1
|
Wang W, Wang Y, Tang F, Liu H, Lee Y, Andrikopoulos S, Lou Q. Low hemoglobin, even within the normal range, is associated with diabetic kidney disease. DIABETES & METABOLISM 2024; 50:101580. [PMID: 39303857 DOI: 10.1016/j.diabet.2024.101580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/22/2024]
Abstract
AIM To investigate the association between hemoglobin (Hb) levels and incident diabetic kidney disease (DKD) in patients with type 2 diabetes. METHODS This retrospective cohort study included 1,657 patients with diabetes, without DKD at baseline, recruited from six clinics affiliated with Lee's United Clinic in Taiwan. Demographic data and laboratory results were collected and analyzed. Participants were stratified into quartiles based on their baseline Hb levels. A subgroup analysis was conducted specifically for patients with normal Hb levels (men: Hb ≥ 120 g/l, women: Hb ≥ 110 g/l). Cox regression analysis assessed the relation between Hb levels and incident DKD, adjusting for relevant covariates. RESULTS Among the initial cohort, 93 (5.6 %) had anemia at baseline. Over an average follow-up period of 5.7 ± 2.6 years, 594 patients (35.8 %) developed DKD. Cox regression analysis revealed that, after adjusting for multiple variables, compared with patients in the highest quartile of baseline Hb levels (Q4: Hb ≥ 154 g/l), the hazard of DKD was 1.6 times higher in the lowest quartile (Q1: Hb ≤ 130 g/l) HR [95 % CI] 1.58 [1.19;2.21] P < 0.001. In patients with normal Hb levels, Cox regression analysis also revealed that compared to the highest quartile (Q'4, Hb ≥ 154 g/l) the hazard of developing DKD was 1.3 times higher in the lowest quartile (Q'1, Hb ≤ 132 g/l) HR [95 % CI ] 1.29 [1.08;1.72] P = 0.042. CONCLUSIONS Lower Hb is associated with incident DKD, even in patients with normal Hb levels, independent of other risk factors.
Collapse
Affiliation(s)
- Wenjun Wang
- The First Affiliated Hospital of Hainan Medical University, Hainan Clinical Research Center for Metabolic Disease, Haikou, 570102, Hainan, China
| | - Yetong Wang
- School of Nursing, Henan University of Science and Technology, Luoyang, 471023, Henan, China
| | - Fangli Tang
- The First Affiliated Hospital of Hainan Medical University, Hainan Clinical Research Center for Metabolic Disease, Haikou, 570102, Hainan, China
| | - Huanhuan Liu
- Department of Endocrinology, Hainan General Hospital, Haikou, 570311 Hainan, China
| | - Yaujiunn Lee
- Lee' s United Clinic, No. 396, Guangdong RD, Pingtung City, Pingtung Country 900, Taiwan
| | | | - Qingqing Lou
- The First Affiliated Hospital of Hainan Medical University, Hainan Clinical Research Center for Metabolic Disease, Haikou, 570102, Hainan, China.
| |
Collapse
|
2
|
Li ZL, Wang B, Wen Y, Wu QL, Lv LL, Liu BC. Disturbance of Hypoxia Response and Its Implications in Kidney Diseases. Antioxid Redox Signal 2022; 37:936-955. [PMID: 35044244 DOI: 10.1089/ars.2021.0271] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: The disturbance of the hypoxia response system is closely related to human diseases, because it is essential for the maintenance of homeostasis. Given the significant role of the hypoxia response system in human health, therapeutic applications targeting prolyl hydroxylase-hypoxia-inducible factor (HIF) signaling have been attempted. Thus, systemically reviewing the hypoxia response-based therapeutic strategies is of great significance. Recent Advances: Disturbance of the hypoxia response is a characteristic feature of various diseases. Targeting the hypoxia response system is, thus, a promising therapeutic strategy. Interestingly, several compounds and drugs are currently under clinical trials, and some have already been approved for use in the treatment of certain human diseases. Critical Issues: We summarize the molecular mechanisms of the hypoxia response system and address the potential therapeutic implications in kidney diseases. Given that the effects of hypoxia response in kidney diseases are likely to depend on the pathological context, specific cell types, and the differences in the activation pattern of HIF isoforms, the precise application is critical for the treatment of kidney diseases. Although HIF-PHIs (HIF-PHD inhibitors) have been proven to be effective and well tolerated in chronic kidney disease patients with anemia, the potential on-target consequence of HIF activation and some outstanding questions warrant further consideration. Future Direction: The mechanism of the hypoxia response system disturbance remains unclear. Elucidation of the molecular mechanism of hypoxia response and its precise effects on kidney diseases warrants clarification. Considering the complexity of the hypoxia response system and multiple biological processes controlled by HIF signaling, the development of more specific inhibitors is highly warranted. Antioxid. Redox Signal. 37, 936-955.
Collapse
Affiliation(s)
- Zuo-Lin Li
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, China
| | - Bin Wang
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, China
| | - Yi Wen
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, China
| | - Qiu-Li Wu
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, China
| | - Lin-Li Lv
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, China
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, China
| |
Collapse
|
3
|
Liu H, Li Y, Xiong J. The Role of Hypoxia-Inducible Factor-1 Alpha in Renal Disease. Molecules 2022; 27:molecules27217318. [PMID: 36364144 PMCID: PMC9657345 DOI: 10.3390/molecules27217318] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 11/24/2022] Open
Abstract
Partial pressure of oxygen (pO2) in the kidney is maintained at a relatively stable level by a unique and complex functional interplay between renal blood flow, glomerular filtration rate (GFR), oxygen consumption, and arteriovenous oxygen shunting. The vulnerability of this interaction renders the kidney vulnerable to hypoxic injury, leading to different renal diseases. Hypoxia has long been recognized as an important factor in the pathogenesis of acute kidney injury (AKI), especially renal ischemia/reperfusion injury. Accumulating evidence suggests that hypoxia also plays an important role in the pathogenesis and progression of chronic kidney disease (CKD) and CKD-related complications, such as anemia, cardiovascular events, and sarcopenia. In addition, renal cancer is linked to the deregulation of hypoxia pathways. Renal cancer utilizes various molecular pathways to respond and adapt to changes in renal oxygenation. Particularly, hypoxia-inducible factor (HIF) (including HIF-1, 2, 3) has been shown to be activated in renal disease and plays a major role in the protective response to hypoxia. HIF-1 is a heterodimer that is composed of an oxygen-regulated HIF-1α subunit and a constitutively expressed HIF-1β subunit. In renal diseases, the critical characteristic of HIF-1α is protective, but it also has a negative effect, such as in sarcopenia. This review summarizes the mechanisms of HIF-1α regulation in renal disease.
Collapse
Affiliation(s)
| | | | - Jing Xiong
- Correspondence: ; Tel.: +86-027-8572-6713
| |
Collapse
|
4
|
Arora EK, Sharma V. Iron metabolism: pathways and proteins in homeostasis. REV INORG CHEM 2022. [DOI: 10.1515/revic-2022-0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Iron is essential to human survival. The biological role and trafficking of this trace essential inorganic element which is also a potential toxin is constantly being researched and unfolded. Vital for oxygen transport, DNA synthesis, electron transport, neurotransmitter biosynthesis and present in numerous other heme and non-heme enzymes the physiological roles are immense. Understanding the molecules and pathways that regulate this essential element at systemic and cellular levels are of importance in improving therapeutic strategies for iron related disorders. This review highlights the progress in understanding the metabolism and trafficking of iron along with the pathophysiology of iron related disorders.
Collapse
Affiliation(s)
- Ekta Kundra Arora
- Chemistry Department, St. Stephen’s College , University of Delhi , Delhi 110007 , India
| | - Vibha Sharma
- Chemistry Department, St. Stephen’s College , University of Delhi , Delhi 110007 , India
| |
Collapse
|
5
|
Wang B, Li ZL, Zhang YL, Wen Y, Gao YM, Liu BC. Hypoxia and chronic kidney disease. EBioMedicine 2022; 77:103942. [PMID: 35290825 PMCID: PMC8921539 DOI: 10.1016/j.ebiom.2022.103942] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/22/2022] [Accepted: 03/01/2022] [Indexed: 12/12/2022] Open
Abstract
Hypoxia is an inherent pathophysiological characteristic of chronic kidney disease (CKD), which is closely associated with the development of renal inflammation and fibrosis, as well as CKD-related complications such as anaemia, cardiovascular events, and sarcopenia. This review outlined the characteristics of oxygen supply in the kidney, changes in oxygen metabolism and factors leading to hypoxia in CKD. Mechanistically, we discussed how hypoxia contributes to renal injury as well as complications associated with CKD. Furthermore, we also discussed the potential therapeutic approaches that target chronic hypoxia, as well as the challenges in the study of oxygen homeostasis imbalance in CKD.
Collapse
Affiliation(s)
- Bin Wang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Zuo-Lin Li
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Yi-Lin Zhang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Yi Wen
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Yue-Ming Gao
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
6
|
Hypoxia-Inducible Factors and Burn-Associated Acute Kidney Injury-A New Paradigm? Int J Mol Sci 2022; 23:ijms23052470. [PMID: 35269613 PMCID: PMC8910144 DOI: 10.3390/ijms23052470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 12/10/2022] Open
Abstract
O2 deprivation induces stress in living cells linked to free-radical accumulation and oxidative stress (OS) development. Hypoxia is established when the overall oxygen pressure is less than 40 mmHg in cells or tissues. However, tissues and cells have different degrees of hypoxia. Hypoxia or low O2 tension may be present in both physiological (during embryonic development) and pathological circumstances (ischemia, wound healing, and cancer). Meanwhile, the kidneys are major energy-consuming organs, being second only to the heart, with an increased mitochondrial content and O2 consumption. Furthermore, hypoxia-inducible factors (HIFs) are the key players that orchestrate the mammalian response to hypoxia. HIFs adapt cells to low oxygen concentrations by regulating transcriptional programs involved in erythropoiesis, angiogenesis, and metabolism. On the other hand, one of the life-threatening complications of severe burns is acute kidney injury (AKI). The dreaded functional consequence of AKI is an acute decline in renal function. Taking all these aspects into consideration, the aim of this review is to describe the role and underline the importance of HIFs in the development of AKI in patients with severe burns, because kidney hypoxia is constant in the presence of severe burns, and HIFs are major players in the adaptative response of all tissues to hypoxia.
Collapse
|
7
|
Shih HM, Pan SY, Wu CJ, Chou YH, Chen CY, Chang FC, Chen YT, Chiang WC, Tsai HC, Chen YM, Lin SL. Transforming growth factor-β1 decreases erythropoietin production through repressing hypoxia-inducible factor 2α in erythropoietin-producing cells. J Biomed Sci 2021; 28:73. [PMID: 34724959 PMCID: PMC8561873 DOI: 10.1186/s12929-021-00770-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/26/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Renal erythropoietin (EPO)-producing (REP) cells produce EPO through hypoxia-inducible factor (HIF) 2α-activated gene transcription. Insufficient EPO production leads to anemia in patients with chronic kidney disease. Although recombinant EPO is effective to improve anemia, no reliable REP cell lines limit further progress of research and development of novel treatment. METHODS We screened Epo mRNA expression in mouse fibroblast cell lines. Small interfering RNA specific for HIF1α or HIF2α was transfected to study Epo expression in C3H10T1/2 cells. The effect of transforming growth factor-β1 (TGF-β1) on HIF-EPO axis was studied in C3H10T1/2 cells and mice. RESULTS Similar to mouse REP pericytes, C3H10T1/2 cells differentiated to α-smooth muscle actin+ myofibroblasts after exposure to TGF-β1. Specific HIF knockdown demonstrated the role of HIF2α in hypoxia-induced Epo expression. Sustained TGF-β1 exposure increased neither DNA methyltransferase nor methylation of Epas1 and Epo genes. However, TGF-β1 repressed HIF2α-encoding Epas1 promptly through activating activin receptor-like kinase-5 (ALK5), thereby decreasing Epo induction by hypoxia and prolyl hydroxylase domain inhibitor roxadustat. In mice with pro-fibrotic injury induced by ureteral obstruction, upregulation of Tgfb1 was accompanied with downregulation of Epas1 and Epo in injured kidneys and myofibroblasts, which were reversed by ALK5 inhibitor SB431542. CONCLUSION C3H10T1/2 cells possessed the property of HIF2α-dependent Epo expression in REP pericytes. TGF-β1 induced not only the transition to myofibroblasts but also a repressive effect on Epas1-Epo axis in C3H10T1/2 cells. The repressive effect of TGF-β1 on Epas1-Epo axis was confirmed in REP pericytes in vivo. Inhibition of TGF-β1-ALK5 signaling might provide a novel treatment to rescue EPO expression in REP pericytes of injured kidney.
Collapse
Affiliation(s)
- Hong-Mou Shih
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, No. 1, Jen-Ai Road Section 1, Taipei, 100, Taiwan.,Division of Nephrology, Department of Internal Medicine, Mackay Memorial Hospital, Taipei, Taiwan
| | - Szu-Yu Pan
- Department of Integrated Diagnostics and Therapeutics, National Taiwan University Hospital, Taipei, Taiwan.,Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Division of Nephrology, Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Chih-Jen Wu
- Division of Nephrology, Department of Internal Medicine, Mackay Memorial Hospital, Taipei, Taiwan.,Department of Medicine, Mackay Medical College, Taipei, Taiwan.,Department of Pharmacology, Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Hsiang Chou
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital Jin-Shan Branch, New Taipei City, Taiwan
| | - Chun-Yuan Chen
- School of Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Fan-Chi Chang
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Ting Chen
- Department of Integrated Diagnostics and Therapeutics, National Taiwan University Hospital, Taipei, Taiwan.,Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital Jin-Shan Branch, New Taipei City, Taiwan
| | - Wen-Chih Chiang
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsing-Chen Tsai
- Division of Chest Medicine, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yung-Ming Chen
- Department of Integrated Diagnostics and Therapeutics, National Taiwan University Hospital, Taipei, Taiwan
| | - Shuei-Liong Lin
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, No. 1, Jen-Ai Road Section 1, Taipei, 100, Taiwan. .,Department of Integrated Diagnostics and Therapeutics, National Taiwan University Hospital, Taipei, Taiwan. .,Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan. .,Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
8
|
Xie D, Wang J, Hu G, Chen C, Yang H, Ritter JK, Qu Y, Li N. Kidney-Targeted Delivery of Prolyl Hydroxylase Domain Protein 2 Small Interfering RNA with Nanoparticles Alleviated Renal Ischemia/Reperfusion Injury. J Pharmacol Exp Ther 2021; 378:235-243. [PMID: 34103333 PMCID: PMC11047054 DOI: 10.1124/jpet.121.000667] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/03/2021] [Indexed: 12/15/2022] Open
Abstract
Inhibition of hypoxia-inducible factor-prolyl hydroxylase (PHD) has been shown to protect against various kidney diseases. However, there are controversial reports on the effect of PHD inhibition in renoprotection. The present study determined whether delivery of PHD2 small interfering RNA (siRNA) using an siRNA carrier, folic acid (FA)-decorated polyamidoamine dendrimer generation 5 (G5-FA), would mainly target kidneys and protect against renal ischemia/reperfusion injury (I/R). The renal I/R was generated by clipping the renal pedicle for 30 minutes in uninephrectomized mice. Mice were sacrificed 48 hours after I/R. Normal saline or G5-FA complexed with control or PHD2 siRNA was injected via tail vein 24 hours before ischemia. After the injection of near-infrared fluorescent dye-labeled G5-FA, the fluorescence was mainly detected in kidneys but not in other organs. The reduction of PHD2 mRNA and protein was only observed in kidneys but not in other organs after injection of PHD2-siRNA-G5-FA complex. The injection of PHD2-siRNA-G5-FA significantly alleviated renal I/R injury, as shown by the inhibition of increases in serum creatinine and blood urea nitrogen, the blockade of increases in kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin, and the improvement of histologic damage compared with mice treated with control siRNA. PHD2 siRNA can be delivered specifically into kidneys using G5-FA, and that local knockdown of PHD2 gene expression within the kidney alleviates renal I/R injury. Therefore, G5-FA is an efficient siRNA carrier to deliver siRNA into the kidney, and that local inhibition of PHD2 within the kidney may be a potential strategy for the management of acute I/R injury. SIGNIFICANCE STATEMENT: Folic acid (FA)-decorated polyamidoamine dendrimer generation 5 (G5-FA) was demonstrated to be an effective carrier to deliver small interfering RNA (siRNA) into kidneys. Delivery of prolyl hydroxylase domain protein 2 siRNA with G5-FA effectively protected the kidneys against the acute renal ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Dengpiao Xie
- Department of Pharmacology & Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia (D.X., G.H., C.C., J.K.R., N.L.); College of Biomedical Engineering, Sichuan University, Chengdu, China (J.W.); Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri (H.Y.); and Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia (Y.Q.)
| | - Juan Wang
- Department of Pharmacology & Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia (D.X., G.H., C.C., J.K.R., N.L.); College of Biomedical Engineering, Sichuan University, Chengdu, China (J.W.); Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri (H.Y.); and Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia (Y.Q.)
| | - Gaizun Hu
- Department of Pharmacology & Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia (D.X., G.H., C.C., J.K.R., N.L.); College of Biomedical Engineering, Sichuan University, Chengdu, China (J.W.); Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri (H.Y.); and Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia (Y.Q.)
| | - Chaoling Chen
- Department of Pharmacology & Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia (D.X., G.H., C.C., J.K.R., N.L.); College of Biomedical Engineering, Sichuan University, Chengdu, China (J.W.); Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri (H.Y.); and Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia (Y.Q.)
| | - Hu Yang
- Department of Pharmacology & Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia (D.X., G.H., C.C., J.K.R., N.L.); College of Biomedical Engineering, Sichuan University, Chengdu, China (J.W.); Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri (H.Y.); and Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia (Y.Q.)
| | - Joseph K Ritter
- Department of Pharmacology & Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia (D.X., G.H., C.C., J.K.R., N.L.); College of Biomedical Engineering, Sichuan University, Chengdu, China (J.W.); Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri (H.Y.); and Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia (Y.Q.)
| | - Yun Qu
- Department of Pharmacology & Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia (D.X., G.H., C.C., J.K.R., N.L.); College of Biomedical Engineering, Sichuan University, Chengdu, China (J.W.); Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri (H.Y.); and Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia (Y.Q.)
| | - Ningjun Li
- Department of Pharmacology & Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia (D.X., G.H., C.C., J.K.R., N.L.); College of Biomedical Engineering, Sichuan University, Chengdu, China (J.W.); Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri (H.Y.); and Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia (Y.Q.)
| |
Collapse
|
9
|
Pan SY, Tsai PZ, Chou YH, Chang YT, Chang FC, Chiu YL, Chiang WC, Hsu T, Chen YM, Chu TS, Lin SL. Kidney pericyte hypoxia-inducible factor regulates erythropoiesis but not kidney fibrosis. Kidney Int 2021; 99:1354-1368. [PMID: 33812664 DOI: 10.1016/j.kint.2021.01.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/03/2021] [Accepted: 01/13/2021] [Indexed: 12/15/2022]
Abstract
Prolyl hydroxylase domain enzyme (PHD) inhibitors are effective in the treatment of chronic kidney disease (CKD)-associated anemia by stabilizing hypoxia inducible factor (HIF), thereby increasing erythropoietin and consequently erythropoiesis. However, concern for CKD progression needs to be addressed in clinical trials. Although pre-clinical studies showed an anti-inflammatory effect in kidney disease models, the effect of PHD inhibitors on kidney fibrosis was inconsistent probably because the effects of HIF are cell type and context dependent. The major kidney erythropoietin-producing cells are pericytes that produce erythropoietin through HIF-2α-dependent gene transcription. The concern for the impact of HIF in pericytes on kidney fibrosis arises from the fact that pericytes are the major precursor cells of myofibroblasts in CKD. Since cells expressing Gli1 fulfill the morphologic and anatomic criteria for pericytes, we induced Gli1+ cell-specific HIF stabilization or knockout to study the impact of HIF in pericytes on kidney pathology of mice with or without fibrotic injury induced by unilateral ureteral obstruction. Compared with the littermate controls, mice with pericyte-specific HIF stabilization due to von Hippel-Lindau protein or PHD2 knockout showed increased serum erythropoietin and polycythemia rather than a discernible difference in kidney fibrosis. Compared with Gli1+ pericytes sorted from littermate controls, Gli1+ pericytes sorted from PHD2 knockout mice showed increased erythropoietin gene expression rather than discernible changes in Col1a1 or Acta2 expression. Furthermore, pericyte-specific knockout of HIF-1α or HIF-2α did not affect kidney fibrosis. Thus, our study supports the absence of negative effects of PHD inhibitors on kidney fibrosis of mice despite HIF stabilization in pericytes.
Collapse
Affiliation(s)
- Szu-Yu Pan
- Division of Nephrology, Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan; Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Pei-Zhen Tsai
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Hsiang Chou
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital Jin-Shan Branch, New Taipei City, Taiwan
| | - Yu-Ting Chang
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Fan-Chi Chang
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yen-Ling Chiu
- Division of Nephrology, Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan; Graduate Program in Biomedical Informatics, Department of Computer Science and Engineering, College of Informatics, Yuan Ze University, Taoyuan, Taiwan; Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wen-Chih Chiang
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Tien Hsu
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City, Taiwan
| | - Yung-Ming Chen
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Tzong-Shinn Chu
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Shuei-Liong Lin
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Integrated Diagnostics and Therapeutics, National Taiwan University Hospital, Taipei, Taiwan; Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|