1
|
de Azambuja AP, Mion ALV, Schluga YC, Beltrame MP, Senegaglia AC, Funke VAM, Bonfim C, Pasquini R. Comprehensive Analysis of High-Sensitive Flow Cytometry and Molecular Mensurable Residual Disease in Philadelphia Chromosome-Positive Acute Leukemia. Int J Mol Sci 2025; 26:2116. [PMID: 40076750 PMCID: PMC11900146 DOI: 10.3390/ijms26052116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Monitoring measurable residual disease (MRD) is critical for the management of B-cell acute lymphoblastic leukemia (B-ALL). While a quantitative assessment of BCR::ABL1 transcripts is standard for Philadelphia chromosome-positive cases (Ph+ ALL), a multiparameter flow cytometry (FCM) is commonly used for MRD detection in other genetic subtypes. A total of 106 B-ALL patients underwent genetic and phenotypic analyses. Among them, 27 patients (20 adults and 7 children) harbored the t(9;22)(q34.1;q11.2) translocation and/or the BCR::ABL1 rearrangement. A high correlation between the BCR::ABL1 transcript levels (PCR-MRD) and a standardized FCM-based method for MRD detection (FCM-MRD) was observed (r = 0.7801, p < 0.001), with a concordance rate of 88% (κ = 0.761). The FCM detected MRD in 82.9% of the samples with transcript levels of > 0.01%. The CD34+CD38-/dim blast pattern was significantly more frequent in Ph+ ALL (77.7%), compared to other B-ALL cases (20.2%, p < 0.0001). Additionally, Ph+ ALL exhibited a higher expression of CD66c+/CD73+ (94.0% vs. 56.9%), CD66c+/CD304+ (58.8% vs. 6.9%), and CD73+/CD304+ (75.5% vs. 15.5%) than the other B-ALL subtypes (p < 0.001). In conclusion, this high-sensitivity FCM-MRD demonstrated comparable performance to the PCR-MRD, serving as a complementary tool for MRD assessment in Ph+ ALL. Moreover, a distinct leukemia-associated immunophenotype was identified, highlighting potential biomarkers for MRD monitoring.
Collapse
Affiliation(s)
- Ana Paula de Azambuja
- Hospital de Clínicas, Universidade Federal do Paraná, Curitiba 80060-900, Brazil; (A.P.d.A.)
| | - Ana Lucia Vieira Mion
- Hospital de Clínicas, Universidade Federal do Paraná, Curitiba 80060-900, Brazil; (A.P.d.A.)
| | - Yara Carolina Schluga
- Hospital de Clínicas, Universidade Federal do Paraná, Curitiba 80060-900, Brazil; (A.P.d.A.)
| | | | | | | | - Carmem Bonfim
- Hospital de Clínicas, Universidade Federal do Paraná, Curitiba 80060-900, Brazil; (A.P.d.A.)
- Duke Children’s Hospital, Durham, NC 27710, USA
| | - Ricardo Pasquini
- Hospital de Clínicas, Universidade Federal do Paraná, Curitiba 80060-900, Brazil; (A.P.d.A.)
| |
Collapse
|
2
|
Wang S, Zhang J, Chen J, Tang L, Ke M, Xue Y, He Y, Gong Y, Li Z. ω-3PUFAs Inhibit Hypoxia-Induced Retinal Neovascularization via Regulating Microglial Pyroptosis through METTL14-Mediated m6A Modification of IFNB1 mRNA. Appl Biochem Biotechnol 2024; 196:5936-5952. [PMID: 38175416 DOI: 10.1007/s12010-023-04795-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2023] [Indexed: 01/05/2024]
Abstract
Retinal neovascular disease is the leading reason of vision impairment in all ages. Here, we figured out the function and mechanism of omega-3 polyunsaturated fatty acids (ω-3PUFAs) in hypoxia-induced retinal neovascularization by focusing on microglial pyroptosis. Microglia BV-2 cells were given ω-3PUFAs treatment and co-cultured with mouse retinal microvascular endothelial cells (MRMECs) under hypoxia. Tube formation assay, transwell assay and wound healing assay were utilized to monitor the MRMEC angiogenesis. Cell counting kit-8, western blot, lactate dehydrogenase assay, and enzyme-linked immunosorbent assay were used to assess pyroptosis of BV-2 cells. RNA sequencing and methylated RNA immunoprecipitation-polymerase chain reaction were utilized to identify the target gene of methyltransferase-like 14 (METTL14) and its N6-methyladenosine (m6A) level in BV-2 cells. BV-2 cells prominently enhanced MRMEC angiogenesis under hypoxia, but this effect was abolished after ω-3PUFAs treatment. ω-3PUFAs inhibited pyroptosis in hypoxia-induced BV-2 cells, and BV-2 cell pyroptosis boosted angiogenesis of MRMECs. Additionally, ω-3PUFAs markedly augment the expression of MELLL14 in BV-2 cells, and METTL14 knockdown promoted BV-2 cell pyroptosis and BV-2 cell-mediated angiogenesis in MEMECs. Mechanistically, interferon beta 1 (IFNB1) was a target of METTL14, and METTL14 silencing increased the mRNA expression and decreased the m6A modification of IFNB1 in BV-2 cells. Our results uncovered that ω-3PUFAs diminished hypoxia-induced retinal neovascularization through controlling microglial pyroptosis via METTL14-mediated m6A modification. This study offers a novel potential target for the treatment of retinal neovascular diseases.
Collapse
Affiliation(s)
- Shun Wang
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Jing Zhang
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Jun Chen
- Department of Ophthalmology, The People's Hospital of Huangmei, Huangmei Hospital Affiliated to Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lanlan Tang
- Department of Ophthalmology, Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Min Ke
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Yanni Xue
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Ying He
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, China.
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Zhi Li
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China.
| |
Collapse
|
3
|
Huang YJ, Chen SH, Liu HC, Jaing TH, Yeh TC, Kuo MC, Lin TL, Chen CC, Wang SC, Chang TK, Hsiao CC, Liang DC, Shih LY. Evaluation of next-generation sequencing for measurable residual disease monitoring in three major fusion transcript subtypes of B-precursor acute lymphoblastic leukaemia. Pathology 2024; 56:681-687. [PMID: 38719770 DOI: 10.1016/j.pathol.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 01/18/2024] [Accepted: 02/07/2024] [Indexed: 07/07/2024]
Abstract
The use of next-generation sequencing (NGS) for monitoring measurable residual disease (MRD) in acute lymphoblastic leukaemia (ALL) has been gaining traction. This study aimed to investigate the utility of NGS in MRD monitoring for the three major fusion transcript (FT) subtypes of B-precursor ALL (B-ALL). The MRD results for 104 bone marrow samples from 56 patients were analysed through NGS and real time quantitative reverse transcription PCR (RT-qPCR) for the three major FTs: BCR::ABL1, TCF3::PBX1, and ETV6::RUNX1. To validate the NGS approach, NGS-MRD was initially compared with allele-specific oligonucleotide-qPCR-MRD, and the coefficient of determination was good (R2=0.8158). A subsequent comparison of NGS-MRD with FT-MRD yielded a good coefficient of determination (R2=0.7690), but the coefficient varied by subtype. Specifically, the R2 was excellent for TCF3::PBX1 ALL (R2=0.9157), good for ETV6::RUNX1 ALL (R2=0.8606), and subpar for BCR::ABL1 ALL (R2=0.5763). The overall concordance between the two methods was 83.7%, and an excellent concordance rate of 95.8% was achieved for TCF3::PBX1 ALL. Major discordance, which was defined as a >1 log difference between discordant NGS-MRD and FT-MRD, occurred in 6.7% of the samples, with all but one sample being BCR::ABL1 ALL. Among the four non-transplanted patients with BCR::ABL1-MRD (+)/NGS-MRD (-), three did not relapse after long-term follow-up. Our finding indicates that NGS-MRD has a better prognostic impact than RT-qPCR-MRD in ETV6::RUNX1 and BCR::ABL1 ALL, whereas in TCF3::PBX1 ALL, both methods exhibit comparable efficacy.
Collapse
Affiliation(s)
- Ying-Jung Huang
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Shih-Hsiang Chen
- College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Hematology-Oncology, Chang Gung Children's Hospital at Linkou, Taoyuan, Taiwan
| | - Hsi-Che Liu
- Department of Hematology-Oncology, MacKay Children's Hospital and Mackay Medical College, Taipei, Taiwan
| | - Tang-Her Jaing
- College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Hematology-Oncology, Chang Gung Children's Hospital at Linkou, Taoyuan, Taiwan
| | - Ting-Chi Yeh
- Department of Hematology-Oncology, MacKay Children's Hospital and Mackay Medical College, Taipei, Taiwan
| | - Ming-Chung Kuo
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tung-Liang Lin
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chiu-Chen Chen
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Shih-Chung Wang
- Division of Pediatric Hematology-Oncology, Changhua Christian Children's Hospital, Changhua, Taiwan
| | - Te-Kau Chang
- Division of Pediatric Hematology and Oncology, China Medical University Children's Hospital, Taichung, Taiwan
| | - Chih-Cheng Hsiao
- College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Pediatrics, Chang Gung Memorial Hospital at Kaohsiung, Kaohsiung, Taiwan
| | - Der-Cherng Liang
- Department of Hematology-Oncology, MacKay Children's Hospital and Mackay Medical College, Taipei, Taiwan
| | - Lee-Yung Shih
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
4
|
Wang YL, Chang TY, Wen YC, Yang SH, Hsiao YW, Chiu CC, Chen YC, Hu RS, Chen SH, Jaing TH, Hsiao CC. Blinatumomab in Children with MRD-Positive B-Cell Precursor Acute Lymphoblastic Leukemia: A Report of 11 Cases. Hematol Rep 2024; 16:347-353. [PMID: 38921183 PMCID: PMC11204057 DOI: 10.3390/hematolrep16020035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 05/01/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
Background/Objectives: Relapsed B-cell acute lymphoblastic leukemia (B-ALL) remains an unresolved matter of concern regarding adverse outcomes. This case study aimed to evaluate the effectiveness of blinatumomab, with or without door lymphocyte infusion (DLI), in treating measurable residual disease (MRD)-positive B-ALL. Methods: All patients who received blinatumomab salvage therapy were included in this study. Eleven patients were included in the study. All patients were evaluated for MRD-negativity. Results: Before starting blinatumomab therapy, seven patients tested positive for MRD, three tested negative, and one had refractory disease. Hematopoietic cell transplantation (HCT) was reserved for five patients with persistent MRD. Six patients became MRD-negative and subsequent HCT was not performed. Only two patients relapsed; one patient died of relapse, and the other one received carfilzomib-based therapy and was MRD-negative thereafter. Nine patients were MRD-negative at a median follow-up of 28 months (15-52 months). Two of three MRD-positive post-transplant patients remained in complete molecular remission after preemptive DLI at the last follow-up date. In the first salvage, blinatumomab may achieve complete remission and bridging to HCT in pediatric patients with end-of-induction MRD-positive B-cell precursor ALL. Conclusions: The decision on how to treat post-transplant relapse continues to affect survival outcomes. Blinatumomab combined with DLI may extend the armamentarium of release options for high-risk pediatric patients. This approach is encouraging for high-risk ALL patients who are MRD-positive post-transplantation.
Collapse
Affiliation(s)
- Yi-Lun Wang
- Department of Pediatrics, Division of Hematology/Oncology, Chang Gung Memorial Hospital, Taoyuan 33315, Taiwan; (Y.-L.W.); (T.-Y.C.); (S.-H.C.)
| | - Tsung-Yen Chang
- Department of Pediatrics, Division of Hematology/Oncology, Chang Gung Memorial Hospital, Taoyuan 33315, Taiwan; (Y.-L.W.); (T.-Y.C.); (S.-H.C.)
| | - Yu-Chuan Wen
- Department of Nursing, Chang Gung Memorial Hospital, Taoyuan 33315, Taiwan; (Y.-C.W.); (S.-H.Y.); (Y.-W.H.); (C.-C.C.)
| | - Shu-Ho Yang
- Department of Nursing, Chang Gung Memorial Hospital, Taoyuan 33315, Taiwan; (Y.-C.W.); (S.-H.Y.); (Y.-W.H.); (C.-C.C.)
| | - Yi-Wen Hsiao
- Department of Nursing, Chang Gung Memorial Hospital, Taoyuan 33315, Taiwan; (Y.-C.W.); (S.-H.Y.); (Y.-W.H.); (C.-C.C.)
| | - Chia-Chi Chiu
- Department of Nursing, Chang Gung Memorial Hospital, Taoyuan 33315, Taiwan; (Y.-C.W.); (S.-H.Y.); (Y.-W.H.); (C.-C.C.)
| | - Yu-Chieh Chen
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (Y.-C.C.); (C.-C.H.)
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
| | - Ruei-Shan Hu
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
| | - Shih-Hsiang Chen
- Department of Pediatrics, Division of Hematology/Oncology, Chang Gung Memorial Hospital, Taoyuan 33315, Taiwan; (Y.-L.W.); (T.-Y.C.); (S.-H.C.)
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
| | - Tang-Her Jaing
- Department of Pediatrics, Division of Hematology/Oncology, Chang Gung Memorial Hospital, Taoyuan 33315, Taiwan; (Y.-L.W.); (T.-Y.C.); (S.-H.C.)
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
| | - Chih-Cheng Hsiao
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (Y.-C.C.); (C.-C.H.)
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
| |
Collapse
|
5
|
Liu HC, Huang YJ, Jaing TH, Wu KH, Chen SH, Wang SC, Yeh TC, Hsiao CC, Chang TK, Yen HJ, Huang FL, Lin PC, Hou JY, Sheen JM, Liao YM, Chang TY, Chen YC, Chiou SS, Yang CP, Pui CH, Liang DC, Shih LY. Refining risk stratification in paediatric B-acute lymphoblastic leukaemia: Combining IKZF1 plus and Day 15 MRD positivity. Br J Haematol 2024; 204:1344-1353. [PMID: 38479427 DOI: 10.1111/bjh.19338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 04/11/2024]
Abstract
This study investigates the potential utility of IKZF1 deletion as an additional high-risk marker for paediatric acute lymphoblastic leukaemia (ALL). The prognostic impact of IKZF1 status, in conjunction with minimal/measurable residual disease (MRD), was evaluated within the MRD-guided TPOG-ALL-2013 protocol using 412 newly diagnosed B-ALL patients aged 1-18. IKZF1 status was determined using multiplex ligation-dependent probe amplification. IKZF1 deletions, when co-occurring with CDKN2A, CDKN2B, PAX5 or PAR1 region deletions in the absence of ERG deletions, were termed IKZF1plus. Both IKZF1 deletion (14.6%) and IKZF1plus (7.8%) independently predicted poorer outcomes in B-ALL. IKZF1plus was observed in 4.1% of Philadelphia-negative ALL, with a significantly lower 5-year event-free survival (53.9%) compared to IKZF1 deletion alone (83.8%) and wild-type IKZF1 (91.3%) (p < 0.0001). Among patients with Day 15 MRD ≥0.01%, provisional high-risk patients with IKZF1plus exhibited the worst outcomes in event-free survival (42.0%), relapse-free survival (48.0%) and overall survival (72.7%) compared to other groups (p < 0.0001). Integration of IKZF1plus and positive Day 15 MRD identified a subgroup of Philadelphia-negative B-ALL with a 50% risk of relapse. This study highlights the importance of assessing IKZF1plus alongside Day 15 MRD positivity to identify patients at increased risk of adverse outcomes, potentially minimizing overtreatment.
Collapse
Affiliation(s)
- Hsi-Che Liu
- Department of Hematology-Oncology, MacKay Children's Hospital and MacKay Medical College, Taipei, Taiwan
| | - Ying-Jung Huang
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Tang-Her Jaing
- Department of Hematology-Oncology, Chang Gung Children's Hospital at Linkou, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kang-Hsi Wu
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shih-Hsiang Chen
- Department of Hematology-Oncology, Chang Gung Children's Hospital at Linkou, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shih-Chung Wang
- Division of Pediatric Hematology-Oncology, Changhua Christian Children's Hospital, Changhua, Taiwan
| | - Ting-Chi Yeh
- Department of Hematology-Oncology, MacKay Children's Hospital and MacKay Medical College, Taipei, Taiwan
| | - Chih-Cheng Hsiao
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Pediatrics, Chang Gung Memorial Hospital at Kaohsiung, Kaohsiung, Taiwan
| | - Te-Kau Chang
- Division of Pediatric Hematology and Oncology, China Medical University Children's Hospital, Taichung, Taiwan
| | - Hsiu-Ju Yen
- Department of Pediatrics, Taipei Veterans General Hospital and School of Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| | - Fang-Liang Huang
- Department of Pediatrics, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Pei-Chin Lin
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Jen-Yin Hou
- Department of Hematology-Oncology, MacKay Children's Hospital and MacKay Medical College, Taipei, Taiwan
| | - Jiunn-Ming Sheen
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Pediatrics, Chang Gung Memorial Hospital at Kaohsiung, Kaohsiung, Taiwan
- Department of Pediatrics, Chang Gung Memorial Hospital at Chiayi, Chiayi, Taiwan
| | - Yu-Mei Liao
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Tsung-Yen Chang
- Department of Hematology-Oncology, Chang Gung Children's Hospital at Linkou, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Chieh Chen
- Department of Pediatrics, Chang Gung Memorial Hospital at Kaohsiung, Kaohsiung, Taiwan
| | - Shyh-Shin Chiou
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chao-Ping Yang
- Department of Hematology-Oncology, Chang Gung Children's Hospital at Linkou, Taoyuan, Taiwan
| | - Ching-Hon Pui
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
- University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Der-Cherng Liang
- Department of Hematology-Oncology, MacKay Children's Hospital and MacKay Medical College, Taipei, Taiwan
| | - Lee-Yung Shih
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
6
|
Chou SW, Su YH, Lu MY, Chang HH, Yang YL, Lin DT, Lin KH, Coustan-Smith E, Jou ST. High frequency of heat shock protein 27 overexpression is a highly effective, high-coverage marker for minimal residual disease detection in children with B-cell acute lymphoblastic leukemia. Pediatr Blood Cancer 2023; 70:e29990. [PMID: 36250996 DOI: 10.1002/pbc.29990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND Acute lymphoblastic leukemia (ALL) is the most common pediatric cancer. Minimal residual disease (MRD) detection is the most powerful prognostic tool for monitoring treatment efficacy and predicting clinical outcomes. We aimed to identify key leukemia-associated markers, the proportions of differential expression in patients, and the most effective marker combination for MRD detection by flow cytometry. METHODS Bone marrow samples were collected from 132 pediatric patients with newly diagnosed (n = 115) or relapsed (n = 17) B-cell precursor (BCP)-ALL. We used CD19, CD10, CD34, CD45 as backbone markers to identify immature B cells and analyzed the differential expression of 18 leukemia-associated markers using seven-color multiparameter flow cytometry. RESULTS Leukemic cells in all 132 patients expressed leukemia-associated markers. The most commonly overexpressed marker was heat shock protein 27 (Hsp27) (108 patients, 81%), followed by CD73 (102 patients, 77%) and CD123 (80 patients, 60%). CD38 was underexpressed in 64 patients (48%). Hsp27 overexpression persisted in 50 out of 57 follow-up MRD bone marrow samples (87%) and was associated with older age at diagnosis. Hsp27 overexpression was not associated with MRD levels or genetic abnormalities including hyperdiploidy, t(12;21)/ETV6-RUNX1, t(1;19)/TCF3-PBX1, t(9;22)/BCR-ABL1, or 11q23/KMT2A rearrangements. Four remaining leukemia-associated markers (Hsp27, CD73, CD58, CD24) after in silico deletion from the original panel could collectively detect leukemia-associated cell profiles in 100% of cases in this cohort and 98% of cases in a validation cohort. CONCLUSION Hsp27 combined with CD73, CD58, CD24, and backbone markers allows monitoring MRD in virtually all patients with BCP-ALL.
Collapse
Affiliation(s)
- Shu-Wei Chou
- Department of Pediatrics, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ying-Hui Su
- Department of Pediatrics, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Laboratory Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Meng-Yao Lu
- Department of Pediatrics, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hsiu-Hao Chang
- Department of Pediatrics, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yung-Li Yang
- Department of Pediatrics, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Laboratory Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Dong-Tsamn Lin
- Department of Pediatrics, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Laboratory Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Kai-Hsin Lin
- Department of Pediatrics, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Elaine Coustan-Smith
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Shiann-Tarng Jou
- Department of Pediatrics, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
7
|
Mikhailova E, Illarionova O, Komkov A, Zerkalenkova E, Mamedov I, Shelikhova L, Olshanskaya Y, Miakova N, Novichkova G, Karachunskiy A, Maschan M, Popov A. Reliable Flow-Cytometric Approach for Minimal Residual Disease Monitoring in Patients with B-Cell Precursor Acute Lymphoblastic Leukemia after CD19-Targeted Therapy. Cancers (Basel) 2022; 14:5445. [PMID: 36358863 PMCID: PMC9658935 DOI: 10.3390/cancers14215445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/26/2022] [Accepted: 11/03/2022] [Indexed: 09/10/2023] Open
Abstract
We aimed to develop an antibody panel and data analysis algorithm for multicolor flow cytometry (MFC), which is a reliable method for minimal residual disease (MRD) detection in patients with B-cell precursor acute lymphoblastic leukemia (BCP-ALL) treated with CD19-directed therapy. The development of the approach, which was adapted for the case of possible CD19 loss, was based on the additional B-lineage marker expression data obtained from a study of primary BCP-ALL patients, an analysis of the immunophenotypic changes that occur during blinatumomab or CAR-T therapy, and an analysis of very early CD19-negative normal BCPs. We have developed a single-tube 11-color panel for MFC-MRD detection. CD22- and iCD79a-based primary B-lineage gating (preferably consecutive) was recommended. Based on patterns of antigen expression changes and the relative expansion of normal CD19-negative BCPs, guidelines for MFC data analysis and interpretation were established. The suggested approach was tested in comparison with the molecular techniques: IG/TR gene rearrangement detection by next-generation sequencing (NGS) and RQ-PCR for fusion-gene transcripts (FGTs). Qualitative concordance rates of 82.8% and 89.8% were obtained for NGS-MRD and FGT-MRD results, respectively. We have developed a sensitive and reliable approach that allows MFC-MRD monitoring after CD19-directed treatment, even in the case of possible CD19 loss.
Collapse
Affiliation(s)
- Ekaterina Mikhailova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117998 Moscow, Russia
| | - Olga Illarionova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117998 Moscow, Russia
| | - Alexander Komkov
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117998 Moscow, Russia
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117998 Moscow, Russia
| | - Elena Zerkalenkova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117998 Moscow, Russia
| | - Ilgar Mamedov
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117998 Moscow, Russia
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117998 Moscow, Russia
| | - Larisa Shelikhova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117998 Moscow, Russia
| | - Yulia Olshanskaya
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117998 Moscow, Russia
| | - Natalia Miakova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117998 Moscow, Russia
| | - Galina Novichkova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117998 Moscow, Russia
| | - Alexander Karachunskiy
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117998 Moscow, Russia
| | - Michael Maschan
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117998 Moscow, Russia
| | - Alexander Popov
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117998 Moscow, Russia
| |
Collapse
|
8
|
Popov A, Tsaur G, Verzhbitskaya T, Riger T, Permikin Z, Demina A, Mikhailova E, Shorikov E, Arakaev O, Streneva O, Khlebnikova O, Makarova O, Miakova N, Fominikh V, Boichenko E, Kondratchik K, Ponomareva N, Novichkova G, Karachunskiy A, Fechina L. Comparison of minimal residual disease measurement by multicolour flow cytometry and PCR for fusion gene transcripts in infants with acute lymphoblastic leukaemia with KMT2A gene rearrangements. Br J Haematol 2021; 201:510-519. [PMID: 34970734 DOI: 10.1111/bjh.18021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/14/2021] [Indexed: 12/15/2022]
Abstract
This study aimed to evaluate the concordance between minimal residual disease (MRD) results obtained by multicolour flow cytometry (MFC) and polymerase chain reaction for fusion gene transcripts (FGTs) in infants with acute lymphoblastic leukaemia (ALL) associated with rearrangement of the KMT2A gene (KMT2A-r). A total of 942 bone marrow (BM) samples from 123 infants were studied for MFC-MRD and FGT-MRD. In total, 383 samples (40.7%) were concordantly MRD-negative. MRD was detected by the two methods in 441 cases (46.8%); 99 samples (10.5%) were only FGT-MRD-positive and 19 (2.0%) were only MFC-MRD-positive. A final concordance rate of 87.4% was established. Most discordance occurred if residual leukaemia was present at levels close to the sensitivity limits. Neither the type of KMT2A fusion nor a new type of treatment hampering MFC methodology had an influence on the concordance rate. The prognostic value of MFC-MRD and FGT-MRD differed. MFC-MRD was able to identify a rapid response at early time-points, whereas FGT-MRD was a reliable relapse predictor at later treatment stages. Additionally, the most precise risk definition was obtained when combining the two methods. Because of the high comparability in results, these two rather simple and inexpensive approaches could be good options of high clinical value.
Collapse
Affiliation(s)
- Alexander Popov
- National Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Grigory Tsaur
- Regional Children's Hospital, Ekaterinburg, Russian Federation.,Research Institute of Medical Cell Technologies, Ekaterinburg, Russian Federation.,Ural State Medical University, Ekaterinburg, Russian Federation
| | - Tatiana Verzhbitskaya
- Regional Children's Hospital, Ekaterinburg, Russian Federation.,Research Institute of Medical Cell Technologies, Ekaterinburg, Russian Federation
| | - Tatiana Riger
- Regional Children's Hospital, Ekaterinburg, Russian Federation
| | - Zhan Permikin
- Regional Children's Hospital, Ekaterinburg, Russian Federation.,Ural State Medical University, Ekaterinburg, Russian Federation
| | - Anna Demina
- Regional Children's Hospital, Ekaterinburg, Russian Federation.,Research Institute of Medical Cell Technologies, Ekaterinburg, Russian Federation
| | - Ekaterina Mikhailova
- National Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Egor Shorikov
- PET-Technology Center of Nuclear Medicine, Ekaterinburg, Russian Federation
| | - Oleg Arakaev
- Regional Children's Hospital, Ekaterinburg, Russian Federation
| | - Olga Streneva
- Regional Children's Hospital, Ekaterinburg, Russian Federation.,Research Institute of Medical Cell Technologies, Ekaterinburg, Russian Federation
| | | | - Olga Makarova
- Regional Children's Hospital, Ekaterinburg, Russian Federation
| | - Natalia Miakova
- National Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Veronika Fominikh
- National Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Elmira Boichenko
- City Children's Hospital №1, Saint-Petersburg, Russian Federation
| | | | | | - Galina Novichkova
- National Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Alexander Karachunskiy
- National Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Larisa Fechina
- Regional Children's Hospital, Ekaterinburg, Russian Federation.,Research Institute of Medical Cell Technologies, Ekaterinburg, Russian Federation
| |
Collapse
|
9
|
Chen M, Fu M, Wang A, Wu X, Zhen J, Gong M, Zhang X, Yue G, Du Q, Zhao W, Zhao Y, Lu P, Wang H. Cytoplasmic CD79a is a promising biomarker for B lymphoblastic leukemia follow up post CD19 CAR-T therapy. Leuk Lymphoma 2021; 63:426-434. [PMID: 34672246 DOI: 10.1080/10428194.2021.1980214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Minimal residual disease (MRD) detection is an important prognostic parameter in patients with refractory or relapsed B-cell acute lymphoblastic leukemia (R/R B-ALL). CD79a has been reported to exhibit a high degree of linage-specificity for B-cell differentiation, with a specificity of 88% and a sensitivity of 100%. In this study, we investigated the efficiency and prognostic role of cytoplasmic CD79a (cCD79a) antibody-gated multicolor flow cytometry (MFC) in MRD detection in patients with B-ALL who received CD19-targeted chimeric antigen receptor (CAR) T-cell therapy bridging to allogeneic hematopoietic stem cell transplantation (allo-HSCT). The retrospective analysis was carried on to 59 patients who accepted allo-HSCT after CD19-CAR-T infusion from June 2016 to May 2017. The MFC MRD statuses before and after allo-HSCT were both strongly correlated with the transplantation prognosis, the MFC panel with cCD79a gating can effectively monitor MRD after CD19 CAR T-cell therapy and predict the prognosis after allo-HSCT. Trial registration: ClinicalTrials#: ChiCTR-IIh-16008711.gov: NCT03173417. Registered 30 May 2017 - retrospectively registered, https://www.clinicaltrials.gov/.
Collapse
Affiliation(s)
- Man Chen
- Department of Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Minjing Fu
- Department of Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Aixian Wang
- Department of Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Xueying Wu
- Department of Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Junyi Zhen
- Department of Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Meiwei Gong
- Department of Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Xian Zhang
- Department of Haematology, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Guanlan Yue
- Department of Stem Cell Transplantation, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Qing Du
- Department of Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Wei Zhao
- Department of Stem Cell Transplantation, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Yanli Zhao
- Department of Stem Cell Transplantation, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Peihua Lu
- Department of Stem Cell Transplantation, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Hui Wang
- Department of Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, China
| |
Collapse
|
10
|
Outcome of young adult patients with very-high-risk acute lymphoblastic leukemia treated with pediatric-type chemotherapy - a single institute experience. J Formos Med Assoc 2021; 121:694-702. [PMID: 34340890 DOI: 10.1016/j.jfma.2021.07.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/27/2021] [Accepted: 07/15/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND/PURPOSE Adult patients of acute lymphoblastic leukemia (ALL) with very high-risk (VHR) characteristics have an inferior outcome, and allogeneic hematopoietic stem cell transplantation (HSCT) is usually performed. In contrast, VHR pediatric patients can be treated effectively with minimal residual disease (MRD)-guided pediatric protocols and HSCT are not always needed. METHODS We retrospectively reviewed young adult ALL VHR patients treated with the pediatric-type (TPOG-ALL-2002 VHR) regimen in our institute from 2008 to 2019 and compared the event-free survival (EFS) with patients treated with an adult-type regimen (Hyper-CVAD alternating with high dose methotrexate and cytarabine). RESULTS We identified 16 patients treated with the TPOG and 11 treated with the Hyper-CVAD regimen. Philadelphia chromosome-positive (n = 10) and T-cell immunophenotype (n = 11) are the most common VHR features. Compared with the Hyper-CVAD group, patients treated with the TPOG regimen showed a trend toward better EFS with a hazard ratio (HR) of 0.42 (p = 0.16). Compared with untransplanted patients, HSCT showed a positive trend in the Hyper-CVAD (HR 0.22, p = 0.12) but not in the TPOG group (p = 0.37). Untransplanted patients treated initially with the hyper-CVAD regimen had a significantly worse outcome than the TPOG regimen (HR 4.19, p < 0.05). In the TPOG group, patients with negative MRD at the end of consolidation had a significantly better outcome (HR 0.12, p = 0.03). CONCLUSION Young adult VHR patients can be effectively treated with the TPOG-ALL-2002 protocol, and those who achieved MRD negativity before the end of consolidation have a good outcome without allogeneic HSCT.
Collapse
|
11
|
Huang YJ, Kuo MC, Jaing TH, Liu HC, Yeh TC, Chen SH, Lin TL, Yang CP, Wang PN, Sheen JM, Chang TK, Chang CH, Hu SF, Huang TY, Wang SC, Wu KH, Chiou SS, Hsiao CC, Shih LY. Comparison of Two Quantitative PCR-Based Assays for Detection of Minimal Residual Disease in B-Precursor Acute Lymphoblastic Leukemia Harboring Three Major Fusion Transcripts. J Mol Diagn 2021; 23:1373-1379. [PMID: 34325057 DOI: 10.1016/j.jmoldx.2021.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/17/2021] [Accepted: 07/13/2021] [Indexed: 11/18/2022] Open
Abstract
Two quantitative PCR (qPCR)-based methods, for clonal Ig or T-cell receptor gene (Ig/TCR) rearrangements and for fusion transcripts, are widely used for the measurement of minimal residual disease (MRD) in patients with B-precursor acute lymphoblastic leukemia (ALL). MRD of bone marrow samples from 165 patients carrying the three major fusion transcripts, including 74 BCR-ABL1, 54 ETV6-RUNX1, and 37 TCF3-PBX1, was analyzed by using the two qPCR-based methods. The coefficient correlation of both methods was good for TCF3-PBX1 (R2 = 0.8088) and BCR-ABL1 (R2 = 0.8094) ALL and moderate for ETV6-RUNX1 (R2 = 0.5972). The concordance was perfect for TCF3-PBX1 ALL (97.2%), substantially concordant for ETV6-RUNX1 ALL (87.1%), and only moderate for BCR-ABL1 ALL (70.6%). The discordant MRD, positive for only one method with a difference greater than one log, was found in 4 of 93 samples (4.3%) with ETV6-RUNX1, 31 of 245 samples (12.7%) with BCR-ABL1, and 0 of TCF3-PBX1 ALL. None of the eight nontransplanted patients with BCR-ABL1-MRD (+)/Ig/TCR-MRD (-) with a median follow-up time of 73.5 months had hematologic relapses. Our study showed an excellent MRD concordance between the two qPCR-based methods in TCF3-PBX1 ALL, whereas qPCR for Ig/TCR is more reliable in BCR-ABL1 ALL.
Collapse
Affiliation(s)
- Ying-Jung Huang
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Ming-Chung Kuo
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tang-Her Jaing
- College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Hematology-Oncology, Chang Gung Children's Hospital at Linkou, Taoyuan, Taiwan
| | - Hsi-Che Liu
- Department of Hematology-Oncology, Mackay Children's Hospital and Mackay Medical College, Taipei, Taiwan
| | - Ting-Chi Yeh
- Department of Hematology-Oncology, Mackay Children's Hospital and Mackay Medical College, Taipei, Taiwan
| | - Shih-Hsiang Chen
- College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Hematology-Oncology, Chang Gung Children's Hospital at Linkou, Taoyuan, Taiwan
| | - Tung-Liang Lin
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chao-Ping Yang
- Department of Hematology-Oncology, Chang Gung Children's Hospital at Linkou, Taoyuan, Taiwan
| | - Po-Nan Wang
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Jiunn-Ming Sheen
- College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Pediatrics, Chang Gung Memorial Hospital at Kaohsiung, Kaohsiung, Taiwan; Department of Pediatrics, Chang Gung Memorial Hospital at Chiayi, Chiayi, Taiwan
| | - Te-Kau Chang
- Division of Pediatric Hematology and Oncology, China Medical University Children's Hospital, Taichung, Taiwan
| | - Chia-Hui Chang
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Shu-Fen Hu
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Ting-Yu Huang
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Shih-Chung Wang
- Division of Pediatric Hematology-Oncology, Changhua Christian Children's Hospital, Changhua, Taiwan
| | - Kang-Hsi Wu
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shyh-Shin Chiou
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chih-Cheng Hsiao
- College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Pediatrics, Chang Gung Memorial Hospital at Kaohsiung, Kaohsiung, Taiwan
| | - Lee-Yung Shih
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
12
|
Huang Q, Zhong J, Gao H, Li K, Liang H. Subgrouping by gene expression profiles to improve relapse risk prediction in paediatric B-precursor acute lymphoblastic leukaemia. Cancer Med 2021; 10:3782-3793. [PMID: 33987975 PMCID: PMC8178509 DOI: 10.1002/cam4.3842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 11/17/2020] [Accepted: 02/22/2021] [Indexed: 11/08/2022] Open
Abstract
Relapsed acute lymphoblastic leukaemia (ALL) remains a prevalent paediatric cancer and one of the most common causes of mortality from malignancy in children. Tailoring the intensity of therapy according to early stratification is a promising strategy but remains a major challenge due to heterogeneity and subtyping difficulty. In this study, we subgroup B-precursor ALL patients by gene expression profiles, using non-negative matrix factorization and minimum description length which unsupervisedly determines the number of subgroups. Within each of the four subgroups, logistic and Cox regression with elastic net regularization are used to build models predicting minimal residual disease (MRD) and relapse-free survival (RFS) respectively. Measured by area under the receiver operating characteristic curve (AUC), subgrouping improves prediction of MRD in one subgroup which mostly overlaps with subtype TCF3-PBX1 (AUC = 0·986 in the training set and 1·0 in the test set), compared to a global model published previously. The models predicting RFS displayed acceptable concordance in training set and discriminate high-relapse-risk patients in three subgroups of the test set (Wilcoxon test p = 0·048, 0·036, and 0·016). Genes playing roles in the models are specific to different subgroups. The improvement of subgrouped MRD prediction and the differences of genes in prediction models of subgroups suggest that the heterogeneity of B-precursor ALL can be handled by subgrouping according to gene expression profiles to improve the prediction accuracy.
Collapse
Affiliation(s)
- Qingsheng Huang
- School of Mathematics and Statistics, Hanshan Normal University, Chaozhou, China.,Institute of Paediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Jiayong Zhong
- Institute of Paediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China.,State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Huan Gao
- Institute of Paediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Kuanrong Li
- Institute of Paediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Huiying Liang
- Clinical Data Center, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
13
|
Kruse A, Abdel-Azim N, Kim HN, Ruan Y, Phan V, Ogana H, Wang W, Lee R, Gang EJ, Khazal S, Kim YM. Minimal Residual Disease Detection in Acute Lymphoblastic Leukemia. Int J Mol Sci 2020; 21:E1054. [PMID: 32033444 PMCID: PMC7037356 DOI: 10.3390/ijms21031054] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/30/2020] [Accepted: 02/03/2020] [Indexed: 02/04/2023] Open
Abstract
Minimal residual disease (MRD) refers to a chemotherapy/radiotherapy-surviving leukemia cell population that gives rise to relapse of the disease. The detection of MRD is critical for predicting the outcome and for selecting the intensity of further treatment strategies. The development of various new diagnostic platforms, including next-generation sequencing (NGS), has introduced significant advances in the sensitivity of MRD diagnostics. Here, we review current methods to diagnose MRD through phenotypic marker patterns or differential gene patterns through analysis by flow cytometry (FCM), polymerase chain reaction (PCR), real-time quantitative polymerase chain reaction (RQ-PCR), reverse transcription polymerase chain reaction (RT-PCR) or NGS. Future advances in clinical procedures will be molded by practical feasibility and patient needs regarding greater diagnostic sensitivity.
Collapse
Affiliation(s)
- Aaron Kruse
- Children’s Hospital Los Angeles, University of Southern California, 4650 Sunset Boulevard, MS #57, Los Angeles, CA 90027, USA; (A.K.); (N.A.-A.); (H.N.K.); (Y.R.); (V.P.); (H.O.); (W.W.); (R.L.); (E.J.G.)
| | - Nour Abdel-Azim
- Children’s Hospital Los Angeles, University of Southern California, 4650 Sunset Boulevard, MS #57, Los Angeles, CA 90027, USA; (A.K.); (N.A.-A.); (H.N.K.); (Y.R.); (V.P.); (H.O.); (W.W.); (R.L.); (E.J.G.)
| | - Hye Na Kim
- Children’s Hospital Los Angeles, University of Southern California, 4650 Sunset Boulevard, MS #57, Los Angeles, CA 90027, USA; (A.K.); (N.A.-A.); (H.N.K.); (Y.R.); (V.P.); (H.O.); (W.W.); (R.L.); (E.J.G.)
| | - Yongsheng Ruan
- Children’s Hospital Los Angeles, University of Southern California, 4650 Sunset Boulevard, MS #57, Los Angeles, CA 90027, USA; (A.K.); (N.A.-A.); (H.N.K.); (Y.R.); (V.P.); (H.O.); (W.W.); (R.L.); (E.J.G.)
| | - Valerie Phan
- Children’s Hospital Los Angeles, University of Southern California, 4650 Sunset Boulevard, MS #57, Los Angeles, CA 90027, USA; (A.K.); (N.A.-A.); (H.N.K.); (Y.R.); (V.P.); (H.O.); (W.W.); (R.L.); (E.J.G.)
| | - Heather Ogana
- Children’s Hospital Los Angeles, University of Southern California, 4650 Sunset Boulevard, MS #57, Los Angeles, CA 90027, USA; (A.K.); (N.A.-A.); (H.N.K.); (Y.R.); (V.P.); (H.O.); (W.W.); (R.L.); (E.J.G.)
| | - William Wang
- Children’s Hospital Los Angeles, University of Southern California, 4650 Sunset Boulevard, MS #57, Los Angeles, CA 90027, USA; (A.K.); (N.A.-A.); (H.N.K.); (Y.R.); (V.P.); (H.O.); (W.W.); (R.L.); (E.J.G.)
| | - Rachel Lee
- Children’s Hospital Los Angeles, University of Southern California, 4650 Sunset Boulevard, MS #57, Los Angeles, CA 90027, USA; (A.K.); (N.A.-A.); (H.N.K.); (Y.R.); (V.P.); (H.O.); (W.W.); (R.L.); (E.J.G.)
| | - Eun Ji Gang
- Children’s Hospital Los Angeles, University of Southern California, 4650 Sunset Boulevard, MS #57, Los Angeles, CA 90027, USA; (A.K.); (N.A.-A.); (H.N.K.); (Y.R.); (V.P.); (H.O.); (W.W.); (R.L.); (E.J.G.)
| | - Sajad Khazal
- Department of Pediatrics Patient Care, Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Yong-Mi Kim
- Children’s Hospital Los Angeles, University of Southern California, 4650 Sunset Boulevard, MS #57, Los Angeles, CA 90027, USA; (A.K.); (N.A.-A.); (H.N.K.); (Y.R.); (V.P.); (H.O.); (W.W.); (R.L.); (E.J.G.)
| |
Collapse
|
14
|
Citalan-Madrid AF, Cabral-Pacheco GA, Martinez-de-Villarreal LE, Villarreal-Martinez L, Ibarra-Ramirez M, Garza-Veloz I, Cardenas-Vargas E, Marino-Martinez I, Martinez-Fierro ML. Proteomic tools and new insights for the study of B-cell precursor acute lymphoblastic leukemia. ACTA ACUST UNITED AC 2019; 24:637-650. [PMID: 31514680 DOI: 10.1080/16078454.2019.1664127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is a hematological malignancy of immature B-cell precursors, affecting children more often than adults. The etiology of BCP-ALL is still unknown, but environmental factors, sex, race or ethnicity, and genomic alterations influence the development of the disease. Tools based on protein detection, such as flow cytometry, mass spectrometry, mass cytometry and reverse phase protein array, represent an opportunity to investigate BCP-ALL pathogenesis and to identify new biomarkers of disease. This review aims to document the recent advancements with respect to applications of proteomic technologies to study mechanisms of leukemogenesis, how this information could be used in the discovery of biological targets, and finally we describe the challenges of application of proteomic tools for the approach of BCP-ALL.
Collapse
Affiliation(s)
- Alí F Citalan-Madrid
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Zacatecas Autonomous University , Zacatecas , Mexico
| | - Griselda A Cabral-Pacheco
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Zacatecas Autonomous University , Zacatecas , Mexico.,Program of Doctorate in Sciences with Orientation in Molecular Medicine, Academic Unit of Human Medicine and Health Sciences, Zacatecas Autonomous University , Zacatecas , Mexico
| | | | - Laura Villarreal-Martinez
- Hematology Service, Hospital Universitario 'Dr. José Eleuterio González', Universidad Autonoma de Nuevo Leon , Monterrey , Mexico
| | - Marisol Ibarra-Ramirez
- Departamento de Genetica, Facultad de Medicina, Universidad Autónoma de Nuevo Leon , Monterrey , Mexico
| | - Idalia Garza-Veloz
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Zacatecas Autonomous University , Zacatecas , Mexico.,Program of Doctorate in Sciences with Orientation in Molecular Medicine, Academic Unit of Human Medicine and Health Sciences, Zacatecas Autonomous University , Zacatecas , Mexico
| | - Edith Cardenas-Vargas
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Zacatecas Autonomous University , Zacatecas , Mexico.,Program of Doctorate in Sciences with Orientation in Molecular Medicine, Academic Unit of Human Medicine and Health Sciences, Zacatecas Autonomous University , Zacatecas , Mexico.,Hospital General Zacatecas 'Luz González Cosío' , Zacatecas , Mexico
| | - Ivan Marino-Martinez
- Departamento de Patologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon , Monterrey , Mexico
| | - Margarita L Martinez-Fierro
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Zacatecas Autonomous University , Zacatecas , Mexico.,Program of Doctorate in Sciences with Orientation in Molecular Medicine, Academic Unit of Human Medicine and Health Sciences, Zacatecas Autonomous University , Zacatecas , Mexico
| |
Collapse
|
15
|
Gökbuget N, Dombret H, Giebel S, Bruggemann M, Doubek M, Foà R, Hoelzer D, Kim C, Martinelli G, Parovichnikova E, Rambaldi A, Ribera JM, Schoonen M, Stieglmaier JM, Zugmaier G, Bassan R. Minimal residual disease level predicts outcome in adults with Ph-negative B-precursor acute lymphoblastic leukemia. ACTA ACUST UNITED AC 2019; 24:337-348. [PMID: 30757960 DOI: 10.1080/16078454.2019.1567654] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVES Detectable minimal residual disease (MRD) after therapy for acute lymphoblastic leukemia (ALL) is the strongest predictor of hematologic relapse. This study evaluated outcomes of patients with B-cell precursor ALL with MRD of ≥10-4 Methods: Study population was from ALL study groups in Europe managed in national study protocols 2000-2014. MRD was measured by polymerase chain reaction or flow cytometry. Patients were age ≥15 years at initial ALL diagnosis. Patients were excluded if exposed to blinatumomab within 18 months of baseline or prior alloHSCT. RESULTS Of 272 patients in CR1, baseline MRD was ≥10-1, 10-2 to <10-1, 10-3 to <10-2, and 10-4 to <10-3 in 15 (6%), 71 (26%), 109 (40%), and 77 (28%) patients, respectively. Median duration of complete remission (DoR) was 18.5 months (95% confidence interval [CI], 11.9-27.2), median relapse-free survival (RFS) was 12.4 months (95% CI, 10.0-19.0) and median overall survival (OS) was 32.5 months (95% CI, 23.6-48.0). Lower baseline MRD level (P ≤ .0003) and white blood cell count <30,000/µL at diagnosis (P ≤ .0053) were strong predictors for better RFS and DoR. Allogeneic hematopoietic stem cell transplantation (alloHSCT) was associated with longer RFS (hazard ratio [HR], 0.59; 95% CI, 0.41-0.84) and DoR (HR, 0.43; 95% CI, 0.29-0.64); the association with OS was not significant (HR, 0.72; 95% CI, 0.50-1.05). DISCUSSION In conclusion, RFS, DoR, and OS are relatively short in patients with MRD-positive ALL, particularly at higher MRD levels. AlloHSCT may improve survival but has limitations. Alternative approaches are needed to improve outcomes in MRD-positive ALL.
Collapse
Affiliation(s)
- Nicola Gökbuget
- a Department of Medicine II, Department of Hematology/Oncology , University Hospital , Frankfurt , Germany
| | - Hervé Dombret
- b Hôpital Saint-Louis, University Paris Diderot , Paris , France
| | - Sebastian Giebel
- c Maria Sklodowska Curie Memorial Cancer Center , Gliwice , Poland
| | - Monika Bruggemann
- d Department of Hematology and Oncology , University Hospital Schleswig-Holstein, Campus Kiel , Kiel , Germany
| | - Michael Doubek
- e Department of Internal Medicine, Hematology and Oncology , University Hospital , Brno , Czech Republic
| | - Robin Foà
- f "Sapienza" University of Rome , Rome , Italy
| | - Dieter Hoelzer
- a Department of Medicine II, Department of Hematology/Oncology , University Hospital , Frankfurt , Germany
| | | | - Giovanni Martinelli
- h Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS , Meldola , Italy
| | | | - Alessandro Rambaldi
- j Dipartimento di Oncologia ed Ematologia , Università degli Studi di Milano and Ospedale Papa Giovanni XXIII , Bergamo , Italy
| | - Josep-Maria Ribera
- k ICO-Hospital Germans Trias I Pujol, Josep Carreras Research Institute , Barcelona , Spain
| | | | | | | | | |
Collapse
|
16
|
Fuda F, Chen W. Minimal/Measurable Residual Disease Detection in Acute Leukemias by Multiparameter Flow Cytometry. Curr Hematol Malig Rep 2018; 13:455-466. [DOI: 10.1007/s11899-018-0479-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
17
|
Zhao X, Zhao X, Chen H, Qin Y, Xu L, Zhang X, Liu K, Huang X, Chang YJ. Comparative Analysis of Flow Cytometry and RQ-PCR for the Detection of Minimal Residual Disease in Philadelphia Chromosome–Positive Acute Lymphoblastic Leukemia after Hematopoietic Stem Cell Transplantation. Biol Blood Marrow Transplant 2018; 24:1936-1943. [DOI: 10.1016/j.bbmt.2018.03.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 03/12/2018] [Indexed: 01/01/2023]
|
18
|
Chao HM, Chern E. Patient-derived induced pluripotent stem cells for models of cancer and cancer stem cell research. J Formos Med Assoc 2018; 117:1046-1057. [PMID: 30172452 DOI: 10.1016/j.jfma.2018.06.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 05/28/2018] [Accepted: 06/15/2018] [Indexed: 02/06/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) are embryonic stem cell-like cells reprogrammed from somatic cells by four transcription factors, OCT4, SOX2, KLF4 and c-MYC. iPSCs derived from cancer cells (cancer-iPSCs) could be a novel strategy for studying cancer. During cancer cell reprogramming, the epigenetic status of the cancer cell may be altered, such that it acquires stemness and pluripotency. The cellular behavior of the reprogrammed cells exhibits dynamic changes during the different stages of reprogramming. The cells may acquire the properties of cancer stem cells (CSCs) during the process of reprogramming, and lose their carcinogenic properties during reprogramming into a cancer-iPSCs. Differentiation of cancer-iPSCs by teratoma formation or organoid culturing could mimic the process of tumorigenesis. Some of the molecular mechanisms associated with cancer progression could be elucidated using the cancer-iPSC model. Furthermore, cancer-iPSCs could be expanded in culture system or bioreactors, and serve as cell sources for research, and as personal disease models for therapy and drug screening. This article introduces cancer studies that used the cell reprogramming strategy.
Collapse
Affiliation(s)
- Hsiao-Mei Chao
- niChe Lab for Stem Cell and Regenerative Medicine, Department of Biochemical Science and Technology, National Taiwan University, Taiwan; Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taiwan
| | - Edward Chern
- niChe Lab for Stem Cell and Regenerative Medicine, Department of Biochemical Science and Technology, National Taiwan University, Taiwan.
| |
Collapse
|