1
|
Abstract
The existence of coronaviruses has been known for many years. These viruses cause significant disease that primarily seems to affect agricultural species. Human coronavirus disease due to the 2002 outbreak of Severe Acute Respiratory Syndrome and the 2012 outbreak of Middle East Respiratory Syndrome made headlines; however, these outbreaks were controlled, and public concern quickly faded. This complacency ended in late 2019 when alarms were raised about a mysterious virus responsible for numerous illnesses and deaths in China. As we now know, this novel disease called Coronavirus Disease 2019 (COVID-19) was caused by Severe acute respiratory syndrome-related-coronavirus-2 (SARS-CoV-2) and rapidly became a worldwide pandemic. Luckily, decades of research into animal coronaviruses hastened our understanding of the genetics, structure, transmission, and pathogenesis of these viruses. Coronaviruses infect a wide range of wild and domestic animals, with significant economic impact in several agricultural species. Their large genome, low dependency on host cellular proteins, and frequent recombination allow coronaviruses to successfully cross species barriers and adapt to different hosts including humans. The study of the animal diseases provides an understanding of the virus biology and pathogenesis and has assisted in the rapid development of the SARS-CoV-2 vaccines. Here, we briefly review the classification, origin, etiology, transmission mechanisms, pathogenesis, clinical signs, diagnosis, treatment, and prevention strategies, including available vaccines, for coronaviruses that affect domestic, farm, laboratory, and wild animal species. We also briefly describe the coronaviruses that affect humans. Expanding our knowledge of this complex group of viruses will better prepare us to design strategies to prevent and/or minimize the impact of future coronavirus outbreaks.
Collapse
Key Words
- bcov, bovine coronavirus
- ccov, canine coronavirus
- cov(s), coronavirus(es)
- covid-19, coronavirus disease 2019
- crcov, canine respiratory coronavirus
- e, coronaviral envelope protein
- ecov, equine coronavirus
- fcov, feline coronavirus
- fipv, feline infectious peritonitis virus
- gfcov, guinea fowl coronavirus
- hcov, human coronavirus
- ibv, infectious bronchitis virus
- m, coronaviral membrane protein
- mers, middle east respiratory syndrome-coronavirus
- mhv, mouse hepatitis virus
- pedv, porcine epidemic diarrhea virus
- pdcov, porcine deltacoronavirus
- phcov, pheasant coronavirus
- phev, porcine hemagglutinating encephalomyelitis virus
- prcov, porcine respiratory coronavirus
- rt-pcr, reverse transcriptase polymerase chain reaction
- s, coronaviral spike protein
- sads-cov, swine acute diarrhea syndrome-coronavirus
- sars-cov, severe acute respiratory syndrome-coronavirus
- sars-cov-2, severe acute respiratory syndrome–coronavirus–2
- tcov, turkey coronavirus
- tgev, transmissible gastroenteritis virus
Collapse
Affiliation(s)
- Alfonso S Gozalo
- Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland;,
| | - Tannia S Clark
- Office of Laboratory Animal Medicine, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - David M Kurtz
- Comparative Medicine Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, North Carolina
| |
Collapse
|
2
|
Thayer V, Gogolski S, Felten S, Hartmann K, Kennedy M, Olah GA. 2022 AAFP/EveryCat Feline Infectious Peritonitis Diagnosis Guidelines. J Feline Med Surg 2022; 24:905-933. [PMID: 36002137 PMCID: PMC10812230 DOI: 10.1177/1098612x221118761] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
CLINICAL IMPORTANCE Feline infectious peritonitis (FIP) is one of the most important infectious diseases and causes of death in cats; young cats less than 2 years of age are especially vulnerable. FIP is caused by a feline coronavirus (FCoV). It has been estimated that around 0.3% to 1.4% of feline deaths at veterinary institutions are caused by FIP. SCOPE This document has been developed by a Task Force of experts in feline clinical medicine as the 2022 AAFP/EveryCat Feline Infectious Peritonitis Diagnosis Guidelines to provide veterinarians with essential information to aid their ability to recognize cats presenting with FIP. TESTING AND INTERPRETATION Nearly every small animal veterinary practitioner will see cases. FIP can be challenging to diagnose owing to the lack of pathognomonic clinical signs or laboratory changes, especially when no effusion is present. A good understanding of each diagnostic test's sensitivity, specificity, predictive value, likelihood ratio and diagnostic accuracy is important when building a case for FIP. Before proceeding with any diagnostic test or commercial laboratory profile, the clinician should be able to answer the questions of 'why this test?' and 'what do the results mean?' Ultimately, the approach to diagnosing FIP must be tailored to the specific presentation of the individual cat. RELEVANCE Given that the disease is fatal when untreated, the ability to obtain a correct diagnosis is critical. The clinician must consider the individual patient's history, signalment and comprehensive physical examination findings when selecting diagnostic tests and sample types in order to build the index of suspicion 'brick by brick'. Research has demonstrated efficacy of new antivirals in FIP treatment, but these products are not legally available in many countries at this time. The Task Force encourages veterinarians to review the literature and stay informed on clinical trials and new drug approvals.
Collapse
|
3
|
Camero M, Lanave G, Catella C, Lucente MS, Sposato A, Mari V, Tempesta M, Martella V, Buonavoglia A. ERDRP-0519 inhibits feline coronavirus in vitro. BMC Vet Res 2022; 18:55. [PMID: 35078478 PMCID: PMC8787031 DOI: 10.1186/s12917-022-03153-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/07/2022] [Indexed: 11/15/2022] Open
Abstract
Background Coronaviruses (CoVs) are major human and animal pathogens and antiviral drugs are pursued as a complementary strategy, chiefly if vaccines are not available. Feline infectious peritonitis (FIP) is a fatal systemic disease of felids caused by FIP virus (FIPV), a virulent pathotype of feline enteric coronavirus (FeCoV). Some antiviral drugs active on FIPV have been identified, but they are not available in veterinary medicine. ERDRP-0519 (ERDRP) is a non-nucleoside inhibitor, targeting viral RNA polymerase, effective against morbilliviruses in vitro and in vivo. Results The antiviral efficacy of ERDRP against a type II FIPV was evaluated in vitro in Crandell Reese Feline Kidney (CRFK) cells. ERDRP significantly inhibited replication of FIPV in a dose-dependent manner. Viral infectivity was decreased by up to 3.00 logarithms in cell cultures whilst viral load, estimated by quantification of nucleic acids, was reduced by nearly 3.11 logaritms. Conclusions These findings confirm that ERDRP is highly effective against a CoV. Experiments will be necessary to assess whether ERDRP is suitable for treatment of FIPV in vivo. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03153-3.
Collapse
Affiliation(s)
- Michele Camero
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy
| | - Gianvito Lanave
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy.
| | - Cristiana Catella
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy
| | | | - Alessio Sposato
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy
| | - Viviana Mari
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy
| | - Maria Tempesta
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy
| | - Vito Martella
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy
| | | |
Collapse
|
4
|
The Population Diversity of Candidate Genes for Resistance/Susceptibility to Coronavirus Infection in Domestic Cats: An Inter-Breed Comparison. Pathogens 2021; 10:pathogens10060778. [PMID: 34205589 PMCID: PMC8234589 DOI: 10.3390/pathogens10060778] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 11/17/2022] Open
Abstract
Feline coronavirus (FCoV) is a complex pathogen causing feline infectious peritonitis (FIP). Host genetics represents a factor contributing to the pathogenesis of the disease. Differential susceptibility of various breeds to FIP was reported with controversial results. The objective of this study was to compare the genetic diversity of different breeds on a panel of candidate genes potentially affecting FCoV infection. One hundred thirteen cats of six breeds were genotyped on a panel of sixteen candidate genes. SNP allelic/haplotype frequencies were calculated; pairwise FST and molecular variance analyses were performed. Principal coordinate (PCoA) and STRUCTURE analyses were used to infer population structure. Interbreed differences in allele frequencies were observed. PCoA analysis performed for all genes of the panel indicated no population substructure. In contrast to the full marker set, PCoA of SNP markers associated with FCoV shedding (NCR1 and SLX4IP) showed three clusters containing only alleles associated with susceptibility to FCoV shedding, homozygotes and heterozygotes for the susceptibility alleles, and all three genotypes, respectively. Each cluster contained cats of multiple breeds. Three clusters of haplotypes were identified by PCoA, two clusters by STRUCTURE. Haplotypes of a single gene (SNX5) differed significantly between the PCoA clusters.
Collapse
|
5
|
Bubenikova J, Vrabelova J, Stejskalova K, Futas J, Plasil M, Cerna P, Oppelt J, Lobova D, Molinkova D, Horin P. Candidate Gene Markers Associated with Fecal Shedding of the Feline Enteric Coronavirus (FECV). Pathogens 2020; 9:pathogens9110958. [PMID: 33213082 PMCID: PMC7698596 DOI: 10.3390/pathogens9110958] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 12/20/2022] Open
Abstract
The Feline coronavirus (FCoV) can cause a fatal disease, the Feline Infectious Peritonitis. Persistent shedders represent the most important source of infection. The role of the host in FCoV fecal shedding is unknown. The objective of this study was to develop gene markers and to test their associations with FCoV shedding patterns. Fecal samples were taken from 57 cats of 12 breeds on the day 0 and after 2, 4 and 12 months. Variation from persistent and/or high-intensity shedding to no shedding was observed. Thirteen immunity-related genes were selected as functional and positional/functional candidates. Positional candidates were selected in a candidate region detected by a GWAS analysis. Tens to hundreds of single nucleotide polymorphisms (SNPs) per gene were identified using next generation sequencing. Associations with different phenotypes were assessed by chi-square and Fisher’s exact tests. SNPs of one functional and one positional candidate (NCR1 and SLX4IP, respectively) and haplotypes of four genes (SNX5, NCR2, SLX4IP, NCR1) were associated with FCoV shedding at pcorected < 0.01. Highly significant associations were observed for extreme phenotypes (persistent/high-intensity shedders and non-shedders) suggesting that there are two major phenotypes associated with different genotypes, highly susceptible cats permanently shedding high amounts of viral particles and resistant non-shedders.
Collapse
Affiliation(s)
- Jana Bubenikova
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, 61242 Brno, Czech Republic; (J.B.); (K.S.); (J.F.); (M.P.)
| | - Jana Vrabelova
- Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, 61242 Brno, Czech Republic; (J.V.); (P.C.); (D.L.); (D.M.)
| | - Karla Stejskalova
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, 61242 Brno, Czech Republic; (J.B.); (K.S.); (J.F.); (M.P.)
- CEITEC VFU, RG Animal Immunogenomics, University of Veterinary and Pharmaceutical Sciences Brno, 61242 Brno, Czech Republic;
| | - Jan Futas
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, 61242 Brno, Czech Republic; (J.B.); (K.S.); (J.F.); (M.P.)
- CEITEC VFU, RG Animal Immunogenomics, University of Veterinary and Pharmaceutical Sciences Brno, 61242 Brno, Czech Republic;
| | - Martin Plasil
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, 61242 Brno, Czech Republic; (J.B.); (K.S.); (J.F.); (M.P.)
- CEITEC VFU, RG Animal Immunogenomics, University of Veterinary and Pharmaceutical Sciences Brno, 61242 Brno, Czech Republic;
| | - Petra Cerna
- Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, 61242 Brno, Czech Republic; (J.V.); (P.C.); (D.L.); (D.M.)
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523-1678, USA
| | - Jan Oppelt
- CEITEC VFU, RG Animal Immunogenomics, University of Veterinary and Pharmaceutical Sciences Brno, 61242 Brno, Czech Republic;
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6100, USA
| | - Dana Lobova
- Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, 61242 Brno, Czech Republic; (J.V.); (P.C.); (D.L.); (D.M.)
| | - Dobromila Molinkova
- Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, 61242 Brno, Czech Republic; (J.V.); (P.C.); (D.L.); (D.M.)
| | - Petr Horin
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, 61242 Brno, Czech Republic; (J.B.); (K.S.); (J.F.); (M.P.)
- CEITEC VFU, RG Animal Immunogenomics, University of Veterinary and Pharmaceutical Sciences Brno, 61242 Brno, Czech Republic;
- Correspondence:
| |
Collapse
|
6
|
LoPresti M, Beck DB, Duggal P, Cummings DAT, Solomon BD. The Role of Host Genetic Factors in Coronavirus Susceptibility: Review of Animal and Systematic Review of Human Literature. Am J Hum Genet 2020; 107:381-402. [PMID: 32814065 PMCID: PMC7420067 DOI: 10.1016/j.ajhg.2020.08.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 08/10/2020] [Indexed: 12/16/2022] Open
Abstract
The SARS-CoV-2 pandemic raises many scientific and clinical questions. These include how host genetic factors affect disease susceptibility and pathogenesis. New work is emerging related to SARS-CoV-2; previous work has been conducted on other coronaviruses that affect different species. We reviewed the literature on host genetic factors related to coronaviruses, systematically focusing on human studies. We identified 1,832 articles of potential relevance. Seventy-five involved human host genetic factors, 36 of which involved analysis of specific genes or loci; aside from one meta-analysis, all were candidate-driven studies, typically investigating small numbers of research subjects and loci. Three additional case reports were described. Multiple significant loci were identified, including 16 related to susceptibility (seven of which identified protective alleles) and 16 related to outcomes (three of which identified protective alleles). The types of cases and controls used varied considerably; four studies used traditional replication/validation cohorts. Among other studies, 30 involved both human and non-human host genetic factors related to coronavirus, 178 involved study of non-human (animal) host genetic factors related to coronavirus, and 984 involved study of non-genetic host factors related to coronavirus, including involving immunopathogenesis. Previous human studies have been limited by issues that may be less impactful now, including low numbers of eligible participants and limited availability of advanced genomic methods; however, these may raise additional considerations. We outline key genes and loci from animal and human host genetic studies that may bear investigation in the study of COVID-19. We also discuss how previous studies may direct current lines of inquiry.
Collapse
Affiliation(s)
- Marissa LoPresti
- University of Florida College of Veterinary Medicine, Gainesville, FL 32611, USA
| | - David B Beck
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Priya Duggal
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Derek A T Cummings
- Department of Biology, University of Florida, Gainesville, FL 32611, USA; Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA
| | - Benjamin D Solomon
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
7
|
Kennedy MA. Feline Infectious Peritonitis: Update on Pathogenesis, Diagnostics, and Treatment. Vet Clin North Am Small Anim Pract 2020; 50:1001-1011. [PMID: 32563530 DOI: 10.1016/j.cvsm.2020.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Feline infectious peritonitis (FIP) is a mysterious and lethal disease of cats. The causative agent, feline coronavirus (FCoV), is ubiquitous in most feline populations, yet the disease is sporadic in nature. Mutations in the infecting virus combined with an inappropriate immune response to the FCoV contribute to the development of FIP. Diagnosis can be challenging because signs may be vague, clinical pathology parameters are nonspecific, and the gold standard for diagnosis is invasive: histopathology of affected tissue. This article discusses the developments in the understanding of this disease as well as the progress in diagnosis and treatment.
Collapse
Affiliation(s)
- Melissa A Kennedy
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Room A205 VMC, 2407 River Drive, Knoxville, TN 37996-4543, USA.
| |
Collapse
|
8
|
LoPresti M, Beck DB, Duggal P, Cummings DAT, Solomon BD. The Role of Host Genetic Factors in Coronavirus Susceptibility: Review of Animal and Systematic Review of Human Literature. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.05.30.20117788. [PMID: 32511629 PMCID: PMC7276057 DOI: 10.1101/2020.05.30.20117788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
BACKGROUND The recent SARS-CoV-2 pandemic raises many scientific and clinical questions. One set of questions involves host genetic factors that may affect disease susceptibility and pathogenesis. New work is emerging related to SARS-CoV-2; previous work has been conducted on other coronaviruses that affect different species. OBJECTIVES We aimed to review the literature on host genetic factors related to coronaviruses, with a systematic focus on human studies. METHODS We conducted a PubMed-based search and analysis for articles relevant to host genetic factors in coronavirus. We categorized articles, summarized themes related to animal studies, and extracted data from human studies for analyses. RESULTS We identified 1,187 articles of potential relevance. Forty-five studies were related to human host genetic factors related to coronavirus, of which 35 involved analysis of specific genes or loci; aside from one meta-analysis on respiratory infections, all were candidate-driven studies, typically investigating small number of research subjects and loci. Multiple significant loci were identified, including 16 related to susceptibility to coronavirus (of which 7 identified protective alleles), and 16 related to outcomes or clinical variables (of which 3 identified protective alleles). The types of cases and controls used varied considerably; four studies used traditional replication/validation cohorts. Of the other studies, 28 involved both human and non-human host genetic factors related to coronavirus, 174 involved study of non-human (animal) host genetic factors related to coronavirus, 584 involved study of non-genetic host factors related to coronavirus, including involving immunopathogenesis, 16 involved study of other pathogens (not coronavirus), 321 involved other studies of coronavirus, and 18 studies were assigned to the other categories and removed. KEY FINDINGS We have outlined key genes and loci from animal and human host genetic studies that may bear investigation in the nascent host genetic factor studies of COVID-19. Previous human studies to date have been limited by issues that may be less impactful on current endeavors, including relatively low numbers of eligible participants and limited availability of advanced genomic methods.
Collapse
|
9
|
Emmler L, Felten S, Matiasek K, Balzer HJ, Pantchev N, Leutenegger C, Hartmann K. Feline coronavirus with and without spike gene mutations detected by real-time RT-PCRs in cats with feline infectious peritonitis. J Feline Med Surg 2019; 22:791-799. [PMID: 31729897 PMCID: PMC7206566 DOI: 10.1177/1098612x19886671] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Feline infectious peritonitis (FIP) emerges when feline coronaviruses (FCoVs) mutate within their host to a highly virulent biotype and the immune response is not able to control the infection. FCoV spike (S) gene mutations are considered to contribute to the change in virulence by enabling FCoV infection of and replication in macrophages. This study investigated the presence of FCoV with and without S gene mutations in cats with FIP using two different real-time RT-PCRs on different samples obtained under clinical conditions. METHODS Fine-needle aspirates (FNAs) and incisional biopsies (IBs) of popliteal and mesenteric lymph nodes, liver, spleen, omentum and kidneys (each n = 20), EDTA blood (n = 13), buffy coat smears (n = 13), serum (n = 11), effusion (n = 14), cerebrospinal fluid (n = 16), aqueous humour (n = 20) and peritoneal lavage (n = 6) were obtained from 20 cats with FIP diagnosed by immunohistochemistry. Samples were examined by RT-PCR targeting the FCoV 7b gene, detecting all FCoV, and S gene mutation RT-PCR targeting mutations in nucleotides 23531 and 23537. The prevalence of FCoV detected in each sample type was calculated. RESULTS In 20/20 cats, FCoV with S gene mutations was present in at least one sample, but there was variation in which sample was positive. FCoV with mutations in the S gene was most frequently found in effusion (64%, 95% confidence interval [CI] 39-89), followed by spleen, omentum and kidney IBs (50%, 95% CI 28-72), mesenteric lymph node IBs and FNAs (45%, 95% CI 23-67), and FNAs of spleen and liver and liver IBs (40%, 95% CI 19-62). CONCLUSIONS AND RELEVANCE In these 20 cats with FIP, FCoVs with S gene mutations were found in every cat in at least one tissue or fluid sample. This highlights the association between mutated S gene and systemic FCoV spread. Examining a combination of different samples increased the probability of finding FCoV with the mutated S gene.
Collapse
Affiliation(s)
- Laura Emmler
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Sandra Felten
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Kaspar Matiasek
- Section of Clinical and Comparative Neuropathology, Institute of Veterinary Pathology, Centre for Clinical Veterinary Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | | | | | | | - Katrin Hartmann
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| |
Collapse
|
10
|
Morris KM, Kirby K, Beatty JA, Barrs VR, Cattley S, David V, O'Brien SJ, Menotti-Raymond M, Belov K. Development of MHC-Linked Microsatellite Markers in the Domestic Cat and Their Use to Evaluate MHC Diversity in Domestic Cats, Cheetahs, and Gir Lions. J Hered 2014; 105:493-505. [PMID: 24620003 PMCID: PMC4048552 DOI: 10.1093/jhered/esu017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 01/14/2014] [Indexed: 11/15/2022] Open
Abstract
Diversity within the major histocompatibility complex (MHC) reflects the immunological fitness of a population. MHC-linked microsatellite markers provide a simple and an inexpensive method for studying MHC diversity in large-scale studies. We have developed 6 MHC-linked microsatellite markers in the domestic cat and used these, in conjunction with 5 neutral microsatellites, to assess MHC diversity in domestic mixed breed (n = 129) and purebred Burmese (n = 61) cat populations in Australia. The MHC of outbred Australian cats is polymorphic (average allelic richness = 8.52), whereas the Burmese population has significantly lower MHC diversity (average allelic richness = 6.81; P < 0.01). The MHC-linked microsatellites along with MHC cloning and sequencing demonstrated moderate MHC diversity in cheetahs (n = 13) and extremely low diversity in Gir lions (n = 13). Our MHC-linked microsatellite markers have potential future use in diversity and disease studies in other populations and breeds of cats as well as in wild felid species.
Collapse
Affiliation(s)
- Katrina M Morris
- From the Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006, Australia (Morris, Kirby, Beatty, Barrs, and Belov); the ANGIS, University of Sydney, Sydney, NSW 2006, Australia (Cattley); the Laboratory of Genomic Diversity, National Cancer Institute, Frederick, MD 21702-1201 (David and Menotti-Raymond); the Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russia (O'Brien); and the Oceanographic Center, Nova Southeastern University, Ft Lauderdale, FL 33314-7796 (O'Brien)
| | - Katherine Kirby
- From the Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006, Australia (Morris, Kirby, Beatty, Barrs, and Belov); the ANGIS, University of Sydney, Sydney, NSW 2006, Australia (Cattley); the Laboratory of Genomic Diversity, National Cancer Institute, Frederick, MD 21702-1201 (David and Menotti-Raymond); the Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russia (O'Brien); and the Oceanographic Center, Nova Southeastern University, Ft Lauderdale, FL 33314-7796 (O'Brien)
| | - Julia A Beatty
- From the Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006, Australia (Morris, Kirby, Beatty, Barrs, and Belov); the ANGIS, University of Sydney, Sydney, NSW 2006, Australia (Cattley); the Laboratory of Genomic Diversity, National Cancer Institute, Frederick, MD 21702-1201 (David and Menotti-Raymond); the Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russia (O'Brien); and the Oceanographic Center, Nova Southeastern University, Ft Lauderdale, FL 33314-7796 (O'Brien)
| | - Vanessa R Barrs
- From the Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006, Australia (Morris, Kirby, Beatty, Barrs, and Belov); the ANGIS, University of Sydney, Sydney, NSW 2006, Australia (Cattley); the Laboratory of Genomic Diversity, National Cancer Institute, Frederick, MD 21702-1201 (David and Menotti-Raymond); the Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russia (O'Brien); and the Oceanographic Center, Nova Southeastern University, Ft Lauderdale, FL 33314-7796 (O'Brien)
| | - Sonia Cattley
- From the Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006, Australia (Morris, Kirby, Beatty, Barrs, and Belov); the ANGIS, University of Sydney, Sydney, NSW 2006, Australia (Cattley); the Laboratory of Genomic Diversity, National Cancer Institute, Frederick, MD 21702-1201 (David and Menotti-Raymond); the Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russia (O'Brien); and the Oceanographic Center, Nova Southeastern University, Ft Lauderdale, FL 33314-7796 (O'Brien)
| | - Victor David
- From the Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006, Australia (Morris, Kirby, Beatty, Barrs, and Belov); the ANGIS, University of Sydney, Sydney, NSW 2006, Australia (Cattley); the Laboratory of Genomic Diversity, National Cancer Institute, Frederick, MD 21702-1201 (David and Menotti-Raymond); the Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russia (O'Brien); and the Oceanographic Center, Nova Southeastern University, Ft Lauderdale, FL 33314-7796 (O'Brien)
| | - Stephen J O'Brien
- From the Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006, Australia (Morris, Kirby, Beatty, Barrs, and Belov); the ANGIS, University of Sydney, Sydney, NSW 2006, Australia (Cattley); the Laboratory of Genomic Diversity, National Cancer Institute, Frederick, MD 21702-1201 (David and Menotti-Raymond); the Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russia (O'Brien); and the Oceanographic Center, Nova Southeastern University, Ft Lauderdale, FL 33314-7796 (O'Brien)
| | - Marilyn Menotti-Raymond
- From the Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006, Australia (Morris, Kirby, Beatty, Barrs, and Belov); the ANGIS, University of Sydney, Sydney, NSW 2006, Australia (Cattley); the Laboratory of Genomic Diversity, National Cancer Institute, Frederick, MD 21702-1201 (David and Menotti-Raymond); the Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russia (O'Brien); and the Oceanographic Center, Nova Southeastern University, Ft Lauderdale, FL 33314-7796 (O'Brien)
| | - Katherine Belov
- From the Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006, Australia (Morris, Kirby, Beatty, Barrs, and Belov); the ANGIS, University of Sydney, Sydney, NSW 2006, Australia (Cattley); the Laboratory of Genomic Diversity, National Cancer Institute, Frederick, MD 21702-1201 (David and Menotti-Raymond); the Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russia (O'Brien); and the Oceanographic Center, Nova Southeastern University, Ft Lauderdale, FL 33314-7796 (O'Brien).
| |
Collapse
|
11
|
Identification and genotyping of feline infectious peritonitis-associated single nucleotide polymorphisms in the feline interferon-γ gene. Vet Res 2014; 45:57. [PMID: 24886103 PMCID: PMC4041894 DOI: 10.1186/1297-9716-45-57] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 04/28/2014] [Indexed: 01/12/2023] Open
Abstract
Feline infectious peritonitis (FIP) is an immune-mediated, highly lethal disease caused by feline coronavirus (FCoV) infection. Currently, no protective vaccine or effective treatment for the disease is available. Studies have found that some cats survive the challenge of virulent FCoV isolates. Since cellular immunity is thought to be critical in preventing FIP and because diseased cats often show a significant decrease in interferon-γ (IFN-γ) production, we investigated whether single nucleotide polymorphisms (SNP) in the feline IFN-γ gene (fIFNG) are associated with the outcome of infection. A total of 82 asymptomatic and 63 FIP cats were analyzed, and 16 SNP were identified in intron 1 of fIFNG. Among these SNP, the fFING + 428 T allele was shown to be a FIP-resistant allele (p = 0.03), and the heterozygous genotypes 01C/T and +408C/T were found to be FIP-susceptible factors (p = 0.004). Furthermore, an fIFNG + 428 resistant allele also showed a clear correlation with the plasma level of IFN-γ in FIP cats. For the identification of these three FIP-related SNP, genotyping methods were established using amplification refractory mutation system PCR (ARMS-PCR) and restriction fragment length polymorphisms (RFLP), and the different genotypes could easily be identified without sequencing. The identification of additional FIP-related SNP will allow the selection of resistant cats and decrease the morbidity of the cat population to FIP.
Collapse
|
12
|
Pedersen NC, Liu H, Dodd KA, Pesavento PA. Significance of coronavirus mutants in feces and diseased tissues of cats suffering from feline infectious peritonitis. Viruses 2009; 1:166-84. [PMID: 21994544 PMCID: PMC3185486 DOI: 10.3390/v1020166] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 08/10/2009] [Accepted: 08/11/2009] [Indexed: 12/30/2022] Open
Abstract
The internal FECV→FIPV mutation theory and three of its correlates were tested in four sibs/half-sib kittens, a healthy contact cat, and in four unrelated cats that died of FIP at geographically disparate regions. Coronavirus from feces and extraintestinal FIP lesions from the same cat were always >99% related in accessory and structural gene sequences. SNPs and deletions causing a truncation of the 3c gene product were found in almost all isolates from the diseased tissues of the eight cats suffering from FIP, whereas most, but not all fecal isolates from these same cats had intact 3c genes. Other accessory and structural genes appeared normal in both fecal and lesional viruses. Deliterious mutations in the 3c gene were unique to each cat, indicating that they did not originate in one cat and were subsequently passed horizontally to the others. Compartmentalization of the parental and mutant forms was not absolute; virus of lesional type was sometimes found in feces of affected cats and virus identical to fecal type was occasionally identified in diseased tissues. Although 3c gene mutants in this study were not horizontally transmitted, the parental fecal virus was readily transmitted by contact from a cat that died of FIP to its housemate. There was a high rate of mutability in all structural and accessory genes both within and between cats, leading to minor genetic variants. More than one variant could be identified in both diseased tissues and feces of the same cat. Laboratory cats inoculated with a mixture of two closely related variants from the same FIP cat developed disease from one or the other variant, but not both. Significant genetic drift existed between isolates from geographically distinct regions of the Western US.
Collapse
Affiliation(s)
- Niels C. Pedersen
- Center for Companion Animal Health, School of Veterinary Medicine, University of California, One Shields Avenue, Davis, CA, 95616, USA; E-mail: (H.L.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-530-752-7402; Fax: +1-530-752-7701
| | - Hongwei Liu
- Center for Companion Animal Health, School of Veterinary Medicine, University of California, One Shields Avenue, Davis, CA, 95616, USA; E-mail: (H.L.)
| | - Kimberly A. Dodd
- School of Veterinary Medicine, University of California, One Shields Avenue, Davis, CA, 95616, USA; E-Mail: (K.A.D.)
| | - Patricia A. Pesavento
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA; E-Mail: (P.A.P.)
| |
Collapse
|
13
|
Affiliation(s)
- Niels C Pedersen
- Department of Medicine and Epidemiology and Center for Companion Animal Health, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| |
Collapse
|
14
|
Kennedy MA, Abd-Eldaim M, Zika SE, Mankin JM, Kania SA. Evaluation of antibodies against feline coronavirus 7b protein for diagnosis of feline infectious peritonitis in cats. Am J Vet Res 2008; 69:1179-82. [PMID: 18764691 DOI: 10.2460/ajvr.69.9.1179] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine whether expression of feline coronavirus (FCoV) 7b protein, as indicated by the presence of specific serum antibodies, consistently correlated with occurrence of feline infectious peritonitis (FIP) in cats. SAMPLE POPULATION 95 serum samples submitted for various diagnostic assays and 20 samples from specific-pathogen-free cats tested as negative control samples. PROCEDURES The 7b gene from a virulent strain of FCoV was cloned into a protein expression vector. The resultant recombinant protein was produced and used in antibody detection assays via western blot analysis of serum samples. Results were compared with those of an immunofluorescence assay (IFA) for FCoV-specific antibody and correlated with health status. RESULTS Healthy IFA-seronegative cats were seronegative for antibodies against the 7b protein. Some healthy cats with detectable FCoV-specific antibodies as determined via IFA were seronegative for antibodies against the 7b protein. Serum from cats with FIP had antibodies against the 7b protein, including cats with negative results via conventional IFA. However, some healthy cats, as well as cats with conditions other than FIP that were seropositive to FCoV via IFA, were also seropositive for the 7b protein. CONCLUSIONS AND CLINICAL RELEVANCE Expression of the 7b protein, as indicated by detection of antibodies against the protein, was found in most FCoV-infected cats. Seropositivity for this protein was not specific for the FCoV virulent biotype or a diagnosis of FIP.
Collapse
Affiliation(s)
- Melissa A Kennedy
- Department of Comparative Medicine, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996-4543, USA
| | | | | | | | | |
Collapse
|
15
|
Single locus typing of MHC class I and class II B loci in a population of red jungle fowl. Immunogenetics 2008; 60:233-47. [DOI: 10.1007/s00251-008-0288-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Accepted: 02/26/2008] [Indexed: 10/22/2022]
|
16
|
Baquero JE, Miranda S, Murillo O, Mateus H, Trujillo E, Suarez C, Patarroyo ME, Parra-López C. Reference strand conformational analysis (RSCA) is a valuable tool in identifying MHC-DRB sequences in three species of Aotus monkeys. Immunogenetics 2006; 58:590-7. [PMID: 16733718 DOI: 10.1007/s00251-006-0101-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Accepted: 01/16/2006] [Indexed: 11/25/2022]
Abstract
The Aotus monkey has been of great value in the pre-clinical study of malaria vaccine candidates. Several components of this primate's immune system have been studied and they display great similarity to their human counterparts. Cloning and sequencing studies have revealed extensive sequence polymorphisms in Aotus MHC-DRB with very high similarities to several human allelic lineages, grouping at least nine distinct MHC-DRB lineages. As the efficacy of peptide vaccines in this animal model may be strongly influenced by exon 2 MHC-DRB polymorphism, the availability of a reliable and rapid MHC-DRB typing method for three species of Aotus (Aotus nancymaae, Aotus vociferans and Aotus nigriceps) is necessary. Reference strand conformational analysis (RSCA) was used here for differentiating the distinctive Aotus MHC-DRB sequences' mobility using five fluorescently labelled references proved to be very useful for resolving closely related sequences, establishing the number of sequences transcribed in a particular monkey and their identity. The RSCA method's reliability in terms of identifying Aotus MHC-DRB sequences will facilitate evaluating individual responsiveness to vaccines and prompt studies associating susceptibility/resistance to infectious agents or auto-immune disease, for which Aotus monkeys may be considered to be an appropriate animal model.
Collapse
Affiliation(s)
- Juan E Baquero
- Fundación Instituto de Inmunologia de Colombia, Carrera 50 Número 26-00, Bogotá, Colombia, South America
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Norris JM, Bosward KL, White JD, Baral RM, Catt MJ, Malik R. Clinicopathological findings associated with feline infectious peritonitis in Sydney, Australia: 42 cases (1990-2002). Aust Vet J 2005; 83:666-73. [PMID: 16315663 PMCID: PMC7159746 DOI: 10.1111/j.1751-0813.2005.tb13044.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2005] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To review the clinicopathological findings in naturally-occurring, histopathologically confirmed cases of feline infectious peritonitis in client-owned cats in Sydney, Australia, with the purpose of identifying factors assisting in the diagnosis of this complex disease syndrome and to characterise the disease as it occurs in this region. DESIGN Retrospective clinical study: the clinical records of all cats with histopathologically confirmed feline infectious peritonitis at the University Veterinary Centre Sydney and a private cat hospital in Sydney between 1990 and 2002 were reviewed for signalment, history, physical findings, diagnostic test results and the distribution of histological lesions throughout the body at necropsy. RESULTS Forty-two cats met the inclusion criteria. Significant features of this study that unique to the contemporary literature are i) the over-representation of certain breeds (Burmese, Australian Mist, British Shorthaired, and Cornish Rex) and the under-representation of other breeds (Domestic Shorthaired, Persian); ii) the overrepresentation of males; iii) the tendency for effusive disease in Australian Mist cats and non-effusive disease in Burmese; iv) the even age distribution of disease seen in cats older than 2 years-of-age; and v) the presence of fulminant immune-mediated haemolytic anaemia in two cats in this study. CONCLUSION The study highlights the diverse range of clinical manifestations and the complexities experienced by clinicians in diagnosing this fatal disease. Some aspects of the epidemiology and clinical manifestations of feline infectious peritonitis appear different to the disease encountered in Europe and North America, most notably the over-representation of specific breeds and the presence of immune-mediated haemolytic anaemia.
Collapse
Affiliation(s)
- J M Norris
- Faculty of Veterinary Science, Building B14, The University of Sydney, New South Wales, 2006.
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
The article discusses feline infectious peritonitis (FIP), an important disease frequently seen in veterinary practice. FIP causes many problems to the veterinarian as it can be difficult to definitively diagnose the disease, as there is no effective treatment, and as prophylactic interventions are not very successful. Although intense research has created a lot of new knowledge about this disease in the last years, there are still many unanswered questions. The objective of this article is to review recent knowledge and to increase understanding of the complex pathogenesis of FIP.
Collapse
Affiliation(s)
- Katrin Hartmann
- Clinic of Small Animal Medicine, Ludwig-Maximilians-Universität München, Veterinaerstrasse 13, 80539 Munich, Germany.
| |
Collapse
|
19
|
Horzinek MC. The bright future of coronavirology. J Feline Med Surg 2004; 6:49-51. [PMID: 15123147 PMCID: PMC7128629 DOI: 10.1016/j.jfms.2004.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|