1
|
Yang J, King RP. Diversification of Bipyridines and Azaheterocycles via Nucleophilic Displacement of Trimethylammoniums. ACS ORGANIC & INORGANIC AU 2024; 4:526-533. [PMID: 39371319 PMCID: PMC11450729 DOI: 10.1021/acsorginorgau.4c00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 10/08/2024]
Abstract
Bipyridines and azaarenes are an important class of ligands that impart unique and tunable properties to transition metal complexes and catalysts. While some derivatives are commercially available, noncommercial analogues are often challenging to prepare and purify. Herein, we report a general nucleophilic aromatic substitution reaction that converts cationic trimethylaminated bipyridines into a series of functionalized bipyridines. Our method showcases a series of C-O, C-S, and C-F bond-forming reactions as well as a selective monodemethylation that converts the electron-deficient trimethylammonium to an electron-rich dimethylamine. The approach was further applied to diversification of pharmaceuticals and natural products and was applied to the total synthesis of Graveolinine and the preparation of Graveolinine derivatives.
Collapse
Affiliation(s)
- Jenny
Y. Yang
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United
States
| | - Ryan P. King
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United
States
| |
Collapse
|
2
|
Ford J, Ortalli S, Chen Z, Sap JBI, Tredwell M, Gouverneur V. Expedient Access to 18F-Fluoroheteroarenes via Deaminative Radiofluorination of Aniline-Derived Pyridinium Salts. Angew Chem Int Ed Engl 2024; 63:e202404945. [PMID: 38624193 DOI: 10.1002/anie.202404945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/17/2024]
Abstract
Herein, we disclose that pyridinium salts derived from abundant (hetero)anilines represent a novel precursor class for nucleophilic aromatic substitution reactions with [18F]fluoride. The value of this new 18F-fluorodeamination is demonstrated with the synthesis of over 30 structurally diverse and complex heteroaryl 18F-fluorides, several derived from scaffolds that were yet to be labelled with fluorine-18. The protocol tolerates heteroarenes and functionalities commonly found in drug discovery libraries, and is amenable to scale-up and automation on a commercial radiosynthesiser.
Collapse
Affiliation(s)
- Joseph Ford
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, United Kingdom
| | - Sebastiano Ortalli
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, United Kingdom
| | - Zijun Chen
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, United Kingdom
| | - Jeroen B I Sap
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, United Kingdom
- Current address: Department of Translational Imaging, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Matthew Tredwell
- Wales Research and Diagnostic PET Imaging Centre, Cardiff University, University Hospital of Wales, Heath Park, Cardiff, CF14 4XN, United Kingdom
- School of Chemistry, Cardiff University Main Building, Park Place, Cardiff, CF10 3AT, United Kingdom
| | - Véronique Gouverneur
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, United Kingdom
| |
Collapse
|
3
|
Washington JB, Assante M, Yan C, McKinney D, Juba V, Leach AG, Baillie SE, Reid M. Trialkylammonium salt degradation: implications for methylation and cross-coupling. Chem Sci 2021; 12:6949-6963. [PMID: 34123322 PMCID: PMC8153232 DOI: 10.1039/d1sc00757b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Trialkylammonium (most notably N,N,N-trimethylanilinium) salts are known to display dual reactivity through both the aryl group and the N-methyl groups. These salts have thus been widely applied in cross-coupling, aryl etherification, fluorine radiolabelling, phase-transfer catalysis, supramolecular recognition, polymer design, and (more recently) methylation. However, their application as electrophilic methylating reagents remains somewhat underexplored, and an understanding of their arylation versus methylation reactivities is lacking. This study presents a mechanistic degradation analysis of N,N,N-trimethylanilinium salts and highlights the implications for synthetic applications of this important class of salts. Kinetic degradation studies, in both solid and solution phases, have delivered insights into the physical and chemical parameters affecting anilinium salt stability. 1H NMR kinetic analysis of salt degradation has evidenced thermal degradation to methyl iodide and the parent aniline, consistent with a closed-shell SN2-centred degradative pathway, and methyl iodide being the key reactive species in applied methylation procedures. Furthermore, the effect of halide and non-nucleophilic counterions on salt degradation has been investigated, along with deuterium isotope and solvent effects. New mechanistic insights have enabled the investigation of the use of trimethylanilinium salts in O-methylation and in improved cross-coupling strategies. Finally, detailed computational studies have helped highlight limitations in the current state-of-the-art of solvation modelling of reaction in which the bulk medium undergoes experimentally observable changes over the reaction timecourse. The dual reactivity of N,N,N-trimethylanilinium salts towards arylation and methylation is decoupled in this mechanistic investigation to enable more strategic application of these salts in either reaction class.![]()
Collapse
Affiliation(s)
- Jack B Washington
- WestCHEM Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building 295 Cathedral Street Glasgow UK
| | - Michele Assante
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University Byrom Street Liverpool UK
| | - Chunhui Yan
- WestCHEM Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building 295 Cathedral Street Glasgow UK
| | - David McKinney
- WestCHEM Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building 295 Cathedral Street Glasgow UK
| | - Vanessa Juba
- WestCHEM Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building 295 Cathedral Street Glasgow UK
| | - Andrew G Leach
- Division of Pharmacy and Optometry, University of Manchester Stopford Building Oxford Road Manchester UK
| | | | - Marc Reid
- WestCHEM Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building 295 Cathedral Street Glasgow UK
| |
Collapse
|
4
|
Sharninghausen LS, Brooks AF, Winton WP, Makaravage KJ, Scott PJH, Sanford MS. NHC-Copper Mediated Ligand-Directed Radiofluorination of Aryl Halides. J Am Chem Soc 2020; 142:7362-7367. [PMID: 32250612 DOI: 10.1021/jacs.0c02637] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
[18F]-labeled aryl fluorides are widely used as radiotracers for positron emission tomography (PET) imaging. Aryl halides (ArX) are particularly attractive precursors to these radiotracers, as they are readily available, inexpensive, and stable. However, to date, the direct preparation of [18F]-aryl fluorides from aryl halides remains limited to SNAr reactions between highly activated ArX substrates and K18F. This report describes an aryl halide radiofluorination reaction in which the C(sp2)-18F bond is formed via a copper-mediated pathway. Copper N-heterocyclic carbene complexes serve as mediators for this transformation, using aryl halide substrates with directing groups at the ortho position. This reaction is applied to the radiofluorination of electronically diverse aryl halide derivatives, including the bioactive molecules vismodegib and PH089.
Collapse
Affiliation(s)
- Liam S Sharninghausen
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Allen F Brooks
- Department of Radiology, University of Michigan, 1301 Catherine, Ann Arbor, Michigan 48109, United States
| | - Wade P Winton
- Department of Radiology, University of Michigan, 1301 Catherine, Ann Arbor, Michigan 48109, United States
| | - Katarina J Makaravage
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Peter J H Scott
- Department of Radiology, University of Michigan, 1301 Catherine, Ann Arbor, Michigan 48109, United States
| | - Melanie S Sanford
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
5
|
Nymann Petersen I, Madsen J, Bernard Matthijs Poulie C, Kjær A, Manfred Herth M. One-Step Synthesis of N-Succinimidyl-4-[ 18F]Fluorobenzoate ([ 18F]SFB). Molecules 2019; 24:molecules24193436. [PMID: 31546683 PMCID: PMC6804101 DOI: 10.3390/molecules24193436] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/18/2019] [Accepted: 09/21/2019] [Indexed: 01/26/2023] Open
Abstract
Herein, we present a one-step labeling procedure of N-succinimidyl-4-[18F]-fluorobenzoate ([18F]SFB) starting from spirocyclic iodonium ylide precursors. Precursor syntheses succeeded via a simple one-pot, two-step synthesis sequence, in yields of approximately 25%. Subsequent 18F-nucleophilic aromatic labeling was performed, and radiochemical incorporations (RCCs) from 5–35% were observed. Purification could be carried out using HPLC and subsequent solid phase extraction. Radiochemical purity (RCP) of >95% was determined. The total synthesis time, including purification and formulation, was no longer than 60 min. In comparison to the established 3-step synthesis route of [18F]SFB, this one-step approach avoids formation of volatile radioactive side-products and simplifies automatization.
Collapse
Affiliation(s)
- Ida Nymann Petersen
- Department of Clinical Physiology, Nuclear Medicine & PET, University Hospital (Rigshospitalet), Blegdamsvej 9, DK-2100 Copenhagen, Denmark.
| | - Jacob Madsen
- Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 9, DK-2100 Copenhagen, Denmark.
| | - Christian Bernard Matthijs Poulie
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, DK-2100 Copenhagen, Denmark.
| | - Andreas Kjær
- Department of Clinical Physiology, Nuclear Medicine & PET, University Hospital (Rigshospitalet), Blegdamsvej 9, DK-2100 Copenhagen, Denmark.
- Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 9, DK-2100 Copenhagen, Denmark.
| | - Matthias Manfred Herth
- Department of Clinical Physiology, Nuclear Medicine & PET, University Hospital (Rigshospitalet), Blegdamsvej 9, DK-2100 Copenhagen, Denmark.
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
6
|
Kallinen A, Boyd R, Lane S, Bhalla R, Mardon K, Stimson DHR, Werry EL, Fulton R, Connor M, Kassiou M. Synthesis and in vitro evaluation of fluorine-18 benzimidazole sulfones as CB2 PET-radioligands. Org Biomol Chem 2019; 17:5086-5098. [PMID: 31070218 DOI: 10.1039/c9ob00656g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cannabinoid type 2 receptor (CB2) is up-regulated on activated microglial cells and can potentially be used as a biomarker for PET-imaging of neuroinflammation. In this study the synthesis and pharmacological evaluation of novel fluorinated pyridyl and ethyl sulfone analogues of 2-(tert-butyl)-5-((2-fluoropyridin-4-yl)sulfonyl)-1-(2-methylpentyl)-1H-benzo[d]imidazole (rac-1a) are described. In general, the ligands showed low nanomolar potency (CB2 EC50 < 10 nM) and excellent selectivity over the CB1 subtype (>10 000×). Selected ligands 1d, 1e, 1g and 3l showing high CB2 binding affinity (Ki < 10 nM) were radiolabelled with fluorine-18 from chloropyridyl and alkyl tosylate precursors with good to high isolated radioactive yields (25-44%, non-decay corrected, at the end of synthesis). CB2-specific binding of the radioligand candidates [18F]-1d and [18F]-3l was assessed on rat spleen cryosections using in vitro autoradiography. The results warrant further in vivo evaluation of the tracer candidates as prospective CB2 PET-imaging agents.
Collapse
Affiliation(s)
- Annukka Kallinen
- School of Chemistry, The University of Sydney, NSW 2006, Australia.
| | - Rochelle Boyd
- Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, NSW 2109, Australia
| | - Samuel Lane
- Faculty of Health Sciences, The University of Sydney, NSW 2050, Australia
| | - Rajiv Bhalla
- The Centre for Advanced Imaging, The University of Queensland, QLD 4072, Australia
| | - Karine Mardon
- The Centre for Advanced Imaging, The University of Queensland, QLD 4072, Australia
| | - Damion H R Stimson
- The Centre for Advanced Imaging, The University of Queensland, QLD 4072, Australia
| | - Eryn L Werry
- School of Chemistry, The University of Sydney, NSW 2006, Australia.
| | - Roger Fulton
- Faculty of Health Sciences, The University of Sydney, NSW 2050, Australia
| | - Mark Connor
- Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, NSW 2109, Australia
| | - Michael Kassiou
- School of Chemistry, The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
7
|
Roche M, Specklin S, Richard M, Hinnen F, Génermont K, Kuhnast B. [ 18 F]FPyZIDE: A versatile prosthetic reagent for the fluorine-18 radiolabeling of biologics via copper-catalyzed or strain-promoted alkyne-azide cycloadditions. J Labelled Comp Radiopharm 2019; 62:95-108. [PMID: 30556584 DOI: 10.1002/jlcr.3701] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 12/07/2018] [Accepted: 12/11/2018] [Indexed: 11/05/2022]
Abstract
Methods for the radiolabeling of biologics with fluorine-18 have been of interest for several decades. A common approach consists in the preparation of a prosthetic reagent, a small molecule bearing a fluorine-18 that is conjugated with the macromolecule to an appropriate function. Click chemistry, and more particularly cycloadditions, is an interesting approach to radiolabel molecules thanks to mild reaction conditions, high yields, low by-products formation, and strong orthogonality. Moreover, the chemical functions involved in the cycloaddition reaction are stable in the drastic radiofluorination conditions, thus allowing a simple radiosynthetic route to prepare the prosthetic reagent. We report herein the radiosynthesis of 18 F-FPyZIDE, a pyridine-based azide-bearing prosthetic reagent. We exemplified its conjugation via copper-catalyzed cycloaddition (CuAAC) and strain-promoted cycloaddition (SPAAC) with several terminal alkyne or strained alkyne model compounds.
Collapse
Affiliation(s)
- Mélanie Roche
- IMIV, Service Hospitalier Frédéric Joliot, CEA, Inserm, Université Paris Sud, CNRS, Université Paris-Saclay, Orsay, France
| | - Simon Specklin
- IMIV, Service Hospitalier Frédéric Joliot, CEA, Inserm, Université Paris Sud, CNRS, Université Paris-Saclay, Orsay, France
| | - Mylène Richard
- IMIV, Service Hospitalier Frédéric Joliot, CEA, Inserm, Université Paris Sud, CNRS, Université Paris-Saclay, Orsay, France
| | - Françoise Hinnen
- IMIV, Service Hospitalier Frédéric Joliot, CEA, Inserm, Université Paris Sud, CNRS, Université Paris-Saclay, Orsay, France
| | - Kevin Génermont
- IMIV, Service Hospitalier Frédéric Joliot, CEA, Inserm, Université Paris Sud, CNRS, Université Paris-Saclay, Orsay, France
| | - Bertrand Kuhnast
- IMIV, Service Hospitalier Frédéric Joliot, CEA, Inserm, Université Paris Sud, CNRS, Université Paris-Saclay, Orsay, France
| |
Collapse
|
8
|
Kim HK, Javed MR, Chen S, Zettlitz KA, Collins J, Wu AM, Kim CJ“CJ, Michael van Dam R, Keng PY. On-demand radiosynthesis of N-succinimidyl-4-[18F]fluorobenzoate ([18F]SFB) on an electrowetting-on-dielectric microfluidic chip for 18F-labeling of protein. RSC Adv 2019; 9:32175-32183. [PMID: 35530758 PMCID: PMC9072849 DOI: 10.1039/c9ra06158d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 09/17/2019] [Indexed: 12/16/2022] Open
Abstract
An all-electronic, droplet-based batch microfluidic device, operated using the electrowetting on dielectric (EWOD) mechanism was developed for on-demand synthesis of N-succinimidyl-4-[18F]fluorobenzoate ([18F]SFB), the most commonly used 18F-prosthetic group for biomolecule labeling. In order to facilitate the development of peptides, and proteins as new diagnostic and therapeutic agents, we have diversified the compact EWOD microfluidic platform to perform the three-step radiosynthesis of [18F]SFB starting from the no carrier added [18F]fluoride ion. In this report, we established an optimal microliter droplet reaction condition to obtain reliable yields and synthesized [18F]SFB with sufficient radioactivity for subsequent conjugation to the anti-PSCA cys-diabody (A2cDb) and for small animal imaging. The three-step, one-pot radiosynthesis of [18F]SFB radiochemistry was adapted to a batch microfluidic platform with a reaction droplet sandwiched between two parallel plates of an EWOD chip, and optimized. Specifically, the ratio of precursor to base, droplet volume, reagent concentration, reaction time, and evaporation time were found be to be critical parameters. [18F]SFB was successfully synthesized on the EWOD chip in 39 ± 7% (n = 4) radiochemical yield in a total synthesis time of ∼120 min ([18F]fluoride activation, [18F]fluorination, hydrolysis, and coupling reaction, HPLC purification, drying and reformulation). The reformulation and stabilization step for [18F]SFB was important to obtain a high protein labeling efficiency of 33.1 ± 12.5% (n = 3). A small-animal immunoPET pilot study demonstrated that the [18F]SFB-PSCA diabody conjugate showed specific uptake in the PSCA-positive human prostate cancer xenograft. The successful development of a compact footprint of the EWOD radiosynthesizer has the potential to empower biologists to produce PET probes of interest themselves in a standard laboratory. An all-electronic, droplet-based batch microfluidic device, operated using the electrowetting on dielectric (EWOD) mechanism was developed for on-demand synthesis of acommonly used 18F-prosthetic group for biomolecule labeling.![]()
Collapse
Affiliation(s)
- Hee-Kwon Kim
- Department of Molecular and Medical Pharmacology
- University of California, Los Angeles
- Los Angeles
- USA
- Crump Institute for Molecular Imaging
| | - Muhammad Rashed Javed
- Department of Molecular and Medical Pharmacology
- University of California, Los Angeles
- Los Angeles
- USA
- Crump Institute for Molecular Imaging
| | - Supin Chen
- Department of Materials Science and Engineering
- National Tsing Hua University
- Hsinchu
- Taiwan
| | - Kirstin A. Zettlitz
- Department of Molecular and Medical Pharmacology
- University of California, Los Angeles
- Los Angeles
- USA
- Crump Institute for Molecular Imaging
| | - Jeffrey Collins
- Department of Molecular and Medical Pharmacology
- University of California, Los Angeles
- Los Angeles
- USA
- Crump Institute for Molecular Imaging
| | - Anna M. Wu
- Department of Molecular and Medical Pharmacology
- University of California, Los Angeles
- Los Angeles
- USA
- Crump Institute for Molecular Imaging
| | - Chang-Jin “C. J.” Kim
- Bioengineering Department
- University of California, Los Angeles
- Los Angeles
- USA
- Mechanical and Aerospace Engineering Department
| | - R. Michael van Dam
- Department of Molecular and Medical Pharmacology
- University of California, Los Angeles
- Los Angeles
- USA
- Crump Institute for Molecular Imaging
| | - Pei Yuin Keng
- Department of Molecular and Medical Pharmacology
- University of California, Los Angeles
- Los Angeles
- USA
- Crump Institute for Molecular Imaging
| |
Collapse
|
9
|
Narayanam MK, Ma G, Champagne PA, Houk KN, Murphy JM. Synthesis of [ 18 F]Fluoroarenes by Nucleophilic Radiofluorination of N-Arylsydnones. Angew Chem Int Ed Engl 2017; 56:13006-13010. [PMID: 28834065 PMCID: PMC5674999 DOI: 10.1002/anie.201707274] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 08/17/2017] [Indexed: 11/08/2022]
Abstract
A practical method for radiofluorination of anilines with [18 F]fluoride via N-arylsydnone intermediates is described. These precursors are stable, easy to handle and facilitate direct and regioselective 18 F-labeling to prepare [18 F]fluoroarenes. The value of this methodology is further highlighted by successful application to prepare an 18 F-labeled neuropeptide.
Collapse
Affiliation(s)
- Maruthi Kumar Narayanam
- Department of Molecular and Medical Pharmacology and Crump Institute for Molecular Imaging, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Gaoyuan Ma
- Department of Molecular and Medical Pharmacology and Crump Institute for Molecular Imaging, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Pier Alexandre Champagne
- Department of Chemistry and Biochemistry, and Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Kendall N Houk
- Department of Chemistry and Biochemistry, and Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jennifer M Murphy
- Department of Molecular and Medical Pharmacology and Crump Institute for Molecular Imaging, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
10
|
Narayanam MK, Ma G, Champagne PA, Houk KN, Murphy JM. Synthesis of [18F]Fluoroarenes by Nucleophilic Radiofluorination ofN-Arylsydnones. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201707274] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Maruthi Kumar Narayanam
- Department of Molecular and Medical Pharmacology and Crump Institute for Molecular Imaging; David Geffen School of Medicine; University of California, Los Angeles; Los Angeles CA 90095 USA
| | - Gaoyuan Ma
- Department of Molecular and Medical Pharmacology and Crump Institute for Molecular Imaging; David Geffen School of Medicine; University of California, Los Angeles; Los Angeles CA 90095 USA
| | - Pier Alexandre Champagne
- Department of Chemistry and Biochemistry, and Department of Chemical and Biomolecular Engineering; University of California, Los Angeles; Los Angeles CA 90095 USA
| | - Kendall N. Houk
- Department of Chemistry and Biochemistry, and Department of Chemical and Biomolecular Engineering; University of California, Los Angeles; Los Angeles CA 90095 USA
| | - Jennifer M. Murphy
- Department of Molecular and Medical Pharmacology and Crump Institute for Molecular Imaging; David Geffen School of Medicine; University of California, Los Angeles; Los Angeles CA 90095 USA
| |
Collapse
|
11
|
A novel approach to the synthesis of [18F]flumazenil, a radioligand for PET imaging of central benzodiazepine receptors. Russ Chem Bull 2016. [DOI: 10.1007/s11172-016-1376-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Methods for the synthesis of fluorine-18-labeled aromatic amino acids, radiotracers for positron emission tomography (PET). Russ Chem Bull 2016. [DOI: 10.1007/s11172-015-1037-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Preshlock S, Tredwell M, Gouverneur V. (18)F-Labeling of Arenes and Heteroarenes for Applications in Positron Emission Tomography. Chem Rev 2016; 116:719-66. [PMID: 26751274 DOI: 10.1021/acs.chemrev.5b00493] [Citation(s) in RCA: 494] [Impact Index Per Article: 54.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Diverse radiochemistry is an essential component of nuclear medicine; this includes imaging techniques such as positron emission tomography (PET). As such, PET can track diseases at an early stage of development, help patient care planning through personalized medicine and support drug discovery programs. Fluorine-18 is the most frequently used radioisotope in PET radiopharmaceuticals for both clinical and preclinical research. Its physical and nuclear characteristics (97% β(+) decay, 109.8 min half-life, 635 keV positron energy) and high specific activity make it an attractive nuclide for labeling and molecular imaging. Arenes and heteroarenes are privileged candidates for (18)F-incorporation as they are metabolically robust and therefore widely used by medicinal chemists and radiochemists alike. For many years, the range of (hetero)arenes amenable to (18)F-fluorination was limited by the lack of chemically diverse precursors, and of radiochemical methods allowing (18)F-incorporation in high selectivity and efficiency (radiochemical yield and purity, specific activity, and radio-scalability). The appearance of late-stage fluorination reactions catalyzed by transition metal or small organic molecules (organocatalysis) has encouraged much research on the use of these activation manifolds for (18)F-fluorination. In this piece, we review all of the reactions known to date to install the (18)F substituent and other key (18)F-motifs (e.g., CF3, CHF2, OCF3, SCF3, OCHF2) of medicinal relevance onto (hetero)arenes. The field has changed significantly in the past five years, and the current trend suggests that the radiochemical space available for PET applications will expand rapidly in the near future.
Collapse
Affiliation(s)
- Sean Preshlock
- Chemistry Research Laboratory, University of Oxford , Oxford OX1 3TA, United Kingdom
| | - Matthew Tredwell
- Chemistry Research Laboratory, University of Oxford , Oxford OX1 3TA, United Kingdom
| | - Véronique Gouverneur
- Chemistry Research Laboratory, University of Oxford , Oxford OX1 3TA, United Kingdom
| |
Collapse
|
14
|
Roberts MP, Pham TQ, Doan J, Jiang CD, Hambley TW, Greguric I, Fraser BH. Radiosynthesis and 'click' conjugation of ethynyl-4-[(18)F]fluorobenzene--an improved [(18)F]synthon for indirect radiolabeling. J Labelled Comp Radiopharm 2015; 58:473-8. [PMID: 26526606 DOI: 10.1002/jlcr.3354] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/23/2015] [Accepted: 09/29/2015] [Indexed: 11/10/2022]
Abstract
Reproducible methods for [(18)F]radiolabeling of biological vectors are essential for the development of new [(18)F]radiopharmaceuticals. Molecules such as carbohydrates, peptides and proteins are challenging substrates that often require multi-step indirect radiolabeling methods. With the goal of developing more robust, time saving, and less expensive procedures for indirect [(18)F]radiolabeling of such molecules, our group has synthesized ethynyl-4-[(18)F]fluorobenzene ([(18)F]2, [(18)F]EYFB) in a single step (14 ± 2% non-decay corrected radiochemical yield (ndc RCY)) from a readily synthesized, shelf stable, inexpensive precursor. The alkyne-functionalized synthon [(18)F]2 was then conjugated to two azido-functionalized vector molecules via CuAAC reactions. The first 'proof of principle' conjugation of [(18)F]2 to 1-azido-1-deoxy-β-D-glucopyranoside (3) gave the desired radiolabeled product [(18)F]4 in excellent radiochemical yield (76 ± 4% ndc RCY (11% overall)). As a second example, the conjugation of [(18)F]2 to matrix-metalloproteinase inhibitor (5), which has potential in tumor imaging, gave the radiolabeled product [(18)F]6 in very good radiochemical yield (56 ± 12% ndc RCY (8% overall)). Total preparation time for [(18)F]4 and [(18)F]6 including [(18)F]F(-) drying, two-step reaction (nucleophilic substitution and CuAAC conjugation), two HPLC purifications, and two solid phase extractions did not exceed 70 min. The radiochemical purity of synthon [(18)F]2 and the conjugated products, [(18)F]4 and [(18)F]6, were all greater than 98%. The specific activities of [(18)F]2 and [(18)F]6 were low, 5.97 and 0.17 MBq nmol(-1), respectively.
Collapse
Affiliation(s)
- Maxine P Roberts
- LifeSciences Division, Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee, DC, NSW, 2232, Australia
| | - Tien Q Pham
- LifeSciences Division, Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee, DC, NSW, 2232, Australia
| | - John Doan
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Cathy D Jiang
- LifeSciences Division, Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee, DC, NSW, 2232, Australia
| | - Trevor W Hambley
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Ivan Greguric
- LifeSciences Division, Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee, DC, NSW, 2232, Australia
| | - Benjamin H Fraser
- LifeSciences Division, Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee, DC, NSW, 2232, Australia
| |
Collapse
|
15
|
Fehler SK, Maschauer S, Höfling SB, Bartuschat AL, Tschammer N, Hübner H, Gmeiner P, Prante O, Heinrich MR. Fast and efficient (18) F-labeling by [(18) f]fluorophenylazocarboxylic esters. Chemistry 2013; 20:370-5. [PMID: 24339325 DOI: 10.1002/chem.201303409] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Indexed: 01/19/2023]
Abstract
Introduction of [(18) F]fluoride ion into the aromatic core of phenylazocarboxylic esters was achieved in only 30 seconds, with radiochemical yields of up to 95 % (85(±10) %). For labeling purposes, the resulting (18) F-substituted azoester can be further converted in radical-arylation reactions to give biaryls, or in substitutions at its carbonyl unit to produce azocarboxamides.
Collapse
Affiliation(s)
- Stefanie K Fehler
- Abteilung für Chemie und Pharmazie, Pharmazeutische Chemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schuhstrasse 19, 91052 Erlangen (Germany)
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
|
17
|
Abstract
Molecular imaging has witnessed an upsurge in growth, with positron emission tomography leading the way. This trend has encouraged numerous synthetic chemists to enter the field of (18) F-radiochemistry and provide generic solutions to address the well-recognized challenges of late-stage fluorination. This Minireview focuses on recent developments in the (18)F-labeling of aromatic substrates.
Collapse
Affiliation(s)
- Matthew Tredwell
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK.
| | | |
Collapse
|
18
|
Åberg O, Pisaneschi F, Smith G, Nguyen QD, Stevens E, Aboagye EO. 18F-labelling of a cyclic pentapeptide inhibitor of the chemokine receptor CXCR4. J Fluor Chem 2012. [DOI: 10.1016/j.jfluchem.2011.11.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
19
|
Graskemper JW, Wang B, Qin L, Neumann KD, DiMagno SG. Unprecedented directing group ability of cyclophanes in arene fluorinations with diaryliodonium salts. Org Lett 2011; 13:3158-61. [PMID: 21591627 DOI: 10.1021/ol201080c] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
For the first time it is shown that exceptionally electron-rich arene rings can be fluorinated exclusively during the reductive elimination reactions of diaryliodonium fluorides. The 5-methoxy[2.2]paracyclophan-4-yl directing group simultaneously reduces unproductive aryne chemistry and eliminates ligand exchange reactions by a combination of steric and electronic effects. Use of the cyclophane directing group permits an unprecedented degree of control in fluorination reactions of diaryliodonium salts.
Collapse
Affiliation(s)
- Joseph W Graskemper
- Department of Chemistry and Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, Nebraska 68588-0304, USA
| | | | | | | | | |
Collapse
|
20
|
Bejot R, Elizarov AM, Ball E, Zhang J, Miraghaie R, Kolb HC, Gouverneur V. Batch-mode microfluidic radiosynthesis of N-succinimidyl-4-[18F]fluorobenzoate for protein labelling. J Labelled Comp Radiopharm 2010. [DOI: 10.1002/jlcr.1826] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Wang B, Cerny RL, Uppaluri S, Kempinger JJ, DiMagno SG. Fluoride-Promoted Ligand Exchange in Diaryliodonium Salts. J Fluor Chem 2010; 131:1113-1121. [PMID: 21057607 PMCID: PMC2967785 DOI: 10.1016/j.jfluchem.2010.04.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Diaryliodonium salts are shown to undergo rapid, fluoride-promoted aryl exchange reactions at room temperature in acetonitrile. Aryl exchange is shown to be exquisitely sensitive to the concentration of fluoride ion in solution; fast exchange is observed as the fluoride concentration approaches a stoichiometric amount at 50 mM substrate concentration. The reaction is slowed, but not halted if benzene is the solvent, indicating that free fluoride ion or a four-coordinate anionic I(III) species may be responsible for the exchange. The fluoride-promoted aryl exchange reaction is general and allows direct measurement of the relative stabilities of diaryliodonium salts featuring different aryl substituents. The aryl exchange reaction may be of practical use for the preparation of hitherto inaccessible diaryliodonium salts, thus it also has implications for labeling radiotracers for molecular imaging with (18)F-fluoride (t(1/2) = 109.7 min).
Collapse
Affiliation(s)
- Bijia Wang
- Department of Chemistry and Nebraska Center for Materials and Nanoscience University of Nebraska, Lincoln, NE 68588-0304, USA Fax: 402 472-9402; Tel: 402 472-9895
| | - Ronald L. Cerny
- Department of Chemistry and Nebraska Center for Materials and Nanoscience University of Nebraska, Lincoln, NE 68588-0304, USA Fax: 402 472-9402; Tel: 402 472-9895
| | - ShriHarsha Uppaluri
- Department of Chemistry and Nebraska Center for Materials and Nanoscience University of Nebraska, Lincoln, NE 68588-0304, USA Fax: 402 472-9402; Tel: 402 472-9895
| | - Jayson J. Kempinger
- Department of Chemistry and Nebraska Center for Materials and Nanoscience University of Nebraska, Lincoln, NE 68588-0304, USA Fax: 402 472-9402; Tel: 402 472-9895
| | - Stephen G. DiMagno
- Department of Chemistry and Nebraska Center for Materials and Nanoscience University of Nebraska, Lincoln, NE 68588-0304, USA Fax: 402 472-9402; Tel: 402 472-9895
| |
Collapse
|
22
|
Inkster JAH, Adam MJ, Storr T, Ruth TJ. Labeling of an antisense oligonucleotide with [(18)F]FPy5yne. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2010; 28:1131-43. [PMID: 20183579 DOI: 10.1080/15257770903400691] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Functional imaging of gene expression in vivo with short-lived positron emitter (18)F remains an unrealized goal, in part because the long reaction times and challenging protocols typically required to label nucleic acid-based molecular probes with this radionuclide (t(1/2) = 109.8 minutes). To this end, we synthesized prosthetic group 2-[(18)F]fluoro-3-(hex-5-ynyloxy)pyridine ([(18)F]FPy5yne), used previously to label peptides, and coupled it to an oligodeoxyribonucleotide with (18)F by way of a Cu(I)-mediated azide/alkyne cycloaddition reaction. HPLC-purified [(18)F]FPy5yne was ligated to a 5'-azide-modified DNA sequence antisense to mdr1 mRNA in the presence of Cu(I)-stabilizing ligand tris(benzyltriazolylmethyl)amine and 2,6-lutidine. Non-decay corrected, collected yields of the (18)F-labeled oligonucleotide from end-of-bombardment were 3.9% +/- 0.5% (n = 3; 24.6% +/- 0.5% decay corrected). Shortest preparation time was 276 minutes from start of synthesis.
Collapse
Affiliation(s)
- James A H Inkster
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada.
| | | | | | | |
Collapse
|
23
|
Olberg DE, Arukwe JM, Grace D, Hjelstuen OK, Solbakken M, Kindberg GM, Cuthbertson A. One step radiosynthesis of 6-[(18)F]fluoronicotinic acid 2,3,5,6-tetrafluorophenyl ester ([(18)F]F-Py-TFP): a new prosthetic group for efficient labeling of biomolecules with fluorine-18. J Med Chem 2010; 53:1732-40. [PMID: 20088512 DOI: 10.1021/jm9015813] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The labeling of biomolecules for positron emission tomography (PET) with no-carrier-added fluorine-18 is almost exclusively accomplished using prosthetic groups in a two step procedure. The inherent complexity of the process renders full automation a challenge and leads to protracted synthesis times. Here we describe a new (18)F-labeled prosthetic group based on nicotinic acid tetrafluorophenyl ester. Reaction of [(18)F]fluoride at 40 degrees C with the trimethylammonium precursor afforded 6-[(18)F]fluoronicotinic acid tetrafluorophenyl ester ([(18)F]F-Py-TFP) directly in 60-70% yield. [(18)F]F-Py-TFP was conveniently purified by Sep-Pak cartridge prior to incubation with a peptide containing the RGD sequence. The desired conjugate was formed rapidly and in good yields. An in vitro receptor-binding assay for the integrin alpha(v)beta(3) was established to explore competition with peptide and peptidomimetic prepared from F-Py-TFP with (125)I-echistatin. The nonradioactive conjugates were found to possess high binding affinities with calculated K(i) values in the low nanomolar range.
Collapse
Affiliation(s)
- Dag E Olberg
- Department of Pharmaceutics and Biopharmaceutics, Institute of Pharmacy, University of Tromsø, N-9037 Tromsø, Norway.
| | | | | | | | | | | | | |
Collapse
|
24
|
Pei W, Yang W. Novel Method for Preparing Fluorination Reagent and Its Application to Synthesis of Fluoropyridazinones. SYNTHETIC COMMUN 2010. [DOI: 10.1080/00397910903003466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Wen Pei
- a College of Chemical Engineering and Materials , Zhejiang University of Technology , Hangzhou, China
| | - Wei Yang
- a College of Chemical Engineering and Materials , Zhejiang University of Technology , Hangzhou, China
| |
Collapse
|
25
|
Inkster JAH, Guérin B, Ruth TJ, Adam MJ. Radiosynthesis and bioconjugation of [18F]FPy5yne, a prosthetic group for the18F labeling of bioactive peptides. J Labelled Comp Radiopharm 2008. [DOI: 10.1002/jlcr.1561] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
26
|
Affiliation(s)
- Lisheng Cai
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Rm. B3 C346, 10 Center Drive, Bethesda, MD 20892‐1003, USA, Fax: +1‐301‐480‐5112
| | - Shuiyu Lu
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Rm. B3 C346, 10 Center Drive, Bethesda, MD 20892‐1003, USA, Fax: +1‐301‐480‐5112
| | - Victor W. Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Rm. B3 C346, 10 Center Drive, Bethesda, MD 20892‐1003, USA, Fax: +1‐301‐480‐5112
| |
Collapse
|