieste S.C.P.A., SYRMEP Group, AREA Science Park, Strada Statale 14, 34149, Basovizza, Trieste, Italy
| | - Guido Viel
- Legal Medicine and Toxicology Unit, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Franco Tagliaro
- Unit of Forensic Medicine, Department of Diagnostics and Public Health, University of Verona, P.le Scuro, 10, 37134, Verona, Italy.,World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow, Russia
| | - Cristina Cattaneo
- Laboratorio Di Antropologia E Odontologia Forense (LABANOF), Sezione Di Medicina Legale, Department of Biomedical Sciences for Health, Università Degli Studi Di Milano, Via Mangiagalli 37, 20133, Milan, Italy
| |
Collapse
|
4
|
How Do Drugs Affect the Skeleton? Implications for Forensic Anthropology. BIOLOGY 2022; 11:biology11040524. [PMID: 35453723 PMCID: PMC9030599 DOI: 10.3390/biology11040524] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/21/2022] [Accepted: 03/18/2022] [Indexed: 01/10/2023]
Abstract
Simple Summary Forensic anthropologists analyze human remains to assist in the identification of the deceased, predominantly by assessing age-at-death, sex, stature, ancestry and any unique identifying features. Whilst methods have been established to create this biological profile of the skeleton, these may be influenced by a number of factors. This paper, for the first time, provides an overview from a reading of the clinical and pharmacological literature to explore whether the intake of drugs can affect the skeleton and whether these may have implications for forensic anthropology casework. In effect, drugs such as tobacco, heroin, and prescription medications can alter bone mineral density, can increase the risk of fractures, destroy bone and changes to the dentition. By considering how drugs can affect the skeleton, forensic anthropologists can be aware of this when attempting to identify the deceased. Abstract Forensic anthropologists rely on a number of parameters when analyzing human skeletal remains to assist in the identification of the deceased, predominantly age-at-death, sex, stature, ancestry or population affinity, and any unique identifying features. During the examination of human remains, it is important to be aware that the skeletal features considered when applying anthropological methods may be influenced and modified by a number of factors, and particular to this article, prescription drugs (including medical and non-medical use) and other commonly used drugs. In view of this, this paper aims to review the medical, clinical and pharmacological literature to enable an assessment of those drug groups that as side effects have the potential to have an adverse effect on the skeleton, and explore whether or not they can influence the estimation of age-at-death, sex and other indicators of the biological profile. Moreover, it may be that the observation of certain alterations or inconsistencies in the skeleton may relate to the use of drugs or medication, and this in turn may help narrow down the list of missing persons to which a set of human remains could belong. The information gathered from the clinical and medical literature has been extracted with a forensic anthropological perspective and provides an awareness on how several drugs, such as opioids, cocaine, corticosteroids, non-steroidal anti-inflammatory drugs, alcohol, tobacco and others have notable effects on bone. Through different mechanisms, drugs can alter bone mineral density, causing osteopenia, osteoporosis, increase the risk of fractures, osteonecrosis, and oral changes. Not much has been written on the influence of drugs on the skeleton from the forensic anthropological practitioner perspective; and this review, in spite of its limitations and the requirement of further research, aims to investigate the current knowledge of the possible effects of both prescription and recreational drugs on bones, contributing to providing a better awareness in forensic anthropological practice and assisting in the identification process of the deceased.
Collapse
|
5
|
Wang S, Bi W, Liu Y, Cheng J, Sun W, Wu G, Xu X. The Antagonist of Retinoic Acid Receptor α, ER-50891 Antagonizes the Inhibitive Effect of All-Trans Retinoic Acid and Rescues Bone Morphogenetic Protein 2-Induced Osteoblastogenic Differentiation. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:297-308. [PMID: 32158187 PMCID: PMC6985983 DOI: 10.2147/dddt.s215786] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 12/04/2019] [Indexed: 12/18/2022]
Abstract
Background Hypervitaminosis A, alcoholism or medical treatment for acute promyelocytic leukaemia may cause unphysiologically high accumulation of all-trans retinoic acid (ATRA), which could inhibit osteoblastogenesis, thereby triggering osteoporosis. We have shown that bone morphogenetic protein-2 (BMP-2) can only partially antagonize the inhibitive effects of ATRA. In this study, we hypothesized that antagonists of retinoic acid receptors (RARs) could further antagonize the inhibitive effect of ATRA and rescue BMP2-induced osteoblastogenesis. Materials and Methods We first screened the dose-dependent effects of the specific antagonists of RAR α, β and γ and transforming growth factor-beta receptor (ER-50891, LE-135, MM11253, and SB-43142, respectively) on ATRA-induced inhibition of the total cell metabolic activity and proliferation of preosteoblasts. We selected ER-50891 and tested its effects on osteoblastogenesis with the presence or absence of 1 μM ATRA and/or 200 ng/mL BMP-2. We measured the following parameters: Alkaline phosphatase activity (ALP), osteocalcin (OCN) expression and extracellular matrix mineralization as well as the level of phosphorylated Smad1/5. Results ER-50891 but not LE-135, MM11253, or SB-431542 significantly antagonized the inhibition of ATRA and enhanced the total cell metabolic activity and proliferation of preosteoblasts. Dose-dependent assays show ER-50891 could also rescue ATRA inhibited OCN expression and mineralization with or without the induction of BMP. ER-50891 also suppressed the ALP activity that was synergistically enhanced by BMP and ATRA. Neither ATRA, nor ER-50891 or their combination significantly affected the level of BMP-induced phosphorylated Smad1/5. Conclusion The antagonist of RARα, ER-50891 could significantly attenuate ATRA’s inhibitive effects on BMP 2-induced osteoblastogenesis.
Collapse
Affiliation(s)
- Siqian Wang
- Department of Implantology, School and Hospital of Stomatology, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong Province, People's Republic of China
| | - Wenjuan Bi
- College of Stomatology, North China University of Science and Technology, Tangshan, Hebei Province, People's Republic of China
| | - Yi Liu
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Jiayi Cheng
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), Amsterdam, The Netherlands
| | - Wei Sun
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People's Republic of China
| | - Gang Wu
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), Amsterdam, The Netherlands
| | - Xin Xu
- Department of Implantology, School and Hospital of Stomatology, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong Province, People's Republic of China
| |
Collapse
|
6
|
Liu Y, Ma X, Guo J, Lin Z, Zhou M, Bi W, Liu J, Wang J, Lu H, Wu G. All-trans retinoic acid can antagonize osteoblastogenesis induced by different BMPs irrespective of their dimerization types and dose-efficiencies. Drug Des Devel Ther 2018; 12:3419-3430. [PMID: 30349195 PMCID: PMC6186890 DOI: 10.2147/dddt.s178190] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Introduction Alcoholism can lead to low mineral density, compromised regenerative bone capacity and delayed osteointegration of dental implants. This may be partially attributed to the inhibitive effect of all-trans retinoic acid (ATRA), a metabolite of alcohol, on osteoblastogenesis. Our previous studies demonstrated that heterodimeric bone morphogenetic protein 2/7 (BMP2/7) was a more potent BMP than homodimeric BMP2 or BMP7, and could antagonize the inhibitive effect of ATRA to rescue osteoblastogenesis. Materials and methods In this study, we compared the effectiveness of BMP2/7, BMP2 and BMP7 in restoring osteoblastogenesis of murine preosteoblasts upon inhibition with 1 µM ATRA, and we further analyzed the potential mechanisms. We measured the following parameters: cell viability, ALP, OCN, mineralization, the expression of osteogenic differentiation marker genes (Collagen I, ALP and OCN) and the expression of BMP signaling key genes (Dlx5, Runx2, Osterix and Smad1). Results BMP2/7 treatment alone induced significantly higher osteoblastogenesis compared to BMP2 and BMP7. When cells were treated by ATRA, BMP2/7 was superior only in rescuing cell viability and ALP activity, compared to BMP2 or BMP7. However, BMP2/7 was not superior to BMP2 or BMP7 in restoring OCN expression and extracellular mineralized nodules, or in rescuing expression of two key osteogenic genes, Dlx5 and Runx2. Irrespective of their dimeric types or potency, the selected BMPs could antagonize the inhibitory effect of ATRA on osteoblastogenesis. Conclusion The presence of ATRA, BMP2/7 still induced significantly higher cell viability and early differentiation than the homodimers. However, ATRA significantly attenuated the advantages of BMP2/7 in inducing late and final osteoblastogenic differentiation over the homodimers.
Collapse
Affiliation(s)
- Yi Liu
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510140, China
| | - Xiaoqing Ma
- Shanghai Xuhui District Dental Center, Shanghai 200032, China
| | - Jing Guo
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510140, China
| | - Zhen Lin
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Miao Zhou
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510140, China
| | - Wenjuan Bi
- College of Stomatology, North China University of Science and Technology, Tangshan 063000, China
| | - Jinsong Liu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325000, China
| | - Jingxiao Wang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, China
| | - Haiping Lu
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou 310053, China,
| | - Gang Wu
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, 1081LA Amsterdam, the Netherlands,
| |
Collapse
|