1
|
Zeinert I, Schmidt L, Baar T, Gatto G, De Giuseppe A, Korb-Pap A, Pap T, Mahabir E, Zaucke F, Brachvogel B, Krüger M, Krieg T, Eckes B. Matrix-mediated activation of murine fibroblast-like synoviocytes. Exp Cell Res 2025; 445:114408. [PMID: 39765309 DOI: 10.1016/j.yexcr.2025.114408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 12/14/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025]
Abstract
Fibroblast-like synoviocytes (FLS) are key cells promoting cartilage damage and bone loss in rheumatoid arthritis (RA). They are activated to assume an invasive and migratory phenotype. While mechanisms of FLS activation are unknown, evidence suggests that pre-damaged extracellular matrix (ECM) of the cartilage can trigger FLS activation. Integrin α11β1 might be involved in the activation, as it is increased in RA patients and hTNFtg mice, an RA mouse model. We treated murine chondrocytes with TNFα to produce a damaged, RA-like matrix. Comparison to healthy chondrocyte matrix revealed decreased ECM proteins, e.g. collagens and proteoglycans, increased matrix-degrading proteins and elevated levels of inflammatory cytokines. FLS responded to the damaged chondrocyte matrix with a matrix-remodeling and pro-inflammatory phenotype characterized by a gene signature involved in matrix degradation and increased production of CLL11 and CCL19. Damaged chondrocyte matrix stimulated increased Itga11 expression in FLS, correlating with the increased α11β1 amounts in RA patients. FLS deficient in integrin α11β1 released lower amounts of inflammation-associated cytokines. Our results demonstrate differences in healthy and RA-like chondrocyte ECM and distinctly different responses of wt FLS to damaged versus healthy ECM.
Collapse
Affiliation(s)
- Isabel Zeinert
- Translational Matrix Biology, University of Cologne, Medical Faculty, Cologne, Germany.
| | - Luisa Schmidt
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Till Baar
- Institute for Medical Statistics and Computational Biology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Giulio Gatto
- Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Trauma Surgery and Orthopedics, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | - Anna De Giuseppe
- Institute of Musculoskeletal Medicine, University Hospital Muenster, Muenster, Germany
| | - Adelheid Korb-Pap
- Institute of Musculoskeletal Medicine, University Hospital Muenster, Muenster, Germany
| | - Thomas Pap
- Institute of Musculoskeletal Medicine, University Hospital Muenster, Muenster, Germany
| | - Esther Mahabir
- Comparative Medicine, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Frank Zaucke
- Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Trauma Surgery and Orthopedics, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | - Bent Brachvogel
- Center for Biochemistry, University of Cologne, Faculty of Medicine, Cologne, Germany; Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Marcus Krüger
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Thomas Krieg
- Translational Matrix Biology, University of Cologne, Medical Faculty, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Beate Eckes
- Translational Matrix Biology, University of Cologne, Medical Faculty, Cologne, Germany.
| |
Collapse
|
2
|
Liu H, Zhang K, Xiong L. Dietary magnesium intake and rheumatoid arthritis patients' all-cause mortality: evidence from the NHANES database. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2024; 43:112. [PMID: 39103944 DOI: 10.1186/s41043-024-00597-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/13/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a chronic inflammatory joint disease with all-cause mortality increasing globally. Dietary magnesium (Mg), an anti-inflammatory nutrient, has been proven to be associated with the all-cause mortality. The association of dietary Mg intake and all-cause mortality in RA patients remains unknown. The aim of this study was to assess the association between dietary Mg intake and all-cause mortality in RA patients. METHODS RA patients were extracted from the NHANES 1999-2018, and followed for survival through December 31, 2019. Dietary Mg intake data were obtained from 24-h dietary recall interview. The association between dietary Mg intake and RA patients' all-cause mortality was explored based on weighted univariate and multivariate Cox proportional hazard models and described as absolute risk difference (ARD), hazard ratios (HRs) and 95% confidence intervals (CIs). This association was further explored in subgroup analyses based on different age, gender and body mass index (BMI). RESULTS Totally 2,952 patients were included. Until 31 December 2019, a total of 825 deaths were documented. RA patients with higher dietary Mg intake had a 11.12% reduction of all-cause mortality (ARD=-11.12%; HR = 0.74, 95%CI: 0.56-0.99) in the fully adjusted model, especially in female (HR = 0.68, 95%CI: 0.47-0.98), aged < 65 years (HR = 0.59, 95%CI: 0.37-0.94) and BMI ≤ 30 kg/m2 (HR = 0.62, 95%CI: 0.42-0.91). CONCLUSION RA patients who consumed adequate dietary Mg from diet as well as supplements may had a lower risk of all-cause mortality.
Collapse
Affiliation(s)
- Hantian Liu
- Queen Mary School, Nanchang University, Nanchang, 330036, Jiangxi Province, China
| | - Kui Zhang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Long Xiong
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, No. 566 Xuefu Avenue, Honggutan District, Nanchang, 330006, Jiangxi Province, China.
| |
Collapse
|
3
|
Oberemok VV, Andreeva O, Laikova K, Alieva E, Temirova Z. Rheumatoid Arthritis Has Won the Battle but Not the War: How Many Joints Will We Save Tomorrow? MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1853. [PMID: 37893571 PMCID: PMC10608469 DOI: 10.3390/medicina59101853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023]
Abstract
Rheumatoid arthritis refers to joint diseases of unclear etiology whose final stages can lead to unbearable pain and complete immobility of the affected joints. As one of the most widely known diseases of the joints, it serves as a study target for a large number of research groups and pharmaceutical companies. Modern treatment with anti-inflammatory drugs, including janus kinase (JAK) inhibitors, monoclonal antibodies, and botanicals (polyphenols, glycosides, alkaloids, etc.) has achieved some success and hope for improving the course of the disease. However, existing drugs against RA have a number of side effects which push researchers to elaborate on more selective and effective drug candidates. The avant-garde of research, which aims to develop treatment of rheumatoid arthritis using antisense oligonucleotides along with nonsteroidal drugs and corticosteroids against inflammation, increases the chances of success and expands the arsenal of drugs. The primary goal in the treatment of this disease is to find therapies that allow patients with rheumatoid arthritis to move their joints without pain. The main purpose of this review is to show the victories and challenges for the treatment of rheumatoid arthritis and the tortuous but promising path of research that aims to help patients experience the joy of freely moving joints without pain.
Collapse
Grants
- No. FZEG-2021-0009 Department of Molecular Genetics and Biotechnologies, Institute of Biochemical Technologies, Ecology and Pharmacy, V.I. Vernadsky Crimean Federal University, Simferopol, Crimea
- No. FZEG-2021-0009 Department of Molecular Genetics and Biotechnologies, Institute of Biochemical Technologies, Ecology and Pharmacy, V.I. Vernadsky Crimean Federal University, Simferopol, Crimea
Collapse
Affiliation(s)
- Volodymyr V. Oberemok
- Department of Molecular Genetics and Biotechnologies, Institute of Biochemical Technologies, Ecology and Pharmacy, V.I. Vernadsky Crimean Federal University, Simferopol 295007, Crimea; (O.A.); (K.L.); (E.A.); (Z.T.)
| | | | | | | | | |
Collapse
|
4
|
Batsalova T, Dzhambazov B. Significance of Type II Collagen Posttranslational Modifications: From Autoantigenesis to Improved Diagnosis and Treatment of Rheumatoid Arthritis. Int J Mol Sci 2023; 24:9884. [PMID: 37373030 PMCID: PMC10298457 DOI: 10.3390/ijms24129884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Collagen type II (COL2), the main structural protein of hyaline cartilage, is considerably affected by autoimmune responses associated with the pathogenesis of rheumatoid arthritis (RA). Posttranslational modifications (PTMs) play a significant role in the formation of the COL2 molecule and supramolecular fibril organization, and thus, support COL2 function, which is crucial for normal cartilage structure and physiology. Conversely, the specific PTMs of the protein (carbamylation, glycosylation, citrullination, oxidative modifications and others) have been implicated in RA autoimmunity. The discovery of the anti-citrullinated protein response in RA, which includes anti-citrullinated COL2 reactivity, has led to the development of improved diagnostic assays and classification criteria for the disease. The induction of immunological tolerance using modified COL2 peptides has been highlighted as a potentially effective strategy for RA therapy. Therefore, the aim of this review is to summarize the recent knowledge on COL2 posttranslational modifications with relevance to RA pathophysiology, diagnosis and treatment. The significance of COL2 PTMs as a source of neo-antigens that activate immunity leading to or sustaining RA autoimmunity is discussed.
Collapse
Affiliation(s)
| | - Balik Dzhambazov
- Faculty of Biology, Paisii Hilendarski University of Plovdiv, 24 Tsar Assen Str., 4000 Plovdiv, Bulgaria;
| |
Collapse
|
5
|
Yu J, Hu C, Dai Z, Xu J, Zhang L, Deng H, Xu Y, Zhao L, Li M, Liu L, Zhang M, Huang J, Wu L, Chen G. Dipeptidyl peptidase 4 as a potential serum biomarker for disease activity and treatment response in rheumatoid arthritis. Int Immunopharmacol 2023; 119:110203. [PMID: 37094543 DOI: 10.1016/j.intimp.2023.110203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/13/2023] [Accepted: 04/13/2023] [Indexed: 04/26/2023]
Abstract
BACKGROUND The treatment of rheumatoid arthritis (RA) related to the disease activity. However, the lack of highly sensitive and simplified markers limits the evaluation of disease activity. We sought to explore potential biomarkers associated with disease activity and treatment response in RA. METHODS Liquid chromatography-tandem mass spectrometry (LC-MS/MS) proteomic analysis was performed to determine the differentially expressed proteins (DEPs) in serum collected from RA patients with moderate or high disease activity (determined by DAS28) before and after 24 weeks of treatment. Bioinformatic analysis were performed for DEPs and hub proteins. In the validation cohort, 15 RA patients were enrolled. Key proteins were validated by enzyme-linked immunosorbent assay (Elisa), correlation analysis and ROC curve. RESULTS We identified 77 DEPs. The DEPs enriched in humoral immune response, blood microparticle, and serine-type peptidase activity. KEGG enrichment analysis displayed that the DEPs were significantly enriched in cholesterol metabolism and complement and coagulation cascades. Activated CD4 + T cell, T follicular helper cell, natural killer cell, and plasmacytoid dendritic cell significantly increased after treatment. Fifteen hub proteins were screened out. Among them, dipeptidyl peptidase 4 (DPP4) was the most significant protein associated with clinical indicators and immune cells. Serum concentration of DPP4 was testified to significantly increase after treatment and inversely correlate with disease activity indicators (ESR, CRP, DAS28-ESR, DAS28-CRP, CDAI, SDAI). Significant reduction was found in the serum CXC chemokine ligand10 (CXC10) and CXC chemokine receptor 3 (CXCR3) after treatment. CONCLUSIONS Overall, our results suggest that serum DPP4 might be a potential biomarker for disease activity assessment and treatment response of RA.
Collapse
Affiliation(s)
- Jiahui Yu
- First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Rheumatology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Congqi Hu
- Department of Rheumatology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhao Dai
- First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jia Xu
- First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lu Zhang
- First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hui Deng
- First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanping Xu
- Baiyun Hospital of the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lianyu Zhao
- First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Meilin Li
- First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lijuan Liu
- Department of Rheumatology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mingying Zhang
- Department of Rheumatology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiarong Huang
- Center for Chemical Biology and Drug Discovery, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Science (CAS), Guangzhou, China
| | - Linping Wu
- Center for Chemical Biology and Drug Discovery, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Science (CAS), Guangzhou, China.
| | - Guangxing Chen
- Department of Rheumatology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Baiyun Hospital of the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
6
|
Liu J, Gao J, Liang Z, Gao C, Niu Q, Wu F, Zhang L. Mesenchymal stem cells and their microenvironment. STEM CELL RESEARCH & THERAPY 2022; 13:429. [PMID: 35987711 PMCID: PMC9391632 DOI: 10.1186/s13287-022-02985-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 04/28/2022] [Indexed: 11/10/2022]
Abstract
Mesenchymal stem cells (MSCs), coming from a wide range of sources, have multi-directional differentiation ability. MSCs play vital roles in immunomodulation, hematopoiesis and tissue repair. The microenvironment of cells often refers to the intercellular matrix, other cells, cytokines and humoral components. It is also the place for cells’ interaction. The stability of the microenvironment is pivotal for maintaining cell proliferation, differentiation, metabolism and functional activities. Abnormal changes in microenvironment components can interfere cell functions. In some diseases, MSCs can interact with the microenvironment and accelerate disease progression. This review will discuss the characteristics of MSCs and their microenvironment, as well as the interaction between MSCs and microenvironment in disease.
Collapse
|